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Abstract

We have used a ligand field model proposed by Rice, Martin and Field (J. Chem. Phys. 82, 5023
(1985)) to describe the low-lying states of the lutetium monohydroxide cation. In this approach, the
hydroxide anion is approximated as a polarizable negative charge. The molecular wave functions
are expressed as linear combinations of the free-ion wave functions of Lu2+ that we obtained
by using a model potential method developed by Klapisch. In preparation of calculating the
electronic structure of lutetium monohydroxide, we performed benchmark calculations of three
other molecules: CaF, LuO and CaOH.
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1 Introduction

The molecular ion LuOH+ is a promising candidate for precision measurements of fundamental CP-
symmetry violation [1]. Such experiments would involve preparing the LuOH+ molecule in the ‘science
state’, an excited vibrational state of the 2Σ1/2 ground electronic state via transitions through the
2Π1/2 state. However, there are no known recorded spectra of this molecule, and hence there is no
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available information about these transitions.
In order to get a first approximation of the electronic structure of LuOH+, we decided to use ligand field
theory (LFT), or more precisely the ligand field approach proposed by Rice, Martin and Field (RMF)
[2]. LFT is a simple alternative to much more demanding ab initio methods and its application has
been quite successful. It has been shown that LFT can accurately predict electronic energies, transition
moments, and other molecular constants of diatomic molecules such as alkaline earth monohalides [2,
3]. The electronic structure of alkaline earth monohalides MX with M∈{Ca,Sr,Ba} and X∈{F,Cl,Br,I}
may be described as a single valence electron outside two closed-shell ions M2+ and X−. The same
can be done for LuOH+ where we have ions Lu3+ and OH− instead. Within the ligand field model
the ligand X−, or OH− in our case, is approximated as a polarizable negative point charge that
perturbs the one electron valence structure of the central ion. In this treatment, this means that the
molecular Hamiltonian is the free-ion Hamiltonian where we add a point charge as a perturbation.
The eigenvalues and eigenfunctions of the Hamiltonian are obtained using degenerate perturbation
theory. As a consequence, the electronic states of the molecule are described as linear combinations
of functions associated with the central free ion. Therefore, the ligand field calculation requires the
knowledge of the free-ion energy levels and wave functions of Lu2+ and the equilibrium distance
between the central ion Lu2+ and the ligand OH−.
The energy levels and the equilibrium distance are quantities that have been measured or calculated
and can be looked up. We computed the free-ion wave functions using a model potential approach
developed by Klapisch which was also used by Allouche, Wannous and Aubert-Frécon (AWA) [3]. We
tested it on Ca+ and then used it on Lu2+. After that we had the means to perform ligand field
calculations for CaF, CaOH, LuO, LuOH+. In a first step, we tested our ligand field calculation on
CaF and compared our results with the ones of RMF. Secondly, the LuO calculation was executed and
compared with the measured LuO spectrum in the hope of learning something about the quality of
our Lu2+ wave functions and the suitability of LFT for heavy atoms such as Lutetium. Since we treat
the ligand by modelling it as a polarizable point charge, we calculated the spectrum of CaOH to test
how well satisfied this approximation is for OH−. At the end we performed the ligand field calculation
of Lutetium monohydroxide. We compared our calculated results with experimental energy levels,
except for LuOH+ of course.

2 Ligand field calculation

In the following section we shall describe the ligand field calculation of RMF.
We divide a molecule MX into three interacting subsystems: two closed-shell ions MI+ and XI′− and
the MI+-centred valence electron e (I, I ′ ∈ N). For now we will pretend that XI′− is a charged atom
and not a charged molecule, like OH−, which for LuOH+ it will eventually be. If we group under the
name Hcore all the terms that do not involve the valence electron1, the nonrelativistic Hamiltonian
that describes the total system is expressed, in atomic units, by

H = Hcore − ∆

2
+

−ZM

reM
+
∑
i∈MI+

1

rei

+

−ZX

reX
+
∑

i∈XI′−

1

rei

 , (1)

where −∆/2 is the kinetic energy of the valence electron, ∆ is the Laplacian, the two terms in
the parentheses are the electrostatic potential energies between the electron and the two ions. The
summation goes over all electrons of the MI+ and XI′− closed-shell ions. The variables ZM,X are the
nuclear charges of M and X, reM and reX are the electron-core distances. In ligand field theory we
replace the ligand XI′− by a point charge with a charge equal to that of I ′ electrons, i.e., the term in

1That would be the kinetic energies of the cores and their closed-shell electrons and the electrostatic potential energies
between all combinations of the two cores and all involved closed-shell electrons.
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the second parenthesis becomes I ′/reX,

H ≈ Hcore +

−∆

2
− ZM

reM
+
∑
i∈MI+

1

rei


︸ ︷︷ ︸

HM

+
I ′

reX
. (2)

Since we are interested in calculating energy differences only, the constant term Hcore can be omitted.
The term in parenthesis, which we shall name HM, is the Hamiltonian of the valence electron in the
MI+ ion potential. We can rewrite it using the free-ion energies EM

nl of MI+ and its single-electron
wave functions Ψnlm which satisfy

HM |Ψnlm〉 = EM
nl |Ψnlm〉 . (3)

The electron-ligand interaction I ′/reX shall henceforth be called HLF. As a result, the terms of interest
are

HM +HLF =
∑
nlm

|Ψnlm〉EM
nl 〈Ψnlm|+

I ′

reX
. (4)

We can use Laplace’s expansion in order to express HLF in spherical coordinates:

HLF(RMX) =
I ′

reX
= I ′

∞∑
k=0

√
4π

2k + 1
Y 0
k (θ, φ)Bk(RMX) (5)

with

Bk(RMX) =


rk

Rk+1
MX

, r < RMX (6)

RkMX

rk+1
, r > RMX (7)

where Y m
l is a spherical harmonic function, RMX is the equilibrium internuclear distance between M

and X. The variable r ≡ reM is distance of the valence electron from the MI+ centre. The matrix
HLF in the basis of the free-ion wave functions |Ψnlm〉 is called the ligand field matrix. Because of the
spherical symmetry of HM +HLF, we can write the free-ion wave functions in the following form

Ψnlm(r, θ, φ) = Rnl(r)Y
m
l (θ, φ), (8)

then the ligand field matrix has matrix elements

HLF
nlm,n′l′m′ = 〈Ψnlm|HLF(RMX)|Ψn′l′m′〉 (9)

= I ′
∞∑
k=0

√
4π

2k + 1
(−1)m

∫
Y −ml (Ω)Y 0

k (Ω)Y m′
l′ (Ω)dΩ

∫ ∞
0

Rnl(r)Bk(RMX)Rn′l′(r)r
2dr.

(10)

dΩ is the differential of the solid angle. Looking at this formula we can recognize the so-called Gaunt
coefficients:

Y (l, k, l′,−m, 0,m′) =

∫
Y −ml (Ω)Y 0

k (Ω)Y m′
l′ (Ω) dΩ (11)

=

√
(2l + 1)(2k + 1)(2l′ + 1)

4π

(
l k l′

0 0 0

)(
l k l′

−m 0 m′

)
. (12)
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The two 2 × 3 matrices are Wigner 3j symbols. The Gaunt coefficients are zero unless m = m′,
|l− l′| ≤ k ≤ l+ l′ and l+ l′+ k is an even integer. It follows that HLF is a symmetric matrix and the
infinite sum over k has a finite number of non-zero terms.
The eigenvalues of HM +HLF are the ligand field energy levels. The eigenfunctions are linear combi-
nations of the one-electron free-ion wave functions. In order to calculate them, we truncate the basis
of the free-ion wave functions. RMF executed three different model calculations, namely C-3, C-7
and CP-7, where the numerals indicate of how many free-ion wave functions the basis consists. CP-7
includes the ligand polarization term Hµ− , which will be explained in the remainder of this section.
The point charge approximation of the ligand can be improved by including the contribution of a
dipole moment induced at the ligand by the field of the MI+ charge. The additional term to the
ligand field part HLF of the Hamiltonian is

Hµ−(RMX) = − ~E(RMX) · ~µ−(RMX) = −µ−
e

d

dR

(
HLF(R)

)
|R=RMX

(13)

where ~E(RMX) is the electric field at the XI′− ion created by the valence electron and

µ− =
α−
R2

MX

(14)

is the point dipole moment. The quantity α− is the ligand polarizability which is an input to the
theory for a given ligand X, and must either be experimentally determined or calculated.
This model is free of adjustable parameters and relies only on experimental free-ion MI+ energy levels,
single-electron wave functions and the measured equilibrium bond lengths RMX of the MX molecules.
If we include Hµ− in the Hamiltonian, then also on α−.

3 Calculation of wave functions

One necessity for a ligand field calculation are high-quality free-ion wave functions. Since we are
interested in C-7 and CP-7 calculations we needed to find the seven wave functions corresponding to
the seven states lowest in energy.

3.1 Klapisch model potential

In their paper [3], AWA used basis functions built from a Klapisch-type model potential describing
the interaction of the valence electron with the closed-shell core M2+ (M∈{Ca,Sr,Ba}).
In his PhD thesis [10], Klapisch developed this method for calculating wave functions, which we shall
briefly outline. In the non-relativistic regime and neglecting spin-orbit interaction, the Hamiltonian
of an atom with N electrons is

H =

N∑
i=1

(
−∆i

2
− Z

ri

)
+
∑
i>j

1

rij
. (15)

Z is the nuclear charge. Because the electron-electron interaction terms 1/rij prevent separation of
variables, it is impossible to find exact solutions. Instead, the common approach is to introduce a
central potential V (ri) that represents the average potential in which each electron resides:

H =

N∑
i=1

(
−∆i

2
+ V (ri)

)
︸ ︷︷ ︸

H0

+

N∑
i=1

(
−V (ri)−

Z

ri

)
+
∑
i>j

1

rij
. (16)
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We can easily obtain the solutions of H0 because the variables of the different electrons are now
separable. We have

H0Ψ = E(0)Ψ (17)(∑
i

hi

)(∏
i

Ψi

)
=

(∑
i

εi

)(∏
i

Ψi

)
(18)

with

hi = −∆i

2
+ V (ri), (19)

hiΨi = εiΨi (20)

for i = 1, . . . , N . As in the ligand field calculation, we can make use of the spherical symmetry of
V (ri) and then identify the angular function as the spherical harmonic function.

Ψi ≡ Ψ(ri, θi, φi) = R(ri)Y (θi, φi) ⇒ Ψnlm(i) =
unl(ri)

ri
Y m
l (θi, φi) (21)

If we start from equation (20), using the form of the wave function in equation (21), the definition
of the Laplacian ∆ in spherical coordinates and the eigenvalue equation of the spherical harmonics
functions, we obtain the radial one-electron Schrödinger equation:(

−1

2

∂2

∂r2
i

+
1

2r2
i

l(l + 1) + V (ri)

)
unl(ri) = εnlunl(ri), (22)

with

unl(ri) = riRnl(ri), (23)

which we can solve and therefore find all single-electron energies εi and single-electron wave functions
Ψi. This allows us to calculate the total energy E(0) and the total wave function Ψ of the unperturbed
Hamiltonian H0. Therefore this trick of introducing a central potential enables us to apply perturba-
tion theory to complex atoms and calculate the energies and wave functions of the full Hamiltonian
H.
If the calculations are exact, the choice of V (ri) does not matter. Klapisch formulated different criteria
for determining the quality of a potential V (ri). These criteria entail minimising a functional which
proves to be a very difficult task. Therefore Klapisch realised that finding the optimal potential in all
generality is impossible and one must impose restrictions on the class of functions V (ri).
The first restriction is:

Vj(ri) = U(r), i = 1, . . . , N (24)

j = 0, . . . ,∞ (25)

which means that for a state j of the considered atom, all the mono-electronic functions Ψi are
solutions of the same Hamiltonian and are therefore orthogonal. This not only simplifies but is in fact
a necessity for the use of perturbation theory.
The second restriction is much more important because it effectively allows us to find the minimum
of the aforementioned functionals. We describe the potential V (ri) with an analytical function that
depends on an ensemble of parameters α = (α1, . . . , αn).

V (ri) = U(α, r), i = 1, . . . , N (26)

The criteria of the quality of a potential are now asscociated with functions and not functionals
anymore. The criterion we will use is what Klapisch calls the spectroscopic criterion where the
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parameters α are adjusted to reproduce the known energy spectrum of the atom. The function we
want to minimise is root-mean-square error

Sp(α) =

 M∑
j=1

1

M
(E

(p)
j (α)− Eexp

j )2

1/2

(27)

for M energies chosen in advance, where p is the order of perturbation.
If we choose to represent the potential as

V (r) = −Zeff(r)

r
, (28)

then we must have that

Zeff(∞) = Z − (N − 1) = I, Zeff(0) = Z, (29)

where N is the number of electrons. These conditions mean that the effective charges a single electron
interacts with are I and Z for the electron being very far away from the core and very close to the
core. A simple one-parameter potential that satisfies these conditions is

U(α, r) = −I + (Z − I)e−αr

r
. (30)

Klapisch also came up with a 3-parameter model that had the following form:

U(α, r) = −I + (Z − I)e−α1r + α2re
−α3r

r
. (31)

One problem of this potential is that the parameters have no physical meaning. That is why an
estimate of an initial value for minimisation is difficult. Klapisch developed a more general formula
which solves this problem. He calls it the complete formula.

U(α, r) = −
I +

∑M
k=1 qkgLk

(αk, r) +
∑M ′

k′=1 qk′flk′ (αk′ , r)

r
(32)

gLk
(αk, r) describe the effect of the k-th complete shell with orbital quantum number Lk. The qk and

qk′ are the number of electrons on each shell and subshell.

fl(α, r) = e−αr
2l+1∑
j=0

(
1− j

2l + 2

)
(αr)j

j!
(33)

gL(α, r) =

∑L
l=0(4l + 2)fl(α, r)∑L

l=0(4l + 2)
(34)

Now how exactly did we use this to get our own wave functions? In our case, we forewent the use of
perturbation theory, i.e p = 0, and derived a set of one-electron wave functions simply by solving the
following equation:

h(M(I−1)+)Ψnlm = εnlΨnlm (35)

with

h(M(I−1)+) = −1

2
∆ +

∑
l′

Ul′(r)Pl′ (36)
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Exactly as AWA, we settled for the following 4-parameter potential Ul(r) which is l-dependent. It con-
sists of the 3-parameter potential (screening term) we have already seen and an additional polarization
term:

Ul(r) = −1

r

(
I + (Z − I) · e−αl

1r + αl2re
−αl

3r
)
− αd

2r4

(
1− e−(r/rlc)6

)
, (37)

where r is the distance between the valence electron and the core MI+, αd is the dipole polarizability
of the MI+ ion. Pl is a projection operator: Pl′Ψnlm = δl′,lΨnlm. The parameters α = (α1, α2, α3, rc)
vary for different l. This model potential has been used in other papers for alkaline-earth metals [7, 8]
and for example Francium [9]. Again, we can reduce the 3-dimensional problem that is equation (35)
to a one-dimensional problem:

−1

2

∂2unl
∂r2

+

(
1

2r2
l(l + 1) + Ul(r)

)
︸ ︷︷ ︸

Ueff
l (r)

unl = εnlunl, (38)

where

Ψnlm(r, θ, φ) =
unl(r)

r
Y m
l (θ, φ) (39)

is the complete one-electron wave function. So the main task was to find parameters α1, α2, α3 and rc
that minimise the function

Sl(α) =

 M∑
j=1

1

M
(εjl(α)− Eexp

j )2

1/2

(40)

for l being 0, 1, 2, 3 and M chosen energy levels. Of course you want to consider as many energy levels
as are available. Essentially we had to deal with a continuous optimisation problem in four variables.

3.2 Solving the Schrödinger equation

Part of the minimisation was solving equation (38) over and over again for different values of α =
(α1, α2, α3, rc). We did this as follows: we discretize the radial coordinate in an equidistant grid of N
elements.

[r1, . . . , rN ] =
[rmax

N
, 2
rmax

N
, . . . , (N − 1)

rmax

N
, rmax

]
, ri+1 − ri = h (41)

This allows us to approximate the second derivative with finite differences:

f ′′(xi) ≈
f(xi−1)− 2f(xi) + f(xi+1)

h2
(42)

As a consequence equation (38) turns into a system of equations:

−unl(ri−1)− 2unl(ri) + unl(ri+1)

2h2
+ U eff

l (ri)unl(ri) = εnlunl(ri), i = 1, . . . , N (43)

that can be regarded as a matrix eigenvalue equation. So essentially we have to find the eigenvalues
and eigenvectors of the following matrix:

− 1

2h2


−2 1
1 −2 1

1 −2
. . .

. . .
. . . 1
1 −2

+


U eff
l (r1)

U eff
l (r2)

. . .
. . .

U eff
l (rN )

 . (44)
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Obviously, valid wave functions must satisfy

unl(0) = unl(∞) = 0, (45)

so we can set unl(r0 = 0) = 0. At the end we have N + 1 function values for each eigenfunction which
can be used for interpolation or we can try to find suitable fitting functions.

3.3 Ca+ wave functions

First we wanted to test the Klapisch model potential method on Ca+ and see if we could produce good
Ca+ wave functions, namely 4s, 5s, 4p, 5p, 3d, 4d and 4f . AWA did not actually solve the optimisation
problem themselves, they used the coefficients found by Aymar and Greene [7, 8]. The coefficients for
Ca+ can been seen in table 1. Ultimately, we wanted to find out if we could reproduce these results.
In this particular case, we had to set the nuclear charge Z = 20, I = 2 and the dipole polarizability
of the Ca2+ ion αd = 3.5 · 4πε0a3

0 [7], ε0 is the vacuum permittivity, a0 is the Bohr radius. We used
the 25 lowest Ca+-energy levels with l = 0, 1, 2, 3 from NIST [14]. Furthermore, we used a grid of
N = 2250 points and set rmax = 90 a0 to solve the Schrödinger equation.
The coefficients we calculated can be found in table 2. The largest difference between measured and
calculated energy values for l = 0, 1, 2, 3 are 3.51, 0.59, 153, 127 cm−1. One quickly notices that our
coefficients are not identical to those of table 1, even though we chose initial values for the minimisation
that were fairly close to the final values of Aymar. The resulting wave functions can be seen in figure
1, where one can compare them to the functions RMF used. They used the analytical 4s, 4p and 3d
radial wave functions reported by Weiss [6]. The 5s, 5p, 4d and 4f functions were generated in a way
explained in the appendix of RMF’s paper. Our wave functions look a little bit different than the
ones of RMF. 4s, 4p and 3d are very similar, the 5s functions still look very much alike. The others
show significant differences. Especially the small peak of 5f for small r, see figure 1d, is a little bit
worrying. This behaviour does not seem to be very physical. Nevertheless the results of the ligand
field calculation for CaF which we obtained with these functions looked very promising, see section
4.1. Because of that we concluded that it might be worth a try to search for Lu2+ wave functions
using the Klapisch model potential method, hoping that the subsequent ligand field calculations yield
similarly good results.

Ca+ l α1 [1/a0] α2 [1/a0] α3 [1/a0] rc [a0]

0 4.0099 13.023 2.1315 1.6352

αd = 3.5 a3
0 [7] 1 4.2056 12.658 2.0186 1.5177

2 3.5058 12.399 2.2648 1.6187

3 3.7741 13.232 3.1848 0.7150

Table 1: Empirical parameters of the model potential for Ca+ calculated by Aymar and Telmini [7].
The constant a0 is the Bohr radius.

Ca+ l α1 [1/a0] α2 [1/a0] α3 [1/a0] rc [a0]

0 3.7744 13.033 2.1497 1.5831

αd = 3.5 a3
0 [7] 1 4.2699 12.590 2.0254 1.4901

2 3.5226 12.388 2.2206 1.7592

3 8.3048 12.714 9.1651 0.3738

Table 2: Empirical parameters of the model potential for Ca+ obtained by solving optimisation prob-
lem. The constant a0 is the Bohr radius.
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(a) 4s, 4p and 3d wave functions used by RMF and found
by Weiss [6].

(b) 4s, 4p and 3d wave functions found by solving optimi-
sation problem.

(c) 5s, 5p, 4d and 4f wave functions used by RMF. (d) 5s, 5p, 4d and 4f wave functions found by solving op-
timisation problem.

Figure 1: Comparison of the Ca+ wave functions used by RMF (left figures) and our own wave
functions (right figures).
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3.4 Lu2+ wave functions

The goal was to find the seven wave functions corresponding to the lowest energies, i.e. 6s, 7s, 6p, 7p,
5d, 6d and 5f .
For Lu2+, we set the nuclear charge Z = 71, I = 3 and the dipole polarizability of the Lu3+ ion
αd = 4.022 · 4πε0a3

0 [11]. As before, the Lu2+-energies were taken from NIST [14]. This time we used
all 15 energy levels that were available for Lu2+. The solving of the Schrödinger equation was executed
with N = 8000 grid points and rmax = 90 a0.
The coefficients we found can be seen in table 3. One might notice that for l = 3 the coefficients seem
to be off considering that the values for the other l are all fairly close together. What also stands out
is that for l = 1, 2, the function S(α) is considerably smaller than for the other two l. This might
have something to do with the number of available energy levels for each l. While for l = 1, 2 we had
only two and three energy levels at our disposal, for l = 0, 3 we had five each. The largest difference
between measured and calculated energy values for l = 0, 1, 2, 3 are 5.62, 7.7 ·10−3, 2.8 ·10−4, 163cm−1.
It took quite the effort finding these values and with that the wave functions we used in the ligand
field calculations. As already mentioned, it is not clear what initial values one should use. So what
frequently happened was that, when looking for a function unl, we would obtain a function un′l. For
example when searching for a 6s function we would find a 7s function. One can confirm this by
counting nodes because the number of nodes of unl must be equal to n− l − 1.
For Ca+ we did not have this problem. Since we knew what we were looking for, i.e. the values
of Aymar, we could simply choose initial values close to them. In the case of Lu2+, we spent a
considerable amount of time trying the minimisation with different initial values. For each l we found
many different sets of values, some of which correspond to a local minimum of S(α). Of course we do
not know whether we found the global minimum.
For l = 0, 1, 2, the values of α = (α1, α2, α3, rc) in table 3 are the ones with the lowest value of S(α) we
could make out. For l = 3 we found values of α for which S(α) was smaller than 5.8264 · 10−4 Eh (see
table 3), the smallest was 4.2807 · 10−4 Eh. That is not a large difference but the question remains:
why did we settle for the worse values?
While the global maximum of these different 5f wave functions was always at the same location with
the same magnitude, we came across some significant differences between the different wave functions
for small r. In the end we let the ligand field calculation of LuO decide, i.e. we chose the 5f function
whose ligand field calculation yielded the best energy levels for LuO. Our final wave functions can be
seen in figure 2.

Lu2+ l α1 [1/a0] α2 [1/a0] α3 [1/a0] rc [a0] S(α) [Eh]

0 3.9516 10.597 2.0542 1.4757 1.4637 · 10−5

αd = 4.022 a3
0 [11] 1 4.2965 12.931 2.1446 1.4093 3.8671 · 10−8

2 4.1696 10.067 1.9920 1.7785 8.5418 ·10−10

3 3.6618 -3.5589 5.1305 1.6709 5.8264 · 10−4

Table 3: Empirical parameters of the model potential for Lu2+ obtained by solving optimisation
problem. The constants a0 and Eh = ~2/(mea

2
0) ≈ 27.2 eV are the Bohr radius and the Hartree

energy.
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(a) 6s, 6p and 5d wave functions (b) 7s, 6d, 7p and 5f wave functions

Figure 2: Our own Lu2+ wave functions found by solving optimisation problem.

4 Results of ligand field calculations

4.1 CaF

The first step was to reproduce the results of RMF in order to test the ligand field calculation. If we
use the notation introduced in section 2, then we have MI+ = Ca2+ and XI′− = F−, i.e. the ligand
has a charge of −e, that is why one has to set I ′ = 1 in the ligand field calculation. We used the
same seven functions as RMF for our own C-7 and CP-7 calculations. Following that we did the same
calculation with our own model potential wave functions. For CP-7 RMF approximated the ligand
polarizability α− as Pauling’s ion polarizability [12], which in the case of CaF is 7.086 · 4πε0a3

0, and so
did we. In [13] the authors of said paper talk about how this value is much too low compared to the
recent theoretical value of 17.613 · 4πε0a3

0. All energies were calculated at the equilibrium internuclear
distance of the ground state X 2Σ+. Our results are summarised in table 4.
As one can see, our energies are convincingly close to the ones of RMF. For C-7 the difference between
our results are smaller than 88cm−1 and for CP-7 smaller than 219cm−1. Why are they not identical?
Most likely RMF used slightly different values for RCaF and/or for the free-ion energy levels of Ca+.
Unfortunately we do not know the exact values they used.
The energies obtained with our model potential wave functions are reasonably close to the ones of
RMF. What is interesting is that for the first excited state our energy is worse than the one of RMF
but for the other states our energies are better. The energy difference is only 812 cm−1 for the state
B′ 2∆. Overall we are quite content with these values. They convinced us that, using Klapisch’s
method, we might be able to find wave functions of decent quality for Lu2+ which we can use for a
ligand field calculation of LuOH+.
Inspired by RMF’s paper, we added figure 3 which nicely visualises the effects of the different terms
in the C-7 calculation. The leftmost column starts with the free Ca+-ion energy levels. In the second
column, these are shifted by the diagonal HLF terms where we only include the k = 0 terms (see
equation 10). We omit the overall upward shift of all orbital energies by 53453 cm−1 and only show
the shifts relative to the 4s orbital energy. Next, we include the full diagonal HLF terms which
partially lift the degeneracy of the free-ion levels. In the fourth column, the off-diagonal terms of HLF

are added, which mixes 4s, 4p and 3d and gives us the C-3 energy levels. In right most columns we
expand the basis and go from the C-3 to the C-7 calculation, i.e. we allow configurational mixing with
the 5s, 5p, 4d and 4f orbitals. RMF call these four additional orbitals Rydberg orbitals.
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CaF (RCaF = 1.967 Å [15]) A 2Π B 2Σ+ B′ 2∆ C 2Π

Measured [15] 16526 18845 21531 30270

RMF - C-7 [2] 17978 21463 - 32644

RMF - CP-7 [2] (α− = 7.086 a3
0 [12]) 17998 22376 - 32686

C-7 18018 21387 22786 32731

CP-7 (α− = 7.086 a3
0 [12]) 18054 22332 24877 32904

C-7 - N = 2250, rmax = 90 a0 18221 21379 22343 31896

Table 4: Experimental and calculated values for the energies of the four lowest excited states of CaF.
The calculations C-7 and CP-7 use the same wave functions as RMF, the calculation in the last row
uses our own wave functions. The capital letters A, B, C refer to the first, second and third excited
state. Historically, the state B′ was found after the state C had already been named, i.e. the state C
is actually the fourth excited state. All energies are in cm−1.

Figure 3: CaF: Effects of the different terms in the C-7 calculation (using the RMF wave functions)
shown relative to the energies of the first three free Ca+-ion states. The overall upward shift of all
orbital energies by 53453 cm−1 has been omitted.
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4.2 LuO

The motivation for this calculation was to get an idea of the quality of our Lu2+ wave functions. Now
we have MI+ = Lu3+ and XI′− = O2−, that is why one has to set I ′ = 2 in the ligand field calculation.
All energies were calculated at the equilibrium internuclear distance of the ground state X 2Σ+. Our
results are summarised in table 5.
While for the first excited state of CaF we had differences between the measured and calculated
energies of about 1450− 1700 cm−1, the difference here is 2347 cm−1. As it turns out our calculation
shows that there should be an additional energy level which has not been measured. The difference in
energy for the state C 2Σ+ is 3282cm−1. Unfortunately we only have these two values for comparison.
In this case we have larger differences than for CaF. One of the reasons for that is most likely because
the quality of our wave functions for Lu2+ is not as good as for Ca+. However, overall our calculated
energies are still quite satisfying.
As for CaF, we created an energy diagram, see figure 4. The leftmost energy levels are of the free
Lu2+-ion. From left to right we add more terms to the calculation: the k = 0 diagonal HLF terms,
next the k 6= 0 diagonal HLF terms and then the off-diagonal HLF terms. In the last column we
expand the basis to seven basis functions.

LuO (RLuO = 1.7904 Å [16]) A 2Π B 2∆ C 2Σ+

Measured [16] 20777 - 24440

C-7 - N = 8000, rmax = 90 a0 23124 25091 27722

Table 5: Experimental and calculated values for the energies of the three lowest excited states of LuO.
The capital letters A, B, C refer to the first, second and third excited state. All energies are in cm−1.
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Figure 4: LuO: Effects of the different terms in the C-7 calculation shown relative to the energies of
the first three free Lu2+-ion states. The overall upward shift of all orbital energies by 121972 cm−1

has been omitted.
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4.3 CaOH

Because eventually we had to deal with a OH− ligand in the calculation of LuOH+, we thought it
might be interesting to see what kind of results we get for a molecule with the same ligand.
In this third ligand field calculation we have MI+ = Ca2+ and XI′− = OH−. We reused the RMF
Ca+ wave functions. Compared to the CaF calculation, we simply needed to adjust the internuclear
distance RCaOH and the polarizability of the ligand. But what exactly is RCaOH? CaOH is a triatomic
molecule. Up to now, XI′− was a charged atom, now it is a charged diatomic molecule, i.e. it has
two cores itself. Because oxygen is extremely electronegative, we can basically think of OH− as an
oxygen ion of charge −e with a neutral hydrogen atom attached to it. Therefore we decided to set
RCaOH = RCaO where RCaO is the Ca-O bond length in the CaOH molecule when it is in the ground
state, which is 1.976 Å [17].
Because RCaOH is almost identical to the value of RCaF, the energies of C-7 are very close to those
of CaF, see table 6. In general one would expect that the results are not as good as the ones for
CaF since the point charge approximation is more suitable for a fluoride ion than for the hydroxide
anion. For the states A 2Π and B 2Σ+ this is indeed the case but for the third excited state we have
a difference of only 818 cm−1 to the measured value which is a remarkably good value. CaF had a
difference of 1255 cm−1. It is no surprise that the energy diagram for CaOH also looks practically
identical to the one of CaF, see figure 5. Compared to CaF, the energies are shifted by 100 cm−1 at
the most.
In this paper [13], its authors discuss why the free-ion polarizability of OH−, α− = 26.791 · 4πε0a3

0,
which is known from ab initio calculations, is much too high to be used for a ligand field calculation of
CaOH. Instead one can get better results by using a ‘effective’ polarizability of 9.11 ·4πε0a3

0, which can
be obtained by adjusting the polarizabilities of Ca+ and OH− such that they reproduce the total dipole
moment of CaOH. For more details, see [13]. That is why we decided to perform CP-7 calculations
with both polarizabilities.
In conclusion, this calculation justifies the use of ligand field theory on molecules with a hydroxide
ligand.

CaOH (RCaOH = 1.976 Å [17]) A 2Π B 2Σ+ C 2∆

Measured [18] 15998 18022 21896

C-7 18012 21347 22714

CP-7 (α− = 26.791 a3
0 [13]) 17459 22271 28342

CP-7 (α− = 9.11 a3
0 [13]) 18033 22480 25339

Table 6: Experimental and calculated values for the energies of the three lowest excited states of
CaOH. The capital letters A, B, C refer to the first, second and third excited state. All energies are
in cm−1.
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Figure 5: CaOH: Effects of the different terms in the C-7 calculation shown relative to the energies of
the first three free Ca+-ion states. The overall upward shift of all orbital energies by 53307 cm−1 has
been omitted.
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4.4 LuOH+

For this final calculation we have MI+ = Lu3+ and XI′− = OH−. Analogous to CaOH, we set the
internuclear distance RLuOH+ = RLuO where RLuO = 1.873Å is the Lu-O bond length in LuOH+ when
it is in the ground state. For reasons discussed in the previous section, we knew that the polarizability
of OH−, α− = 26.791 ·4πε0a3

0, would not yield good results. Unfortunately we did not have the means
to calculate the ‘effective’ polarizability which is why we did three additional CP-7 calculations with
lower polarizabilities in order to compare the effect it has on the energies. The results are summarised
in table 7 and figure 6. Figure 7 shows the matching energy diagram.

LuOH+ (RLuOH+ = 1.873 Å [1]) A 2Π B 2Σ+ C 2∆

C-7 - N = 8000, rmax = 90 a0 12925 16906 19520

CP-7 (α− = 26.791 a3
0 [13]) 21146 24333 28235

CP-7 (α− = 20.245 a3
0) 19148 23243 26886

CP-7 (α− = 13.497 a3
0) 17059 21629 25049

CP-7 (α− = 6.748 a3
0) 14974 19500 22635

Table 7: Calculated values for the energies of the three lowest excited states of LuOH+ using the same
Lu2+ wave functions as for LuO. The capital letters A, B, C refer to the first, second and third excited
state. All energies are in cm−1.

Figure 6: LuOH+: Visualisation of the results in table 7.

The wave functions obtained in the C-7 calculations are presented in tables 8 and 9. They are expressed
in terms of the percentage composition of the single basis functions.
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Figure 7: LuOH+: Effects of the different terms in the C-7 calculation shown relative to the energies
of the first three free Lu2+-ion states. The overall upward shift of all orbital energies by 59051 cm−1

has been omitted.

4s 4p 3d Rydberg

CaF X 2Σ+ 79 19 0 2

A 2Π 0 63 32 5

B 2Σ+ 7 33 53 7

B′ 2∆ 0 0 96 4

C 2Π 0 19 48 33

CaOH X 2Σ+ 79 19 0 2

A 2Π 0 63 32 5

B 2Σ+ 7 33 53 7

C 2∆ 0 0 96 4

Table 8: Wave functions: Orbital mixing percentages for the C-7 calculations. Rydberg refers to the
orbitals 5s, 5p, 4d and 4f .
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6s 6p 5d Rydberg

LuO X 2Σ+ 73 24 0 3

A 2Π 0 40 47 13

B 2∆ 0 0 92 8

C 2Σ+ 7 17 57 19

LuOH+ X 2Σ+ 88 9 2 1

A 2∆ 0 0 99 1

B 2Π 0 10 88 2

C 2Σ+ 0 18 79 3

Table 9: Wave functions: Orbital mixing percentages for the C-7 calculations. Rydberg refers to the
orbitals 7s, 7p, 6d and 5f .

5 Discussion

We have successfully computed the ligand field energies of the lowest-lying states of CaF and LuO
and CaOH and LuOH+. The accuracy could of course be better but given the simplicity of the model
they are surprisingly satisfying. One should keep in mind that we have two kinds of shortcomings in
our calculation. First the approximations of LFT will give us errors even if we used virtually perfect
wave functions. However, since we do not know the free-ion wave functions perfectly, therein lies our
second shortcoming.
We notice that for CaF, LuO and CaOH the ligand field energy levels are all consistently too large
in comparison to the measured energies. We have no reason to believe that this is any different for
LuOH+. We can make use of that fact and try to estimate the actual energy levels of LuOH+. Our
calculated value of the energy of the A 2Π state of LuO is 2347 cm−1 too high. Going from CaF
to CaOH the difference between calculated and measured energy for the first excited state increases
about 35%. If we translate this to going from LuO to LuOH+, then our ligand field energy should be
about 3168 cm−1 too high. If we add an error of 1000 cm−1, we get that the actual energy level of
A 2Π for LuOH+ lies in the range 8757 − 10757 cm−1. This implies that the wavelength of the A-X
transition lies between 1.14 and 0.93 µm.
Another point, which RMF already noticed, is that the results for C-7 appear to agree better with
experiment than those of CP-7. So it seems that this calculation is worthless for our use. RMF admit
that the crude way the ligand polarizability is treated may be insufficiently accurate to improve on
the simple point charge model. They say that the most important neglected polarization effect and
the most difficult to include in the present calculation is the saturation of the ligand induced dipole
moment µ−. Nevertheless the CP-7 calculation still has its right to exist because it can better predict
other quantities than energy, for example the electric transition dipole moment.
Moving forward, we could definitely improve are our free-ion wave functions. The easiest thing would
be finding a better way to solve the radial Schrödinger equation. The numerical method we have
chosen is neither efficient nor accurate but it is simple. Since the wave functions vary rapidly for small
r a natural choice would be a non-linear grid, i.e. a grid where the distance between two neighbouring
grid points increases as r increases. Furthermore approximating the second derivatives with finite
differences is quite a primitive method (2nd order error). We could use Numerov’s algorithm to solve
the radial Schrödinger equation for a given energy. The main reason why we did not do that is we did
not know how to find the energies of the bound states for a given model potential.
Another refinement would be including a spin-orbit term in the radial Schrödinger equation as it is
done in [9]. For heavy atoms such as Lutetium this is surely a recommendable adjustment.
Also, one should definitely consider using the more general model potential. The one we used is most
likely not very well-adapted for Lutetium. Or one could of course use another method to find wave
functions altogether.
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Then there is also the possibility of improving the ligand field calculation. Bencheikh and Schamps
suggest that in cases involving heavy cations, when spin-orbit interactions are known to produce
splitting effects that compete or are even larger than those due to the ligand field, the use of relativistic
LFT (RLFT) should become mandatory. In contrast to non-relativistic LFT, their RLFT treatment
includes relativistic interactions in the Hamiltonian of the free metallic ions so that spin-orbit effects
are accounted for at the basic level of the theory [19].

6 Conclusion

The ligand field approach by RMF has allowed us to calculate the energies of the three lowest excited
states of four different molecules. The strength of these calculations lies in their simplicity. They
yield good results for a first estimate. The only challenging task is the computation of the free-ion
wave functions. Within the framework of this project we have decided to use the Klapisch model
potential approach to calculate these functions. We have managed to calculate the energies of CaF
with comparable accuracy as RMF. For LuO the quality of our results decreased to some degree, most
likely because the quality of our wave functions deteriorated. The calculation of CaOH has shown
that the ligand field approach delivers good results even for molecules with the diatomic ligand OH−.
At the end we calculated the ligand field energy levels of LuOH+ and made an estimate for the A-X
transition based on what we have learned from the other three molecules.

20



References

[1] D.E. Maison, L.V. Skripnikov, V.V. Flambaum and M. Grau, Search for CP-violating nuclear
magnetic quadrupole moment using the LuOH+ cation, arXiv:2006.03848 [physics.atom-ph] (2020)

[2] S.F. Rice, H. Martin, and R.W. Field, The electronic structure of the calcium monohalides. A
ligand field approach, J. Chem. Phys. 82, 5023 (1985)

[3] A.R. Allouche, G. Wannous and M. Aubert-Frécon, A ligand-field approach for the low-lying
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