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Abstract

Photonic integrated circuits (PIC) can be exploited to control trapped ions more robustly
than free-space optics. Most of the work done in this area used silicon nitride (Si3N4),
however, it is incompatible with UV wavelengths. Instead, aluminium oxide (Al2O3) proves
to be a suitable waveguide material. This project focuses on designing and optimizing
several integrated optics structures using alumina. All the simulations have been carried
out using the finite difference time domain method implemented in Lumerical.
To improve the transmission of a bend, a partial Euler bend can be implemented. Using
a portion of an Euler spiral decreases the connection loss thanks to its linearly varying
curvature, however, it also increases the bending loss due to the decreased minimum radius
of curvature. Therefore it needs to be optimized to achieve the right balance between
the two parts. A valuable component for PICs is the power splitter. In this work, it
has been implemented using a directional coupler since it allows a design with arbitrary
splitting ratios. The designs were conducted using two distinct sets of oxides and waveguide
thicknesses.
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Chapter 1

Introduction

1.1 Motivation

Integrated optics can be used to control trapped ions more robustly than free-space optics
[1]. In this way, it is possible to achieve higher fidelity quantum operations. Moreover,
when increasing the number of ions, controlling a free-space optics setup can become a
complex task, and integrated optics devices present themselves as an ideal solution to this
problem [2], paving the way to scaling up trapped ions as a quantum information processing
platform.

Much work has been done for telecom and visible wavelength integrated optics struc-
tures, especially using silicon nitride (Si3N4). However, silicon nitride is not a suitable
waveguide material for UV wavelengths due to the high material loss. A valid solution is
presented by alumina (Al2O3) waveguides. In this work, we present the designs and sim-
ulations for several integrated photonic components, tailored for UV wavelengths, namely
partial Euler bends and arbitrary splitting ratio power splitters.

Improving the bend loss performance for small bend radii is a challenge for Al2O3

integrated optics devices. The partial Euler bend has already been demonstrated as a
valuable technique to reduce losses when using silicon nitride [3], and using more advanced
approaches like using photonic crystals are not suitable for UV light due to its short
wavelength. Therefore the first part of this project was focused on optimizing the partial
Euler bend for two different waveguides thickness and oxide materials.

Another useful component in photonic integrated circuits is the directional coupler
that acts as a power splitter. Usually, different waveguides are far apart throughout the
device to inhibit cross-talk, but when it can also be fine-tuned to allow power coupling
from one waveguide to another. One of the key properties of the directional coupler is
that is possible to design it with arbitrary splitting ratios. This is not possible with
components such as MMI (Multi-Mode Interferometer) couplers, where light can only be
split evenly between the different outgoing waveguides. Integrated power splitters can be
particularly useful in experiments involving trapped ions since they are both need in the

1



2 1.2. Partial Euler bend

integrated optics below the ion trap, which often require UV laser light and now there
are not any commercially available chip- or fiber-integrated beam splitters for UV light.
Targeted devices provide unbalanced splitting ratios (99:1, 90:10, 75:25) which provide
various experimental capabilities including frequency and power monitoring via pick-off
lines of the light before it is directed to the trap.

1.2 Partial Euler bend

The allowed modes of a straight waveguide and a bent waveguide do not correspond,
therefore when the fundamental mode in the straight waveguide transitions to the bent
part, it will exites higher bend modes [4]. Using an Euler spiral where the curvature
varies linearly, should adiabatically convert the straight waveguide mode profile into the
bent ones, reducing so the excitations [3] and consequently the connection loss. In this
section, the Euler spiral is first presented and afterwards, the partial Euler bend, made by
a combination of an Euler spiral and a circle, is described. The mathematical formulation
used is the same one as shown in [3], with minor corrections to some formulas.

1.2.1 Euler spiral

In a two-dimensional plane, the Euler spiral, also called clothoid, is described by the
following Fresnel integrals:

x(s) =

∫ s

0
cos

(
t2

2R2
0

)
dt, (1.1a)

y(s) =

∫ s

0
sin

(
t2

2R2
0

)
dt, (1.1b)

where R0 is a free parameter radius in this formulation, and it is usually set to 1/
√
2. The

Euler spiral curve is then defined by the function:

r(s) =

(
x(s)

y(s)

)
. (1.2)

A useful property of this formulation of the Euler curve is that its length is exactly equal
to s. Being the curve regular, it is possible to calculate its curvature as follows:

k(s) =
|r′(s)× r′′(s)|

|r′|3
=

s

R2
0

, (1.3)

Thus, the radius of the curvature is given by R(s) = 1/k(s) = R2
0/s. Therefore the radius

changes linearly with the curve parameter s, and not abruptly like in a circle bend, as
shown in figure 1.2b.
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Figure 1.1: Euler spiral curve described by (1.2), with s going from 0 to 500.

It is useful, to perform a change of variable inside the Fresnel integral: u = t/(R0

√
2) to

obtain a direct relationship with the angle α spanned by the curve, obtaining:

x(s) =
√

2R0t0

∫ s/
√
2R0t0

0
cos(u2)du, (1.4a)

y(s) =
√

2R0t0

∫ s/
√
2R0t0

0
sin(u2)du, (1.4b)

where t0 = R0 ·α, this comes directly from the fact that the parametric curve describing a
circle has the same property as the Euler spiral, namely that the curve length at a point is
exactly equal to the curve parameter at that point. So, to get to the angle α with radius
R0 it is needed to span a length:

s(α) =
√
2R0t0(α) = R0

√
2α. (1.5)

Thus substituting (1.5) into (1.3), the following relation between the curvature and the
angle is obtained:

k(α) =

√
2α

R0
. (1.6)

1.2.2 Constructing the Partial Euler Bend

Using a pure Euler bend increases the curvature by 87% with respect to the corresponding
circular bend, as it is shown in figure 1.2b. Therefore a combination of both can be used to
balance the connection and bending losses. It is possible to design a bend with a desired



4 1.2. Partial Euler bend

(a) (b)

Figure 1.2: (a) Comparison between a 90° classical circular bend (in blue), a partial Euler
bend (in green) with parameter p = 0.3, where p is the ratio between the Euler and circular
parts, and pure Euler bend (in red), all with radius Reff . (b) Normalized curvature along
the bend for p = 0, 0.1, 1, where p = 0, is the classical circular bend and p = 1, is the
pure Euler bend. Normalization is needed since bends with different parameters p have
different effective radii and different curvature lengths. The partial Euler bend has a higher
maximum curvature compared to the circular bend. However, the transition to this point
is linear, rather than abrupt like for the circular case.

percentage p of α, the bend angle, using the Euler spiral and the remaining part using a
circular arc. The idea is to use first an Euler spiral of angle p/2α to get the curvature
linearly from 0 to 1/Rp, then to insert a circular arc with radius Rp and angle (1−p)α, and
complete the remaining part with another Euler spiral, so that the curvature can return,
again linearly, to 0, as shown in figure 1.3. Since the bend is symmetric with respect to
the curve perpendicular line positioned at α/2, the description of the first half of the bend
only is given, it is, then, possible to obtain the second half, simply, by reflection of the
first part. The coordinates (xp, yp) of the transition point between the Euler and circular
part, can easily be obtained using (1.1), i.e. (xp, yp) = (x(sp), y(sp)), where sp = R0

√
pα,

and the curvature at this point is given by kp =
√
pα/R0 = 1/Rp. As can be seen from

figure 1.2a the circular part of the partial Euler bend and the circular bend with the same
effective radius do not overlap, thus it is important to calculate the displacement of the
centre of the circle used in the partial Euler bend.

∆x = xp −Rp sin
(
p
α

2

)
, (1.7a)

∆y = yp −Rp

(
1− cos

(
p
α

2

))
. (1.7b)
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Figure 1.3: Geometry for a 90° partial Euler bend with p = 0.2 and radius Reff . The
section in blue, which spans an angle (1−p)α, is the circular part, while the green sections
are the Euler parts, and both of them span an angle pα/2. The width is constant in the
entire bend and equal to w.

While the total length of the bend is given by: s0 = 2sp +Rpα(1− p). So, the coordinates
of the midpoint are:

xbend

(s0
2

)
= Rp · sin

(
s0/2− sp

Rp
+ p

α

2

)
+∆x, (1.8a)

ybend

(s0
2

)
= Rp ·

(
1− cos

(
s0/2− sp

Rp
+ p

α

2

))
+∆y. (1.8b)

To this point all the calculations have been done without considering the effective radius
Reff , which is the desired radius of the bend. To design a bend with radius Reff , it is
useful to introduce the rescaling factor η:

η =
Reff

ybend(s0/2) + xbend(s0/2)/ tan(α/2)
. (1.9)

The parametric equations describing the different parts of the rescaled bend are:

xbend(s) =

η · x(s/η) for 0 ≤ s ≤ η · sp
η
[
Rp sin

(
s/η−sp

Rp
+ pα

2

)
+∆x

]
for η · sp ≤ s ≤ η · s0

2

, (1.10a)
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ybend(s) =

η · y(s/η) for 0 ≤ s ≤ η · sp
η
{
Rp

[
1− cos

(
s/η−sp

Rp
+ pα

2

)]
+∆x

}
for η · sp ≤ s ≤ η · s0

2

. (1.10b)

Figure 1.4: Minimum radii of curvature for three different effective radius: 90 µm, 120
µm, 150 µm, for a range of p going from 0 to 0.5. The points at p = 0 indicate the
radius of curvature for the corresponding standard circular bends, in this case, the radius
of curvature equals the effective radius of the circle.

These coordinates are the ones of the midline of the bend, the dotted line shown in
figure 1.3. The coordinates of the inner and outer parts of the bend can be obtained
by taking the perpendicular line to each point of the midline and then taking the two
points which are distant w/2 to the corresponding midpoint, where w is the width of the
waveguide. The MATLAB code used to generate this geometry can be found in Appendix
B.1.

It is important to optimize the bend for p, the ratio of the bend that is a clothoid,
since using an Euler bend decreases the connection loss between the straight waveguide
and the bent waveguide [5], thanks to the linear change of curvature, but it also increases
its maximum curvature, as shown in figures 1.2b and 1.4, thus increasing the radiation loss.
Therefore the optimal balance between the Euler and circular parts needs to be found to
minimize the overall bending loss.

1.3 Arbitrary splitting ratio power splitter

A standard directional coupler is symmetric [6] and two S-bends are used to bring the
waveguides closer together, so to increase the cross-talk, and another two S-bends are
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needed to bring the waveguides apart after the coupling region. The main difference be-
tween a standard directional coupler and the adiabatic directional coupler, here presented,
is that for the former the width of the waveguides is constant throughout the structure [7].
By changing the widths before and after the S-bends it is possible to adiabatic transition
light in the device [8]. The work done here took inspiration from [8], where an adiabatic
directional coupler was designed for silicon waveguides at telecom wavelengths.

Figure 1.5: Schematic representation of the adiabatic directional coupler. Depicted in
blue are the standard straight waveguides, while the light blue ones are the tapers in and
out of the structure, in red are represented the S-bends, and finally in yellow are the
tapered central coupling waveguides.

As shown in 1.5, the adiabatic directional coupler can be divided into five different
regions:

I. Both waveguides are tapered to reach the desired wavelength at the input of the
S-bends. The length of the waveguides is Lt for both. Both the top and bottom
waveguides, beginning at width w, are tapered over length Lt to widths of w1 and
w2, respectively.

II. Two adiabatic S-bends, with constant width, are used to get the waveguides close to
each other.

III. This is the coupling region of the device, where, instead, of having two straight parallel
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waveguides of constant width, the waveguides are tapered to increase the coupling
rate. The coupling length is L and the separation between the midlines of the two
waveguides is given by d.

IV. As in Region II two adiabatic S-bends are used to separate the waveguides.

V. The waveguides are again being tapered, here, to get them to the original width. So,
the widths go from w3 to w and from w4 to w, respectively for the top and bottom
waveguide.

It is then important to simulate and optimize each region before optimizing the whole
structure. To assure that the structure is truly adiabatic the most critical parts are the
S-bends since if not taken care of a significant amount of power will be lost there.



Chapter 2

Results and Discussion

This chapter focuses on the simulation and optimization of the photonic integrated circuit
components first described in Chapter 1. Two different material sets have been considered.
One assumes a single oxide material above and below the waveguide layer, with 6.5 µm
of it above the waveguide and 2.7 µm below. This corresponds to the material stack of
a new generation of ion trap chips fabricated by LioniX. The second one is composed of
three different types of oxides, namely: TOX (Thermal Oxide), TEOS (tetraethoxysilane)
oxide and PECVD (Plasma Enhanced Chemical Vapour Deposited) oxide. However, the
most relevant difference between the two is the waveguide thickness of 130 nm and 86.4 nm,
respectively. The vertical stacks of the two setups are shown in figure 2.1.
All the simulations and fine-tuned optimizations have been first conducted for the LioniX
setup, using the techniques presented in appendix A. The second setup was developed in
the framework of the ALUVia project, and due to tight time constraints it was not possible
to run all the optimization, therefore it was assumed that the results obtained for the first
setup are still valuable for this layout too, but the correctness of this assumption should be
verified at a later moment. Therefore the results for this setup are presented in a dedicated
section (section 2.3).
Everything has been optimized for λ = 397 nm, being it the central wavelength, and then
the results were checked for 375 nm and 423 nm, being these the relevant UV wavelengths
for calcium trapped ions. Part of the calculations were carried out on the ETH Zurich
Euler cluster.
As discussed in appendix A, when dealing with large simulation regions compared to the
wavelength the computational cost for the full FTDT simulation can be prohibitive. The
components presented here are no exception, since the RAM required for the partial Euler
bend can be up to 1 TB, and this far exceeds even the memory available per user on the
Euler cluster. Therefore, only the varFDTD solver has been used. Even though looking at
the electric field mode profile slice, shown in figure 2.2, we see that a considerable amount
of the mode lies outside the waveguide, especially for the ALUVia case. Therefore other
full 3D simulation techniques, such as the beam propagation method or the full FDTD

9



10 2.1. Partial Euler bend

(a) LioniX (b) ALUVia

Figure 2.1: Oxide vertical stack for the two considered setups.

Figure 2.2: Electric field mode profile slice of the source for the two different oxide sets.

with the scattering matrix approach, may be considered for future works.

2.1 Partial Euler bend

Increasing the radius of the bend trivially reduces the bend loss. The simulations have been
conducted for a range going from 100 µm to 150 µm. Considering the waveguide width as
shown by figure 2.2 for d = 450 nm gives good lateral mode confinement, and increasing
it even more would allow higher order modes inside the waveguide. An example of the
electric field monitor is shown in figure 2.3, for R = 120 µm and p = 0.1.
The optimization for the parameter p has been conducted sweeping it from 0 to 0.2 using
21 test points, for the radii range considered before, the best radius was identified by
looking at the minimum of the loss. The results are shown in figure 2.4, while the loss,
for a selection of radii, is shown in figure 2.5. For R ≥ 120 µm, the optimal p parameter
lies between 0.09 and 0.11, in particular for R = 150 µm it is equal to 0.0995, and the
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Figure 2.3: Electric field in plane 2D monitor for a partial Euler bend with radius
R = 120 µm, parameter p = 0.1, waveguide width d = 450 nm.

Figure 2.4: Partial Euler bend transmission for the parameter p sweep from 0 to 0.2, for
a range of radius going from 100 µm to 145µm. The black dots indicate the points with
maximum transmission loss.
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Figure 2.5: Partial Euler bend loss for a selection of radii. For R = 150 µm the sweeping
points around the optimal point are double the ones for the other radii.

λ [µm] T [-] Loss [dB]

375 0.998371 0.0071
397 0.999516 0.0021
423 0.998700 0.0056

Table 2.1: Partial Euler bend transmission T and loss for radius R = 150 µm, angle
α = π/2 and parameter p = 0.0995. The loss for λ = 397 nm is different from the one
shown in figure 2.5 at p = 0.0995, due to different meshing accuracies.

transmissions for different wavelengths are shown in table 2.1. While for R < 120 µm,
from figure 2.4 it is clear that there is no benefit in using the Euler bend. This can be
interpreted as the reduced connection loss is not enough to counterbalance the increased
bend loss due to a lower effective radius.

2.2 Arbitrary splitting ratio power splitter

Figure 1.5 shows that the adiabatic directional coupler (ADC) can be divided into 5 dif-
ferent regions: the input tapers and S-bends, the central coupling region and the output
tapers and S-bends. However, simulation-wise it is better to first identify and optimize the
sub-structures that are relevant for the total transmission, instead of simulating each re-
gion individually. These components are the taper, S-bend and parallel waveguides. After
this has been done, the central coupling region can be tuned to obtain the desired splitting
ratios. As for the partial Euler bend, everything has been optimized for λ = 397 nm, and
then checked for 375 nm and 423 nm.
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2.2.1 Taper

For the taper optimization, we aim to determine the smallest length Lt where it is working
adiabatically across a range of output width w1 going from 250 nm to 650 nm. The input
width is kept fixed at w = 450 nm since this is the chosen width for the rest of the device.
Thus, the structure can be simulated varying w1 and Lt, as shown in 2.6. The results are

Figure 2.6: Taper simulation setup, w is fixed and w1 and Lt are swept.

shown in figure 2.7. From 2.7b, it is clear that, as expected, the transmission is higher for
w1 = 450 nm, since in this case, being the output width the same as the input one, it is just
a normal straight waveguide. In general, the transmission is excellent for all considered
values, but looking at 2.7a to ensure a transmission higher than 0.99 for the entire range
of w1, the length Lt should be at least 1 µm.

2.2.2 Parallel waveguides

Even though the simulation of two parallel waveguides may be considered trivial it is still
important to verify that before and after the ADC the waveguides are distant enough to be
sure that they are not coupled. Moreover, it is also interesting to have a rough estimation
of the distance between the waveguides where the crosstalk becomes important. The device
can be simulated as shown in figure 2.8, where the length of the waveguides remains fixed,
while the position of the field monitor, where the transmission is being measured, is varied.
Therefore, the distance L between the source and the monitor and the distance d between
the centres of the waveguides are swept. The results for the 2D sweep of L going from 1 to
10 µm and ∆d, also, going 1 to 10 µm, where the true separation between the centres of the
waveguides is defined as d = ∆d + w as shown in 2.9. The transmissions for the top and
bottom waveguides are shown in figure 2.9. As expected better results are obtained for
larger separations, while the results worsen for large L. As it will be seen in section 2.2.3
the S-bend we chose has radius R equal to 70 µm and angle α equal to π/12, thus using
(1.10) we get that the separation between the input waveguides is 14.124 µm, larger than
the ones considered here. Nevertheless, we can look at the results for L = 10 µm being the
top transmission obtained here as a lower bound for our case, so the transmission is always
larger than 0.98 for the top waveguide and less than 2% for the bottom one, hence there
won’t be any relevant crosstalk before and after the coupler. The considerations made for
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(a) (b)

Figure 2.7: Taper transmission for a 2D sweep of w1, output width, and Lt, taper length.
In (b) a narrower range of values has been used to allow a higher meshing precision.
Trivially the higher transmission is reached for w1 = w = 450 nm, overall the transmission
is above 0.99 for Lt ≥ 1 µm for all values of w1 considered.

Figure 2.8: Parallel waveguides simulation setup, w is fixed, and L and d are swept.

λ = 397 nm are also valuable for the other two wavelengths considered, as shown in 2.10
where L goes from 1 µm to 10 µm, and d is fixed at 10 µm. To guarantee that there is
no crosstalk between the waveguides additional S-bends with large radii can be used to
separate the waveguides further apart.

2.2.3 S-Bend

The S-bend is formed by a circular bend followed by another circular bend with opposite
concavity, and to limit the losses a straight waveguide can be inserted in between the two
bends (the MATLAB code used to generate the geometry can be found in Appendix B.2).
In this context, the bend angle α is not fixed at 90°, therefore together with the bend radius
R, it can be optimized to achieve low transmission. Therefore the radius of the bend is
limited up to 70 µm to keep a compact design. Being all the considered radii smaller than
120 µm there is no benefit in using the partial Euler bend, as already shown in section 2.1.
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(a) Top waveguide (b) Bottom waveguide

Figure 2.9: Parallel waveguides transmission for a 2D sweep of L, the distance between
source and field monitor, and ∆d, defined such that the separation between the centres of
the waveguides is d = ∆d+ w, where w is the waveguide width.

Figure 2.10: Transmissions for the top and bottom parallel straight waveguides for d =
10 µm, in orange λ = 375 nm, in blue λ = 397 nm, and in yellow λ = 423 nm.
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Figure 2.11: S-bend simulation setup, where s, length of the middle straight section, α,
bend angle, and R, bend radius (not shown in the picture), are optimized to minimize the
bend loss.

Figure 2.12: S-bend transmission for a 2D sweep of α and R, respectively bend angle and
radius. To get a total transmission above 0.99, a pair (α,R) positioned above the black
dotted line should be chosen.

The simulation setup is shown in figure 2.15.

The results obtained as a function of R going from 20 µm to 70 µm, and of α from
π/24 to π/3, at λ = 397 nm, are shown in figure 2.12, for the other wavelengths the results
are similar. Thus, to get a total transmission above 0.99, a pair (α,R) positioned above
the black dotted line should be chosen. To ensure the realization of an adiabatic bend, an
S-Bend with R = 70 µm and α = π/12 has been chosen. Now, that these parameters have
been fixed, the length s of the straight waveguide in the centre can be optimized. Sweeping
s from 0 to 8 µm, the transmissions shown in figure 2.13 are obtained. The maximum is
reached at s = 4.5 µm for λ = 397, 423nm. The transmission results for the three different
wavelengths, with this tern of parameters (R,α, s) = (70 µm, π/12, 4.5 µm) are shown in
table 2.2, while the in-plane electric field is shown in figure 2.14.
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Figure 2.13: S-bend transmission with R = 70 µm and α = π/12, for s going from 0
to 8 µm. The maximum is reached at s = 4.5 µm for λ = 397, 423nm, and at 5 µm for
λ = 423 µm

λ [µm] T [-] Loss [dB]

375 0.995156 0.0211
397 0.99846 0.0067
423 0.996664 0.0145

Table 2.2: S-bend transmission T and loss for radius R = 70 µm, angle α = π/12 and
middle straight waveguide length s = 4.5 µm.

Figure 2.14: Electric field in plane 2D monitor for an S-bend with R = 70 µm, α = π/12,
and s = 4.5 µm.
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Figure 2.15: Two S-bends simulation setup, where ∆w that is defined such that the top
waveguide has width w1 = 450 nm+∆w and the bottom waveguide has width w3 = 450 nm.
The single S-bend specifications are the ones illustrated in section 2.2.3.

2.2.4 Two S-bends

To further improve the total transmission the waveguide width of the S-bends can be
improved. As already discussed in section 2.1, increasing the width implies that the mode
is more confined inside the waveguide. If the lost power in one waveguide gets confined in
the other one it does not affect the total component transmission. Therefore, to analyze
how changing the width influences the transmission the simulation region should include
both S-bends. The simulation setup is shown in figure 2.15.

As shown in figure 2.16, the total transmission increases with the difference in waveg-
uide width ∆w. Therefore it is recommended to choose ∆w greater than 0.

2.2.5 Complete device simulation

The parameters that characterize the coupling region are the widths of the waveguide
w1, w2, w3, w4, the length L and the separation d between the two waveguides. However,
there is no need to optimize all of them in this section, since the computational cost for
a multiple-dimensional sweep with as many parameters will be huge, and we already have
obtained some information regarding the widths from section 2.2.4. Therefore it has been
chosen to have w1 = 500 nm, w2 = 300 nm, w3 = 425 nm and w4 = 500 nm. Now the
focus of the optimization is to first find a suitable L and then to fine-tune d. For highly
unbalanced splitting ratios, i.e. 99:01 and 90:10 it is better to use short coupling length
since, otherwise, the exchanged power would be too much, so L = 2 µm is effective. But
for 75:25, this short length means that the coupling constant needs to be high, in fact so
high that the distance d between the centre of the waveguides would be so short that the
waveguides would have to overlap, thus a larger length has been used: L = 10 µm. Now,
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Figure 2.16: Two S-bends transmission as a function of of the waveguide spacing ∆d for
λ = 397 nm at three different ∆w.

(a) SR = 99:01 (b) SR = 90:10 (c) SR = 75:25

Figure 2.17: Electric field in plane 2D monitor for different splitting ratios at λ = 397 nm.

by sweeping d, or better ∆d, which has been defined as ∆d = d − max[(w1, w2, w3, w4)],
we can find the optimal value for each splitting ratio. In conclusion, we have been able
to design low-loss power splitters with the desired splitting ratios.

2.2.6 Standard directional coupler

We can now compare the results obtained for the adiabatic directional coupler with the
standard version. Overall, for the same coupling length to obtain the same splitting ratio
the distance between the waveguides needs to be smaller. This can be easily interpreted by
looking at figure 2.7, where it showed that when a waveguide is tapered part of the mode
gets squeezed out, and can so be confined in the other one. This is also why it is important
that not only there is a difference in width between the corresponding waveguides in the
same region as shown in 2.2.4, but also there is a difference between the input and output
of the coupling region for the same waveguide. By reformulating this result we obtain that
for the same waveguide separation and splitting ratio the coupling length for the adiabatic
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Figure 2.18: ADC transmission as a function of the waveguides separations ∆d, for three
different wavelengths, at L = 2 µm.
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Figure 2.19: ADC transmission as function of coupling length L, for the three different
wavelengths, at d = 900 nm.
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λ [µm] Ttop Tbottom Ttotal Loss [dB]

375 0.993910 0.006090 0.996263 0.0163
397 0.9903581 0.009642 0.999585 0.0018
423 0.985618 0.014382 0.997734 0.0099

(a) SR = 99:01, with L = 2µm and d = 1200 nm.

λ [µm] Ttop Tbottom Ttotal Loss [dB]

375 0.928361 0.071639 0.996007 0.0173
397 0.898615 0.101385 0.999253 0.0032
423 0.856439 0.143561 0.997267 0.0119

(b) SR = 90:10, with L = 2µm and d = 970 nm.

λ [µm] Ttop Tbottom Ttotal Loss [dB]

375 0.816589 0.183411 0.996291 0.0161
397 0.749800 0.250200 0.999054 0.0041
423 0.656136 0.343864 0.995856 0.0180

(c) SR = 75:25, with L = 10µm and d = 740 nm.

Table 2.3: Transimission of the ADC for different splitting ratios.

Figure 2.20: Standard directional coupler splitting ratio and loss as a function of the
waveguide separation d, for different coupling lengths L at λ = 397 nm. The solid lines
indicate the transmission of the top waveguide, while the dotted lines of the bottom waveg-
uide. The two stars indicate the point (d, L) for the corresponding adiabatic directional
coupler.
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λ [µm] Ttop Tbottom Ttotal ∆Ttotal

375 0.993941 0.006059 0.996393 1.30× 10−4

397 0.990398 0.009602 0.999278 3.06× 10−4

423 0.985693 0.014307 0.997195 5.39× 10−4

Table 2.4: Transmission of the ADC with SR = 99:01 and mesh accuracy 8. In the last
column, it is shown the difference with the total transmission for mesh accuracy 6 (table
2.3a).

version is smaller than for the standard version. Now looking at the losses, shown in the
bottom plot of figure 2.20, and comparing them with the ones for λ = 397 nm in table 2.3,
the results obtained for the former are better than ones obtained for the latter. Therefore
using the adiabatic directional coupler has achieved the objective of reducing the total loss
with respect to the standard directional coupler. It also allows us to make more compact
designs.

2.2.7 Numerical errors

All the previous simulations have been done with mesh accuracy 6. To check that this is
sufficient we can try to run one of the previous simulations with a higher mesh accuracy
and compare the results. For example, the results for the 99:01 power splitter with mesh
accuracy 8, the highest possible in Lumerical, are shown in table 2.4, and they are in good
agreement with numbers shown in table 2.3a. Therefore, the results shown in table 2.3 are
accurate enough.

2.3 ALUVia

As already discussed at the beginning of the current chapter, for the ALUVia project
different oxides were used.

It is computationally expensive to simulate the partial Euler bend because the di-
mensions of the structure are large compared to the wavelength [9]. Therefore the same
parameter p has been used, so equal to 0.1, to be certain that is still the optimal ratio
the sweep for p should also be run for these new differnt characteristics of the structure.
It has been decided to test the fabrication of the bends with the maximum radius here
considered, since for this value the results are the best one, so with radius equal to 150 µm.
The results are shown in table 2.5.

The central coupling region has been optimized in the same manner as in section 2.2.5
and the optimal values are shown in table 2.6.

For the 99:01, 90:10 the ADC have dimensions comparable to LioniX ones, while for
SR = 75 : 25, the ALUVia structure is larger. While regarding the total loss for the first
setup are lower, but this can be easily explained since in that case all the subcomponents
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λ [µm] T Loss [dB]

375 0.997977 0.0088
397 0.998925 0.0047
423 0.999067 0.0041

(a) w = 440 nm

λ [µm] T Loss [dB]

375 0.997128 0.0125
397 0.998826 0.0051
423 0.998952 0.0046

(b) w = 450 nm

λ [µm] T Loss [dB]

375 0.997299 0.0117
397 0.998750 0.0054
423 0.999028 0.0042

(c) w = 460 nm

Table 2.5: Partial Euler bend transmission for different wavelengths and waveguide
widths.

λ [µm] Ttop Tbottom Ttotal Loss [dB]

375 0.987473 0.0125273 0.995516 0.0195
397 0.991083 0.00891666 0.997120 0.0125
423 0.993612 0.00638772 0.994768 0.0228

(a) SR = 99:01, with L = 1µm and ∆d = 2000 nm.

λ [µm] Ttop Tbottom Ttotal Loss [dB]

375 0.929014 0.0709860 0.992686 0.0319
397 0.904214 0.0957862 0.995261 0.0206
423 0.872085 0.127915 0.990651 0.0408

(b) SR = 90:10, with L = 2µm and ∆d = 350 nm.

λ [µm] Ttop Tbottom Ttotal Loss [dB]

375 0.816233 0.183767 0.993010 0.0305
397 0.746200 0.253800 0.992241 0.0338
423 0.661563 0.338437 0.987781 0.0534

(c) SR = 75:25, with L = 21µm and ∆d = 325 nm.

Table 2.6: Transimission of the ADC for different splitting ratios.
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were optimized, while for the current case, only the coupling region was optimised.
The structures designed in this section are currently being fabricated (as of July 2023),

and they will afterwards be characterized to test whether the results obtained through the
simulations actually match their physical realization.
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Chapter 3

Conclusion and Outlook

The goal of this semester project was to design and optimize different photonic components
in alumina for UV wavelength, in particular for λ = 375, 397, 423 nm. To simulate the
structures the finite difference time domain method was used with the software Lumerical,
and in particular its solver varFDTD, where the three space dimensions are collapsed to
two to decrease the computational cost.

In the first part of the project, to improve the transmission of a 90° bend it was
investigated the implementation of a partial Euler bend, made by a combination of Euler
and circular bends. Using a portion of an Euler spiral decreases the connection loss thanks
to its linearly varying curvature, but it also increases the bending loss due to the decreased
minimum radius of curvature. Therefore the right balance between the Euler and circular
part had be found to minimize the overall loss. The main result obtained was that for
radii below 120 µm using a partial Euler bend does not give any advantage compared to a
standard circular bend, while for R in the range from 120 to 150 µm the optimal parameter
p, the ratio between the Euler and circular part of the bend, is circa 0.1.

Another useful component in integrated photonics is the power splitter. This can be
implemented through different structures, each one with its own characteristic properties.
The chosen structure is the directional coupler, its main property is the possibility to design
it with arbitrary splitting ratios. To minimize the total transmission loss its adiabatic
version was used. At first, the S-bends and tapers, sub-components of the structure, were
optimized to reduce their loss and to study the cross-talk two straight parallel waveguides
were simulated for different separations and lengths. Afterwards, the entire device was
simulated to optimize the waveguide length and distance in the coupling region to achieve
the desired splitting ratios, namely 99:01, 90:10 and 75:25, for λ = 397 nm.

Two different material sets were used, one with only one type of oxide and with a
waveguide thickness equal to 130 nm, while the other one used three different types of
oxides and a thinner waveguide (t = 86.4 nm), and was developed in the framework of the
ALUVia project. All the optimizations were conducted for the first one, and the results
were used also for the second one, with the exception of the optimizations regarding the
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splitting ratios, which were also performed for this other setup.
The next natural step is to fabricate and characterize these structures to verify that the

results obtained through the simulations actually match the physical devices. Fabrication
is currently in process (as of July 2023) for the ALUVia structures. Future structures of
interest for alumina photonic integrated circuits can include power coupler and waveguide
crossing. For the former, the implementation should be straightforward by using the same
design as the adiabatic directional coupler, designed here as a power splitter, but by simu-
lating it with a source at each of the input ports. Regarding the simulation techniques, the
beam propagation method or the full FDTD method using the scattering matrix approach
could be investigated to implement full 3D simulations also for large components.
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Simulation Techniques

The waveguides used in this project have dimensions comparable to the light wavelength,
therefore is not possible to use ray optics to study the light propagation through the
rectangular dielectric waveguide. Therefore other techniques need to be investigated. The
most common algorithms are:

• Eigenmode Expansion Method (EME): It solves Maxwell’s Equations using a
finite basis set of local modes, giving as output the scattering matrix of the structure
[10].

• Beam Propagation Method (BPM): It used to numerically solve the Helmholtz
Equation relying on the Slowly Varying Envelope Approximation [11].

• Finite Difference Time Domain (FDTD): It solves Maxwell’s Equation by dis-
cretizing both space and time domains [11].

The Eigenmode Expansion Method is useful to simulate large devices since if they can
be divided into subparts, it is possible to simulate each part at the time, and then the single
scattering matrix can be multiplied together to obtain the total scattering matrix of the
device, reducing so, the resources needed to run each simulation. It is particularly suited
for periodic structures, where the scattering matrix of each element is computed only once.
This algorithm can be adapted for bends, by considering it a set of straight waveguides
with a slightly different orientation between each section, in this way it becomes a periodic
structure. This is only valid if the curvature is constant, but one of the objectives of this
work is to investigate the Partial Euler Bend, which has as its main characteristic a linear
varying curvature, therefore the EME cannot be used to simulate it[10].

While the Beam Propagation Method does not take into consideration reflections, since
it assumes that the light is travelling in only one direction[11].

In contrast, the FDTD Method can deal well with any geometry, by using a fine
rectangular grid and by rigorously solving the Maxwell Equations it intrinsically takes into
account the polarization, and it is generally more precise than the BPM. Therefore the
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FDTD method is the simulation technique that has been used in this project, and it has
been implemented using Lumerical .

A.1 Finite-Difference Time-Domain (FDTD) Method

The FDTD Method is based on solving Maxwell’s equation in each point of the discretized
space and time domains. The given description of this method follows the one in [11].
Given Maxwell’s equations in a homogenous and non-dispersive medium:

∇× E⃗ = −∂B⃗

∂t
(A.1a)

∇× H⃗ = −∂D⃗

∂t
+ J⃗ (A.1b)

and substituting the relation for the electric field E⃗, magnetic field H⃗, electric displacement
field D⃗, and magnetic flux density B⃗, as

B⃗ = µH⃗ (A.2a)

D⃗ = εE⃗ (A.2b)

J⃗ = σE⃗ (A.2c)

Substituting these in (A.1), and reordering the terms, such that the derivatives are on the
l.h.s., the following equations are obtained:

∂E⃗

∂t
= −σ

ε
E⃗ +

1

ε
∇× H⃗ (A.3a)

∂H

∂t
= − 1

µ
∇× E⃗ (A.3b)

To numerically solve these equations, they need first to be discretized, and the center
difference forms can be used, as

E⃗n − E⃗n−1

∆t
= −σ

ε
E⃗n− 1

2 +
1

ε
∇× H⃗n− 1

2 (A.4a)

H⃗n+ 1
2 − H⃗n− 1

2

∆t
= − 1

µ
∇× E⃗n (A.4b)

where ∆t is the increment in time (t = (n− 1)∆t), and E⃗n− 1
2 can be approximated by:

E⃗n− 1
2 =

E⃗n + E⃗n−1

2
(A.5)
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Figure A.1: Yee’s unit cell

Thus, substituting (A.5) into (A.4), and solving this for E⃗n and H⃗n+ 1
2 , the following results

are obtained:

E⃗n =
1− σ∆t

2ε

1 + σ∆t
2ε

E⃗n−1 +
∆t
ε

1 + σ∆t
2ε

∇× H⃗n− 1
2 (A.6a)

H⃗n+ 1
2 = H⃗n− 1

2 − ∆t

µ
∇× E⃗2 (A.6b)

where, for example, the x-component of E⃗n is equal to:

En
x =

1− σ∆t
2ε

1 + σ∆t
2ε

En−1
x +

∆t
ε

1 + σ∆t
2ε

∂H
n− 1

2
z

∂y
− ∂H

n− 1
2

y

∂z

 (A.7)

It is possible to obtain all the other fields components in the space using the leap-frog
scheme introduced by Yee, with the cubic cell as shown in figure A.1. From which it can
be seen that En

x is positioned at (i+ 1/2, j, k). So:

∂H
n−1/2
z

∂y
=

H
n−1/2
z (i+ 1/2, j + 1/2, k)−H

n−1/2
z (i+ 1/2, j − 1/2, k)

∆y
(A.8a)

∂H
n−1/2
y

∂y
=

H
n−1/2
y (i+ 1/2, j, k + 1/2)−H

n−1/2
y (i+ 1/2, j, k − 1/2)

∆z
(A.8b)

Then, substituting (A.8) into (A.7), the finite difference equation for Ex is obtained. All
the other finite difference equations are obtained in a similar manner. The only require-
ment on ∆t, for convergence, is that it must satisfy the Courant-Friedrichs-Lewy (CFL)
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Figure A.2: FDTD algorithm flowchart (adapted from [11])

condition:

c∆t ≤ 1√(
1
∆x

)2
+
(

1
∆y

)2
+
(

1
∆x

)2 (A.9)

where: c is the speed of light inside the material. The general flowchart for FDTD is shown
in figure A.2. Where the Absorbing Boundary Condition (ABC) are there to enforce the
complete transmission at the boundaries of the simulation region, since any reflections
there would not be physical. The best ABC that can be implemented in Lumerical for
these kinds of structures, since they are neither periodic nor symmetric, is the Perfectly
Matched Layer (PML).

A.1.1 Perfectly Matched Layer

The idea behind the PML is to put a perfectly Absorbing Boundary Layer instead of
enforcing absorbing boundary conditions. This layer is made by an artificial absorbing
material put around the simulation region. When the light enters this region is attenuated
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by the material, so it will decay exponentially and if this region is wide enough it will be
completely absorbed. But, the only fact that a different artificial material has been placed
near the material inside the simulation region, creates reflections, since the translational
symmetry has been broken. But a special artificial absorbing medium can be created to
ensure that waves do not reflect at the interface [12].

A.1.2 Meshing

Usually, the mesh is just a Cartesian mesh, so made of a rectangular grid. But, there are
some challenges related to this method.
First, numerical errors arise due to the finite mesh, since the speed of light depends on
∆x, ∆y, ∆z, ∆t, and thus is not the same as in real space. An easy solution to this problem
exists: adjusting the mesh to the refracting index of the material, therefore different mesh
sizes are needed for different refracting indexes [13].
Second, it is not possible to resolve interfaces to higher precision than the size of the
mesh used, and this is particularly important in the case of non-linear edges, such as in
bends. The first straightforward solution to this problem is to use a mesh override near
the interface with a small spatial mesh, but obviously, this will increase the computational
resources needed, as shown by table A.1. The second one was introduced by Yu and Mittra
[14]: the Conformal Meshing Technique, where other grids than rectangular are used, for
example triangular, or even curved, so that the nodes at the interface are in a one-to-one
match. This method with a few modifications is the one implemented in Lumerical.

3D 2D

Memory requirements ∼ V (λ/dx)3 ∼ A(λ/dx)2

Simulation Time ∼ V (λ/dx)4 ∼ A(λ/dx)3

Table A.1: FDTD computational costs in terms of simulation time and memory require-
ments, both for the 2D and 3D cases.

A.1.3 Source

The best source for this application is the mode source whereby defining the geometry:
center location and span, Lumerical will calculate the possible guided modes. It is then
possible to choose the preferred mode to be injected, which for the case of the structures
here shown is always the fundamental TE mode. To obtain the available modes the same
discretization mesh as for the FDTD is used, thus it will be interfaced with the underlying
FDTD grid, therefore reducing the back reflections.
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A.2 varFDTD

Since the computational cost is high for small wavelength and large simulation regions, in
these cases is more efficient to use varFDTD method instead of the standard 3D FDTD
method.
The idea behind the varFDTD is to collapse the 3 dimensions to 2, thus getting a 2D set
of refracting indexes. The requirement for this is to not have too many vertical slab modes
and the steps are:

1. Identify the vertical slab modes over the desired wavelength range.

2. Mesh and collapse to 2D by calculating the effective 2D refracting indexes. This can
be done using either a variational procedure or using the reciprocity theorem.

A.3 MATLAB Integration

In Lumerical, standard mathematical functions can be used to create the geometry of com-
ponents. However, to create more complicated structures it is helpful to implement their
geometry first in MATLAB inside a custom function and then to use it inside Lumerical.
First of all, it is needed to add the path of the folder containing these functions if they
are not in the same folder as the Lumerical project. Since the workspaces of Lumerical
and MATLAB are different it is important to move all the necessary variables from one
to the other using matlabput(<list of variables>) to put variable inside the MAT-
LAB workspace, and matlabget(<list of variables>) to move the results obtained in
MATLAB to the Lumerical workspace. An example of the routine is shown below:

matlab(’addpath("/AluminaPhotonicComponents/MATLAB_functions")’);

matlabput(alpha_rad, p, R_eff, n_steps, d);

matlab("bend = PartialEulerBend(p, alpha_rad, R_eff, d, n_steps)");

matlabget(bend);

A small note regarding their uses inside a setup script is to save the folder path inside
a string and then use this for the addpath command, instead of directly using the path
there, since errors with strings may arise when running the setup script.
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Code

B.1 Partial Euler Bend

1 function [bend , bend_in , bend_out] = PartialEulerBend(p,

alpha , R_eff , d, n_steps)

2 % This function creates a Partial Euler Bends using the order

of

3 % coordinates needed to create the correct structure in

Lumerical

4 % p: indicates the percentage of the bend that is an Euler

Bend instead of

5 % a circular bend (0 <= p <= 1)

6 % alpha: is the angle of the bend

7 % R_eff: is radius of the bend in the center

8 % d: width of the bend

9 % n_steps: number of points of each part , the total number of

steps is

10 % 4* n_steps

11
12 R_0 = 1 / sqrt (2);

13
14 d = d / 2;

15
16 % circular bend case (for speed -up reasons it is better to

separete it from

17 % the partial euler bend case)

18 if p == 0

19
20 ivet = [0:(4* n_steps -1)];

35



36 B.1. Partial Euler Bend

21 % midline parametric equation

22 x_circle_center = (R_eff*sin((ivet -1)*alpha /(4* n_steps -

1))) ';

23 y_circle_center = (R_eff *(1 -

cos((ivet -1)*alpha /(4* n_steps - 1)))) ';

24
25 % perpendicular lines characteristics

26 ivet = [1:4* n_steps] / (4* n_steps);

27 mc = (- 1 ./ tan(ivet * alpha))';

28 qc = y_circle_center - mc .* x_circle_center;

29 a = (1 + mc.^2);

30 b = 2*(mc.*(qc - y_circle_center) - x_circle_center);

31 c = x_circle_center .^2 + (qc - y_circle_center).^2 - d^2;

32
33 % solutions for the outer and inner edges of the bend

34 x1sol = [(-b-sqrt(b.^2 - 4.*a.*c))./(2*a), (-b+sqrt(b.^2

- 4.*a.*c))./(2*a)];

35 x_circle_in = x1sol(x1sol < x_circle_center);

36 y_circle_in = mc.* x_circle_in + qc;

37 x_circle_out = x1sol(x1sol > x_circle_center);

38 y_circle_out = mc.* x_circle_out + qc;

39
40 % glue everything together , in a proper way for Lumerical

41 bend_in = [x_circle_in , y_circle_in ];

42 bend_out = [x_circle_out , y_circle_out ];

43 bend = [bend_in; flip(bend_out)];

44
45 else

46 % switching point from Euler spiral to circular arc

47 s_p = sf(p * alpha /2);

48 R_p = 1 / kf(p * alpha / 2);

49 x_p = xf(s_p);

50 y_p = yf(s_p);

51
52 deltaX = x_p - R_p*sin(p * alpha / 2);

53 deltaY = y_p - R_p*(1 - cos(p * alpha / 2));

54
55 s_0 = 2*s_p + R_p * alpha * (1 - p); % total bend length

56
57 % mid point coordinates
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58 x_bend_half = R_p*sin((s_0 / 2 - s_p) / R_p + p * alpha /

2) + deltaX;

59 y_bend_half = R_p*(1 - cos((s_0 / 2 - s_p) / R_p + p *

alpha / 2)) + deltaY;

60
61 eta = R_eff / (y_bend_half + x_bend_half/ tan(alpha /

2)); %rescaling factor

62
63 % first half of the midline

64 s_steps_euler_1 = linspace(0, eta * s_p , n_steps);

65 s_steps_circle_1 = linspace(eta * s_p , eta * s_0 / 2 ,

n_steps);

66
67 x_euler_center_1 = zeros(n_steps , 1);

68 y_euler_center_1 = zeros(n_steps , 1);

69
70 x_circle_center_1 = zeros(n_steps , 1);

71 y_circle_center_1 = zeros(n_steps , 1);

72
73 for i=1: n_steps

74 x_euler_center_1(i) = eta * xf(s_steps_euler_1(i) /

eta);

75 y_euler_center_1(i) = eta * yf(s_steps_euler_1(i) /

eta);

76 x_circle_center_1(i) = eta *

(R_p*sin(( s_steps_circle_1(i) / eta - s_p) / R_p +

p * alpha / 2) + deltaX);

77 y_circle_center_1(i) = eta * (R_p*(1 -

cos(( s_steps_circle_1(i) / eta - s_p) / R_p + p *

alpha / 2)) + deltaY);

78 end

79
80 % line orthogonal to the mid point

81 m = - 1 / tan(( s_steps_circle_1(end) / eta - s_p) / R_p +

p * alpha / 2);

82 q = y_circle_center_1(end) - m * x_circle_center_1(end);

83
84 % first half inner and outer circular parts

85 mc = - (1 ./ tan(( s_steps_circle_1 ./ eta - s_p) / R_p +

p * alpha / 2)) ';
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86 qc = y_circle_center_1 - mc .* x_circle_center_1;

87 a = (1 + mc.^2);

88 b = 2*(mc.*(qc - y_circle_center_1) - x_circle_center_1);

89 c = x_circle_center_1 .^2 + (qc - y_circle_center_1).^2 -

d^2;

90
91 x1sol = [(-b-sqrt(b.^2 - 4.*a.*c))./(2*a), (-b+sqrt(b.^2

- 4.*a.*c))./(2*a)];

92 x_circle_in_1 = x1sol(x1sol < x_circle_center_1);

93 y_circle_in_1 = mc.* x_circle_in_1 + qc;

94 x_circle_out_1 = x1sol(x1sol > x_circle_center_1);

95 y_circle_out_1 = mc.* x_circle_out_1 + qc;

96
97 % second half inner and outer circular parts

98 x_circle_in_2 = (- 2*m*q + x_circle_in_1 -

m^2* x_circle_in_1 + 2*m*y_circle_in_1) / (m^2 + 1);

99 y_circle_in_2 = (2*q + 2*m*x_circle_in_1 - y_circle_in_1

+ m^2* y_circle_in_1) / (m^2 + 1);

100 x_circle_out_2 = (- 2*m*q + x_circle_out_1 -

m^2* x_circle_out_1 + 2*m*y_circle_out_1) / (m^2 + 1);

101 y_circle_out_2 = (2*q + 2*m*x_circle_out_1 -

y_circle_out_1 + m^2* y_circle_out_1) / (m^2 + 1);

102
103 % first half inner and outer Euler parts

104 me = (- 1 ./ tan(s_steps_euler_1 (2: n_steps).^2 / (2 *

eta^2 * R_0^2)))';

105 qe = y_euler_center_1 (2: n_steps) - me .*

x_euler_center_1 (2: n_steps);

106 a = (1 + me.^2);

107 b = 2*(me.*(qe - y_euler_center_1 (2: n_steps)) -

x_euler_center_1 (2: n_steps));

108 c = x_euler_center_1 (2: n_steps).^2 + (qe -

y_euler_center_1 (2: n_steps)).^2 - d^2;

109
110 x1sol = [(-b-sqrt(b.^2 - 4.*a.*c))./(2*a), (-b+sqrt(b.^2

- 4.*a.*c))./(2*a)];

111 x_euler_in_1 = x1sol(x1sol < x_euler_center_1 (2: n_steps));

112 y_euler_in_1 = me.* x_euler_in_1 + qe;

113 x_euler_out_1 = x1sol(x1sol >

x_euler_center_1 (2: n_steps));
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114 y_euler_out_1 = me.* x_euler_out_1 + qe;

115
116 x_euler_in_1 = [x_euler_center_1 (1); x_euler_in_1 ]; % we

can 't use tan for theta = 0

117 y_euler_in_1 = [y_euler_center_1 (1) + d; y_euler_in_1 ];

118 x_euler_out_1 = [x_euler_center_1 (1); x_euler_out_1 ];

119 y_euler_out_1 = [y_euler_center_1 (1) - d; y_euler_out_1 ];

120
121 % second half inner and outer Euler parts

122 x_euler_in_2 = (- 2*m*q + x_euler_in_1 - m^2* x_euler_in_1

+ 2*m*y_euler_in_1) / (m^2 + 1);

123 y_euler_in_2 = (2*q + 2*m*x_euler_in_1 - y_euler_in_1 +

m^2* y_euler_in_1) / (m^2 + 1);

124 x_euler_out_2 = (- 2*m*q + x_euler_out_1 -

m^2* x_euler_out_1 + 2*m*y_euler_out_1) / (m^2 + 1);

125 y_euler_out_2 = (2*q + 2*m*x_euler_out_1 - y_euler_out_1

+ m^2* y_euler_out_1) / (m^2 + 1);

126
127 % glue everything together , in a proper way for Lumerical

128 euler_in_1 (1: n_steps , 1:2) = [x_euler_in_1 , y_euler_in_1 ];

129 circle_in_1 (1: n_steps , 1:2) = [x_circle_in_1 ,

y_circle_in_1 ];

130 euler_out_1 (1: n_steps , 1:2) = [x_euler_out_1 ,

y_euler_out_1 ];

131 circle_out_1 (1: n_steps , 1:2) = [x_circle_out_1 ,

y_circle_out_1 ];

132
133 euler_in_2 (1: n_steps , 1:2) = [x_euler_in_2 , y_euler_in_2 ];

134 circle_in_2 (1: n_steps , 1:2) = [x_circle_in_2 ,

y_circle_in_2 ];

135 euler_out_2 (1: n_steps , 1:2) = [x_euler_out_2 ,

y_euler_out_2 ];

136 circle_out_2 (1: n_steps , 1:2) = [x_circle_out_2 ,

y_circle_out_2 ];

137
138 bend_in = [euler_in_1; circle_in_1; flip(circle_in_2);

flip(euler_in_2)];

139 bend_out = [euler_out_1; circle_out_1;

flip(circle_out_2); flip(euler_out_2)];

140
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141 bend = [bend_in; flip(bend_out)];

142 bend = double(bend);

143
144 end

145
146 end

B.2 S-Bend

1 (function [bend , bend_in , bend_out] = SBend(p, alpha , R_eff ,

d, n_steps , l, reverse)

2 % This function creates an S bend using two Partial Euler

Bends using

3 % the order of coordinates needed to create the correct

structure in

4 % Lumerical

5 % p: indicates the percentage of the bend that is an Euler

Bend instead of

6 % a circular bend (0 <= p <= 1)

7 % alpha: is the angle of the bend

8 % R_eff: is radius of the bend in the center

9 % d: width of the bend

10 % n_steps: number of points of each part , the total number of

steps is

11 % 4* n_steps

12 % l: length of the straight part in the middle (between the

two bends)

13 % reverse: (boolean), if false is an input bend (left part

higher than

14 % right part), if true is an output bend (right part higher

than left one)

15
16 R_0 = 1 / sqrt (2);

17
18 d = d / 2;

19
20 % circular bend case (for speed -up reasons it is better to

separete it from

21 % the partial euler bend case)

22 if p == 0
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23
24 % first half midline parametric equations

25 ivet = [0:(4* n_steps -1)];

26 x_circle_center_1 =

(R_eff*sin((ivet -1)*alpha /(4* n_steps -1))) ';

27 y_circle_center_1 = (R_eff *(1 -

cos((ivet -1)*alpha /(4* n_steps -1))))';

28
29 % perpendicular lines characteristics

30 ivet = [1:4* n_steps] / (4* n_steps);

31 mc = (- 1 ./ tan(ivet * alpha))';

32 qc = y_circle_center_1 - mc .* x_circle_center_1;

33 a = (1 + mc.^2);

34 b = 2*(mc.*(qc - y_circle_center_1) - x_circle_center_1);

35 c = x_circle_center_1 .^2 + (qc - y_circle_center_1).^2 -

d^2;

36
37 % solutions for the outer and inner edges of the bend

38 x1sol = [(-b-sqrt(b.^2 - 4.*a.*c))./(2*a), (-b+sqrt(b.^2

- 4.*a.*c))./(2*a)];

39 x_circle_in_1 = x1sol(x1sol < x_circle_center_1);

40 y_circle_in_1 = mc.* x_circle_in_1 + qc;

41 x_circle_out_1 = x1sol(x1sol > x_circle_center_1);

42 y_circle_out_1 = mc.* x_circle_out_1 + qc;

43
44 % second half

45 x_in_0 = x_circle_in_1(end);

46 y_in_0 = y_circle_in_1(end);

47
48 x_out_0 = x_circle_out_1(end);

49 y_out_0 = y_circle_out_1(end);

50
51 m = (y_out_0 - y_in_0) / (x_out_0 - x_in_0);

52
53 x_circle_in_2 = - flip(x_circle_out_1) + x_in_0 + x_out_0

- l*m/sqrt (1+m^2);

54 y_circle_in_2 = - flip(y_circle_out_1) + y_in_0 + y_out_0

+ l*1/ sqrt (1+m^2);

55
56 x_circle_out_2 = - flip(x_circle_in_1) + x_out_0 + x_in_0
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- l*m/sqrt (1+m^2);

57 y_circle_out_2 = - flip(y_circle_in_1) + y_out_0 + y_in_0

+ l*1/ sqrt (1+m^2);

58
59 % glue everything together , in a proper way for Lumerical

60 circle_in_1 = [x_circle_in_1 , y_circle_in_1 ];

61 circle_out_1 = [x_circle_out_1 , y_circle_out_1 ];

62
63 circle_in_2 = [x_circle_in_2 , y_circle_in_2 ];

64 circle_out_2 = [x_circle_out_2 , y_circle_out_2 ];

65
66 bend_in = [circle_in_1; circle_in_2 ];

67 bend_out = [circle_out_1; circle_out_2 ];

68
69 bend = [bend_in; flip(bend_out)];

70 bend = double(bend);

71
72 else

73 % switching point from Euler spiral to circular arc

74 s_p = sf(p * alpha /2);

75 R_p = 1 / kf(p * alpha / 2);

76 x_p = xf(s_p);

77 y_p = yf(s_p);

78
79 deltaX = x_p - R_p*sin(p * alpha / 2);

80 deltaY = y_p - R_p*(1 - cos(p * alpha / 2));

81
82 s_0 = 2*s_p + R_p * alpha * (1 - p); % total bend length

83
84 % mid point coordinates

85 x_bend_half = R_p*sin((s_0 / 2 - s_p) / R_p + p * alpha /

2) + deltaX;

86 y_bend_half = R_p*(1 - cos((s_0 / 2 - s_p) / R_p + p *

alpha / 2)) + deltaY;

87
88 eta = R_eff / (y_bend_half + x_bend_half/ tan(alpha /

2)); %rescaling factor

89
90 % first half of the midline

91 s_steps_euler_1 = linspace(0, eta * s_p , n_steps);
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92 s_steps_circle_1 = linspace(eta * s_p , eta * s_0 / 2 ,

n_steps);

93
94 x_euler_center_1 = zeros(n_steps , 1);

95 y_euler_center_1 = zeros(n_steps , 1);

96
97 x_circle_center_1 = zeros(n_steps , 1);

98 y_circle_center_1 = zeros(n_steps , 1);

99
100 for i=1: n_steps

101 x_euler_center_1(i) = eta * xf(s_steps_euler_1(i) /

eta);

102 y_euler_center_1(i) = eta * yf(s_steps_euler_1(i) /

eta);

103 x_circle_center_1(i) = eta *

(R_p*sin(( s_steps_circle_1(i) / eta - s_p) / R_p +

p * alpha / 2) + deltaX);

104 y_circle_center_1(i) = eta * (R_p*(1 -

cos(( s_steps_circle_1(i) / eta - s_p) / R_p + p *

alpha / 2)) + deltaY);

105 end

106
107 % line orthogonal to the mid point

108 m = - 1 / tan(( s_steps_circle_1(end) / eta - s_p) / R_p +

p * alpha / 2);

109 q = y_circle_center_1(end) - m * x_circle_center_1(end);

110
111 % first half inner and outer circular parts

112 mc = - (1 ./ tan(( s_steps_circle_1 ./ eta - s_p) / R_p +

p * alpha / 2)) ';

113 qc = y_circle_center_1 - mc .* x_circle_center_1;

114 a = (1 + mc.^2);

115 b = 2*(mc.*(qc - y_circle_center_1) - x_circle_center_1);

116 c = x_circle_center_1 .^2 + (qc - y_circle_center_1).^2 -

d^2;

117
118 x1sol = [(-b-sqrt(b.^2 - 4.*a.*c))./(2*a), (-b+sqrt(b.^2

- 4.*a.*c))./(2*a)];

119 x_circle_in_1 = x1sol(x1sol < x_circle_center_1);

120 y_circle_in_1 = mc.* x_circle_in_1 + qc;
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121 x_circle_out_1 = x1sol(x1sol > x_circle_center_1);

122 y_circle_out_1 = mc.* x_circle_out_1 + qc;

123
124 % second half circle part

125 x_in_0 = x_circle_in_1(end);

126 y_in_0 = y_circle_in_1(end);

127 x_out_0 = x_circle_out_1(end);

128 y_out_0 = y_circle_out_1(end);

129
130 m = (y_out_0 - y_in_0) / (x_out_0 - x_in_0);

131
132 % second half inner and outer circular parts

133 x_circle_in_2 = - flip(x_circle_out_1) + x_in_0 + x_out_0

- l*m/sqrt (1+m^2);

134 y_circle_in_2 = - flip(y_circle_out_1) + y_in_0 + y_out_0

+ l*1/ sqrt (1+m^2);

135 x_circle_out_2 = - flip(x_circle_in_1) + x_out_0 + x_in_0

- l*m/sqrt (1+m^2);

136 y_circle_out_2 = - flip(y_circle_in_1) + y_out_0 + y_in_0

+ l*1/ sqrt (1+m^2);

137
138 % first half inner and outer Euler parts

139 me = (- 1 ./ tan(s_steps_euler_1 (2: n_steps).^2 / (2 *

eta^2 * R_0^2)))';

140 qe = y_euler_center_1 (2: n_steps) - me .*

x_euler_center_1 (2: n_steps);

141 a = (1 + me.^2);

142 b = 2*(me.*(qe - y_euler_center_1 (2: n_steps)) -

x_euler_center_1 (2: n_steps));

143 c = x_euler_center_1 (2: n_steps).^2 + (qe -

y_euler_center_1 (2: n_steps)).^2 - d^2;

144
145 x1sol = [(-b-sqrt(b.^2 - 4.*a.*c))./(2*a), (-b+sqrt(b.^2

- 4.*a.*c))./(2*a)];

146 x_euler_in_1 = x1sol(x1sol < x_euler_center_1 (2: n_steps));

147 y_euler_in_1 = me.* x_euler_in_1 + qe;

148 x_euler_out_1 = x1sol(x1sol >

x_euler_center_1 (2: n_steps));

149 y_euler_out_1 = me.* x_euler_out_1 + qe;

150
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151 x_euler_in_1 = [x_euler_center_1 (1); x_euler_in_1 ]; % we

can 't use tan for theta = 0

152 y_euler_in_1 = [y_euler_center_1 (1) + d; y_euler_in_1 ];

153 x_euler_out_1 = [x_euler_center_1 (1); x_euler_out_1 ];

154 y_euler_out_1 = [y_euler_center_1 (1) - d; y_euler_out_1 ];

155
156 % second half inner and outer Euler parts

157 x_euler_in_2 = - flip(x_euler_out_1) + x_in_0 + x_out_0 -

l*m/sqrt (1+m^2);

158 y_euler_in_2 = - flip(y_euler_out_1) + y_in_0 + y_out_0 +

l*1/ sqrt (1+m^2);

159 x_euler_out_2 = - flip(x_euler_in_1) + x_out_0 + x_in_0 -

l*m/sqrt (1+m^2);

160 y_euler_out_2 = - flip(y_euler_in_1) + y_out_0 + y_in_0 +

l*1/ sqrt (1+m^2);

161
162 % glue everything together , in a proper way for Lumerical

163 euler_in_1 (1: n_steps , 1:2) = [x_euler_in_1 , y_euler_in_1 ];

164 circle_in_1 (1: n_steps , 1:2) = [x_circle_in_1 ,

y_circle_in_1 ];

165 euler_out_1 (1: n_steps , 1:2) = [x_euler_out_1 ,

y_euler_out_1 ];

166 circle_out_1 (1: n_steps , 1:2) = [x_circle_out_1 ,

y_circle_out_1 ];

167
168 euler_in_2 (1: n_steps , 1:2) = [x_euler_in_2 , y_euler_in_2 ];

169 circle_in_2 (1: n_steps , 1:2) = [x_circle_in_2 ,

y_circle_in_2 ];

170 euler_out_2 (1: n_steps , 1:2) = [x_euler_out_2 ,

y_euler_out_2 ];

171 circle_out_2 (1: n_steps , 1:2) = [x_circle_out_2 ,

y_circle_out_2 ];

172
173 bend_in = [euler_in_1; circle_in_1; circle_in_2;

euler_in_2 ];

174 bend_out = [euler_out_1; circle_out_1; circle_out_2;

euler_out_2 ];

175
176 bend = [bend_in; flip(bend_out)];

177 bend = double(bend);
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178
179 end

180 if reverse

181 bend = [-bend (:,1), bend (:,2)];

182 end

183 end

B.3 Lumerical Adiabatic Directional Coupler Setup Script

1 select (":: model");

2 set("setup script", '

3 path_string =

"/ scratch/SemesterProjects/AluminaPhotonicComponents/MATLAB_functions ";

4 matlabput(path_string);

5 matlab (" addpath(path_string)");

6
7 matlabput(alpha_rad , p, R_eff , n_steps , w, w1, w2, deltaw ,

w3, w4, L, Lt, sep , s);

8
9 matlab (" s_bend_up_out = SBendUpOut(p, alpha_rad , R_eff , w3,

n_steps , L, s);");

10 matlab (" s_bend_up_in = SBendUpIn(p, alpha_rad , R_eff , w1,

n_steps , s);");

11 #matlab (" taper_up_in = TaperUpIn(w,w1,Lt,n_steps ,

s_bend_up_in);");

12 #matlab (" taper_up_center = TaperUpCenter(w3,w1,L,n_steps);");

13 #matlab (" taper_up_out = TaperUpOut(w,w3,Lt,n_steps ,

s_bend_up_out);");

14
15 matlab (" s_bend_down_out = SBendDownOut(p, alpha_rad , R_eff ,

w4, n_steps , sep , L, s);");

16 matlab (" s_bend_down_in = SBendDownIn(p, alpha_rad , R_eff , w2,

n_steps , sep , s);");

17
18 matlabget(s_bend_up_in , s_bend_up_out , s_bend_down_in ,

s_bend_down_out);

19
20 x_min = min(s_bend_up_in (:,1));

21 x_max = max(s_bend_up_out (:,1));

22 y_min = min(s_bend_down_in (:,2));
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23 y_max = max(s_bend_up_in (:,2));

24
25 margin = (x_max - x_min) / 5;

26
27 x_source = x_min - lin_wg_len * 1/2 + 10e-9;

28 y_source = y_max - w1/2;

29
30 outer_XY_dims = {

31 "x min" : x_min - lin_wg_len - margin ,

32 "x max" : x_max + lin_wg_len + margin ,

33 "y min" : y_min - margin ,

34 "y max" : y_max + margin

35 };

36
37 select ("Oxide");

38 set("x min", x_min - lin_wg_len - margin);

39 set("x max", x_max + lin_wg_len + margin);

40 set("y min", y_min - 4* margin);

41 set("y max", y_max + 4* margin);

42 set(" render type", 1);

43 set(" detail", 0.3);

44 set("alpha", 0.3);

45 set(" override mesh order from material database", 1);

46 set("mesh order", 10);

47
48
49 #select (" TaperUpIn ");

50 #set(" material", mat_wg);

51 #set(" vertices", taper_up_in);

52
53 select (" SBendUpIn ");

54 set(" material", mat_wg);

55 set(" vertices", s_bend_up_in);

56
57 select (" SBendUpOut ");

58 set(" material", mat_wg);

59 set(" vertices", s_bend_up_out);

60
61 taper_up_center = [[0, w1/2]; [L, w3/2]; [L, -w3/2]; [0,

-w1/2]];
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62
63 select (" TaperUpCenter ");

64 set(" material", mat_wg);

65 set(" vertices", taper_up_center);

66
67 #select (" TaperUpOut ");

68 #set(" material", mat_wg);

69 #set(" vertices", taper_up_out);

70
71 taper_down_center = [[0, -sep+w2/2]; [0, -sep -w2/2]; [L,

-sep -w4/2]; [L, -sep+w4/2]];

72
73 select (" TaperDownCenter ");

74 set(" material", mat_wg);

75 set(" vertices", taper_down_center);

76
77 #select (" TaperDownIn ");

78 #set(" material", mat_wg);

79 #set(" vertices", taper_down_in);

80
81 #select (" TaperDownOut ");

82 #set(" material", mat_wg);

83 #set(" vertices", taper_down_out);

84
85 select (" SBendDownOut ");

86 set(" material", mat_wg);

87 set(" vertices", s_bend_down_out);

88
89 select (" SBendDownIn ");

90 set(" material", mat_wg);

91 set(" vertices", s_bend_down_in);

92
93 select (" LinearWgUpIn ");

94 #set(" material", mat_wg);

95 set("x min", -lin_wg_len + min(s_bend_up_in (:,1)));

96 set("x max", min(s_bend_up_in (:,1)));

97 set("y", max(s_bend_up_in (:,2)) - w1/2);

98 set("y span", w1);

99 #set("z span", z_thick_wg);

100
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101 select (" LinearWgUpOut ");

102 #set(" material", mat_wg);

103 set("x min", max(s_bend_up_out (:,1)));

104 set("x max", max(s_bend_up_out (:,1)) + lin_wg_len);

105 set("y min", max(s_bend_up_out (:,2)) - w3);

106 set("y max", max(s_bend_up_out (:,2)));

107 #set("z span", z_thick_wg);

108
109 select (" LinearWgDownIn ");

110 #set(" material", mat_wg);

111 set("x min", -lin_wg_len + min(s_bend_down_in (:,1)));

112 set("x max", min(s_bend_down_in (:,1)));

113 set("y", min(s_bend_down_in (:,2)) + w2/2);

114 set("y span", w2);

115 #set("z span", z_thick_wg);

116
117 select (" LinearWgDownOut ");

118 #set(" material", mat_wg);

119 set("x min", max(s_bend_down_out (:,1)));

120 set("x max", max(s_bend_down_out (:,1)) + lin_wg_len);

121 set("y min", min(s_bend_down_out (:,2)));

122 set("y max", min(s_bend_down_out (:,2)) + w4);

123 #set("z span", z_thick_wg);

124
125 select (" varFDTD ");

126 #addvarfdtd;

127 set(" simulation time", sim_time);

128 set("x min", x_min - lin_wg_len /2);

129 set("x max", x_max);

130 set("y min", min(s_bend_down_in (:,2)) - 2* margin);

131 set("y max", y_max + 2* margin);

132 test_matrix = [[-(x_max - x_min)/2, y_max + 2*w1]; [-(x_max -

x_min)/2, y_min - 5*w2]; [(x_max - x_min)/2, y_min -

5*w2]; [( x_max - x_min)/2, y_max + 2*w1]];

133 set("test points", test_matrix);

134 set("x0", -(x_max -(x_min - lin_wg_len /2))/2 +lin_wg_len /4);

135 set("y0", (y_max + margin - (min(s_bend_down_in (:,2)) -

margin))/2 - margin - w1/2);

136 set("mesh accuracy", mesh_acc);

137
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138 select ("post:: source ");

139 #addmodesource;

140 ##set("name", "source ");

141 #set(" injection axis", "x");

142 #set(" direction", 2);

143 set("x", x_source);

144 set("y", y_source);

145 set("y span", 10*w);

146 set("mode selection", "fundamental mode");

147 #set("use global source settings", 1);

148 #set("mode selection", 1);

149 #set(" selected mode number", input_mode_num);

150 ## addtogroup ("post");

151
152 select (" movie_monitor ");

153 set("x min", x_min -lin_wg_len /2);

154 set("x max", x_max);

155 set("y min", min(s_bend_down_in (:,2))-margin);

156 set("y max", y_max+margin);

157 set(" enabled", enable_movie);

158
159 lams = [lambda_um , lambda_um2 , lambda_um3 ]*1e-6;

160
161 for (k_lam =1:3){

162 select (" in_plane_monitor_lam "+ num2str(k_lam));

163 set(" monitor type", 7); # 2D, y-normal

164 set(" override global monitor settings", 0);

165 #set("use source limits", 0);

166 #set(" frequency points", 1);

167 #set(" wavelength center", lams(k_lam));

168 #set(" wavelength span", 0);

169 set("x min", x_min -lin_wg_len /2);

170 set("x max", x_max);

171 set("y min", min(s_bend_down_in (:,2))-margin);

172 set("y max", y_max+margin);

173 set("z", 0);

174 #set("z", z_thick_wg /2);

175 set(" enabled", enable_monitor);

176 }

177
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178 for (k_lam =1:3){

179 for (k_wg =1:1){

180 select (" field_wg "+ num2str(k_wg)+"_lam"+ num2str(k_lam));

181 set(" monitor type", 5); # 2D, x-normal

182 #this needs to be modified

183 set("x", x_max);

184 set("y", max(s_bend_up_out (:,2)) - w3/2);

185 set("y span", abs((max(s_bend_up_out (:,2)) - w3/2) -

(min(s_bend_down_out (:,2)) + w4/2)));

186 #set("use source limits", 0);

187 set("use relative coordinates", 0);

188
189 select (" field_wg_b "+ num2str(k_wg)+"_lam"+ num2str(k_lam));

190 set(" monitor type", 5); # 2D, x-normal

191 #this needs to be modified

192 set("x", x_max);

193 set("y", min(s_bend_down_out (:,2)) + w4/2);

194 set("y span", abs((max(s_bend_up_out (:,2)) - w3/2) -

(min(s_bend_down_out (:,2)) + w4/2)));

195 #set("use source limits", 0);

196 set("use relative coordinates", 0);

197 }

198 }

199 }

200
201
202 for (i=1: length(output_analysis_modes)){

203 for (k_lam =1:3){

204 for (k_wg =1:1){

205 select (":: model::post:: mode_expansion_wg "+

206 num2str(k_wg)+"_lam"+ num2str(k_lam));

207 set("x", x_max);

208 set("y", max(s_bend_up_out (:,2)) - w3/2);

209 set("y span", abs((max(s_bend_up_out (:,2)) -

w3/2) - (min(s_bend_down_out (:,2)) + w4/2)));

210 set("mode selection", "fundamental mode");

211 #set("z min", -z_thick_wg /2);

212 #set("z max", z_thick_wg /2);

213 setexpansion ("input ",":: model:: field_wg "+

214 num2str(k_wg)+"_lam"+ num2str(k_lam));
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215 set("use relative coordinates", 0);

216
217 select (":: model::post:: mode_expansion_wg_b "+

218 num2str(k_wg)+"_lam"+ num2str(k_lam));

219 # this needs to be modified

220 set("x", x_max);

221 set("y", min(s_bend_down_out (:,2)) + w4/2);

222 set("y span", abs((max(s_bend_up_out (:,2)) -

w3/2) - (min(s_bend_down_out (:,2)) + w4/2)));

223 set("mode selection", "fundamental mode");

224 #set("z min", -z_thick_wg /2);

225 #set("z max", z_thick_wg /2);

226 setexpansion ("input ",":: model:: field_wg_b "+

227 num2str(k_wg)+"_lam"+ num2str(k_lam));

228 set("use relative coordinates", 0);

229 }

230 }

231 }

232
233 ');
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