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Abstract

The purpose of this semester project was to implement a computa-
tional tool in order to create exotic harmonic oscillator states in a quasi-
deterministic fashion. To achieve this goal, a set of piece-wise constant
parameters of an interaction hamiltonian was considered. In practice,
a gradient ascent based algorithm named GRAPE (GRadient Ascent
Pulse Engineering) was employed. The algorithm allowed to produce
non trivial shapes of laser pulses that must be applied to the trapped
ion system in order to reach the desired target state.
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Chapter 1

Introduction

The recent experimental advancements in modular position and momentum
measurements, led to the realization of a highly non trivial non classical state
of a harmonic oscillator, realized using the axial motion of a trapped 40Ca+

ion [1]. The state that we are interested in is called Grid state (see Fig.1.1)
and represents an approximate codeword of GKP bosonic code [2].

Figure 1.1: Wigner function representation of the grid state encoding a logi-
cal |0̄〉 state.

As we shall see, the realization of this state in trapped ion experiments
presents several difficulties. The goal of this project is to improve upon
the current preparation method for such a state.

Let us consider the energy level structure of the calcium ion 40Ca+, Fig.1.2,
and let us explain how the readout of the information in such a system
works.
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1. Introduction

Figure 1.2: Simplified structure of energy levels of 40Ca+ ion. Bottom right
labels indicate the total angular momentum of the energy state, the letters
stand for states with a particular total orbital angular momentum, to be
added to the spin (e.g S1/2 is the state with L=0 and S= 1

2 ). In the fluores-
cence detection, the ground state will appear as a bright spot on the camera,
whereas the excited state will be associated to the absence of such spot.

The two level system usually considered in 40Ca+ is made up of the Zeeman
sub-levels |↓〉 =

∣∣S1/2, mj = 1/2
〉

and |↑〉 =
∣∣D5/2, mj = 3/2

〉
. This choice is

particularly convenient since the optical transition D5/2 ⇐⇒ S1/2 is coupled
by a quadrupole that makes it less likely to occur; thus one can consider
D5/2 as a long living state. On the other hand, the state P1/2, which is dipole
coupled to S1/2 and therefore short living, is used for the readout of photons
scattered in the fluorescence process.
When dealing with trapped ions, one has to consider the total system com-
posed of an ion and the harmonic motion of the ion in the trapping po-
tential which represents the mechanical degree of freedom of the total sys-
tem. Since in this work we are mainly interested in the harmonic oscillator
part, we should make sure that our quantum harmonic oscillator state is not
screwed up upon fluorescence detection i.e. the projective measurement. As
one may imagine, the harmonic oscillator energy remains unchanged only
if the system is in |↑〉 ⊗ |H.Osc〉 state. The other situation |↓〉 ⊗ |H.Osc〉
is unsuitable for our purposes, since photons carry a non-zero momentum
during the scattering process and thus change the energy of the trap in an
unpredictable manner. Consequently, the preparation of complicated har-
monic oscillator states such as cat states or grid states, whose details will
be explained later on, is possible only probabilistically. Moreover, as the
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number of measurements needed to create a particular state increases, the
probability to find the system in the state we are interested in decays, mak-
ing the quantum computation with such objects unreliable.

This work will be focused on reducing the number of projective measure-
ments needed to end up in |↑〉 ⊗ |H.Osc〉 state, therefore creating it almost
deterministically.

Outline :

Keeping in mind the goal of the project, let us lie down the structure of this
report.
The theoretical concepts essential to understand this work are introduced
in Chapter 2. Chapter 3 focuses on the analysis of GRAPE algorithm and
some experimental bounds are also considered. The work is concluded with
Chapter 4 in which we discuss the results of simulations and give a look at
future experimental possibilities.
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Chapter 2

Theoretical concepts

This chapter introduces basic notions of phase space and quantum optics
[12]. Next, an example of how to create a cat state and the grid state in
trapped ions will be given.

2.1 Phase space

The notion of phase space plays a central role in the Hamiltonian formula-
tion of classical physics. Here we will just remind ourselves of some impor-
tant rules of such a space.

Figure 2.1: Trajectory representing a possible time evolution of a point in
phase space.

As shown in the Fig.2.1 one point in phase space (2 dimensional for sim-
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2. Theoretical concepts

plicity of exposition, though the concept can be generalized to an arbitrary
number of dimensions) is represented by the tuple (x, p) where x is the po-
sition of the object and p corresponds to its momentum. Knowing these 2
quantities in classical physics completely determines the state of the system.
All the other quantities of interest in classical mechanics may be derived
from the notion of these 2 quantities.
Another thing that one is usually interested in is the time evolution of (x, p),
since the knowledge of such quantity provides us with the full description
of the system over time. The rule which updates the state of the system is
obtained from the notion of the hamiltonian, which is the total energy. What
stated above can be summarized by the Hamilton’s equations of motion:

dp
dt

= −∂H
∂x

dx
dt

=
∂H
∂p

(2.1)

In quantum mechanics the notion of state is replaced with the one of state
vector |Ψ(t)〉 or density operator ρ̂(t) = ∑j pj

∣∣Ψj(t)
〉 〈

Ψj(t)
∣∣, when dealing

with open quantum systems. These objects provide full knowledge about
the system and are still updated in time by the Hamiltonian (which is a
hermitian operator). The time evolution of |Ψ(t)〉 is determined by the
Schrödinger’s equation:

ih̄
∂ |Ψ(t)〉

∂t
= Ĥ |Ψ(t)〉 (2.2)

and for the density operator we get:

∂ρ̂(t)
∂t

=
1
ih̄
[
Ĥ, ρ̂(t)

]
(2.3)

2.1.1 Harmonic oscillator

The harmonic oscillator is another concept in physics which is of great im-
portance; let us review the basics from a heuristic point of view.
Both in classical and in quantum setting, the object we are interested in is
the Hamiltonian describing the harmonic oscillator. For a classical system
we may write for a free harmonic oscillator:

Hh.o. =
p2

2m
+

1
2

mω2x2 (2.4)

with m being the mass of the particle and ω the resonance frequency of
oscillation. It is easy to check that the phase space trajectories computed in
time by particles evolving under Hh.o. have elliptic form as shown in Fig.2.2:
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2.1. Phase space

Figure 2.2: Phase space trajectory representing time evolution of a classical
particle with m = 1 and ω = 1 in a harmonic potential.

Let us now consider the bosonic quantum harmonic oscillator. In this case
position and momentum will be replaced with their respective operators x̂
and p̂.

Ĥh.o. =
p̂2

2m
+

1
2

mω2 x̂2 (2.5)

One can also define a more general form of such Hamiltonian, particularly
useful when dealing with bosonic quantum fields (e.g. electric field), by
introducing the creation and annihilation operators â† and â. The mathe-
matical details of these operators depend on the physical system of interest,
but in the case of the harmonic trap we can write â =

√mω
2h̄ (x̂ + i

mω p̂) and
â† =

√mω
2h̄ (x̂− i

mω p̂). The resulting Hamiltonian for a particular oscillation
mode will be:

Ĥh.o. = h̄ω(â† â +
1
2
) (2.6)

In the matrix representation this object is positive definite and hermitian.
Thus, Ĥh.o. has n distinct positive and real eigenvalues, which are the dis-
crete energy levels of the system. The operators â and â† obey the following
commutation relation: [

â, â†
]
= 1

[â, â] =
[

â†, â†
]
= 0

(2.7)

The Hamiltonian (2.6) together with the commutation relation in (2.7) give
us a nice picture of quantized energy ladder, which can be climbed up and
down by the action of field operators on the eigenstates of Ĥh.o. The eigen-
states |n〉 of the harmonic oscillator are called Fock states and they form a
complete and orthonormal set of states with definite energy En = h̄ω(n + 1

2 )
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2. Theoretical concepts

associated to them. The action of field operators on |n〉 is defined by:

â |n〉 =
√

n |n− 1〉
â† |n〉 =

√
n + 1 |n + 1〉

(2.8)

Since the Hamiltonian is positive definite, the ladder of states will extend
infinitely in the ”up” direction and will terminate in the ”down” direction
with a state |0〉 with n = 0 annihilated by â, called ground state. The latter
has no classical analog since it is a state with no particles in it but still with
a non zero energy, attributed to vacuum fluctuations. With this being said
we can define a general Fock state |n〉 as:

|n〉 = (â†)n
√

n!
|0〉 (2.9)

Lastly, since |n〉 is an eigenstate of Ĥh.o. it evolves in time only with a
phase factor and it is a stationary state. This and the uncertainty relation
∆x|n〉∆p|n〉 = h̄

2 (2n + 1) give a nice intuition on how this state might look
like in phase space. The Fock state will form a ring of constant energy
and area given by the Heisenberg uncertainty between x and p as shown
in Fig.2.3. The fact that the energy is well defined makes the phase totally
unspecified as a consequence of energy-time uncertainty relation.

Figure 2.3: Pictorial representation of a Fock state |n〉.

Later on a more rigorous representation of such states will be explained.

2.1.2 Coherent states

Let us now consider coherent states, and motivate their importance with an
example picked up from quantum optics.
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2.1. Phase space

Without going into details, the expectation value of an electric field opera-
tor in Fock basis yields exactly zero; this might sound suspicious since the
classical measurement of such field gives a non zero value. This suggests
us that we usually do not deal with fields that are in an eigenstate of the
harmonic oscillator. The quantum states which represent more closely clas-
sical electromagnetic fields are called coherent states. They are defined to
be a superposition of Fock states with probability amplitudes taking values
according to the Poisson distribution:

|α〉 = e
−|α|2

2

∞

∑
n=0

αn
√

n!
|n〉 (2.10)

where α ∈ C and e
−|α|2

2 is a normalization factor. An important property of
this state is that it is an eigenstate of the annihilation operator:

â |α〉 = α |α〉 (2.11)

notice that since â is not hermitian it does not have real distinct eigenvalues
and α ∈ C as stated before. This property gives a nice interpretation of
such a state: it tells us that taking away 1 photon from the system does not
change its state but only its amplitude and the global phase. We also point
out that the vacuum state is just a coherent state with α = 0. The Poisson
distribution is such that the expectation value and the variance are the same,
in our case the photon number operator n̂ = â† â yields zero as we evaluate
it in the vacuum state:

〈n̂〉|α=0〉 = 0 = (∆n̂2)|α=0〉 (2.12)

As a consequence of the (2.12) the photon number is completely specified
and it is exactly zero with no fluctuations. This in turn implies that the
phase of such state will be undetermined. The location of the vacuum state
in phase space will be given by:

〈x̂〉|0〉 ≈ 〈(â + â†)〉|0〉 = 0

〈 p̂〉|0〉 ≈ 〈[i(â− â†)]〉|0〉 = 0
(2.13)

The equations in (2.13) and the phase-number uncertainty provide an intu-
itive picture for the representation of the vacuum shown in phase space (see
Fig.2.4).
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2. Theoretical concepts

Figure 2.4: Phase space representation of vacuum state |0〉. The extension
of the smearing is given by the uncertainty between x and p. In the case of
a vacuum state the uncertainty relation satisfies the minimum uncertainty
condition: ∆x∆p = 1

4 . States that satisfy this condition are called minimum
uncertainty wavepackets.

The vacuum state and the coherent state are related by the displacement
operator defined as: D̂(α) = eα∗ â−αâ†

. D̂(α) has the following action on |0〉:

|α〉 = D̂(α) |0〉 (2.14)

Notice though that the coherent state is not a stationary state of the harmonic
oscillator Hamiltonian. Forgetting about the constant factor 1

2 in the eq.(2.6)
we get:

e−i Ĥh.o.t
h̄ |α〉

=e−iωn̂te
|α|2

2

∞

∑
n=0

αn
√

n!
|n〉

=e
|α|2

2

∞

∑
n=0

(αe−iωt)n
√

n!
|n〉

=
∣∣∣e−iωtα

〉
(2.15)

A phase space representation of a coherent state is depicted in Fig.2.5:
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2.1. Phase space

Figure 2.5: Trajectory of |α〉 state as it evolves in time. The minimum uncer-
tainty wave packet follows the classical orbit and gains a phase factor −ωt
during the time evolution.

Rotating frame

In quantum optics one is usually interested in the interaction effects rather
than the bare terms in the Hamiltonian. In order to get rid of usually not
very interesting effects we consider the time evolution of states in the inter-
action picture, also called Dirac picture. In phase space this is equivalent
to considering the states in a coordinate system rotating at the resonance
frequency of the harmonic oscillator ω. Defining the new coordinate system
as:

x̂′ = (
â + â†

2
) cos(ωt)− (

â− â†

2i
) sin(ωt)

p̂′ = −( â + â†

2
) cos(ωt)− (

â− â†

2i
) sin(ωt)

(2.16)

the coherent state will appear to be stationary:

Figure 2.6: Coherent state in the rotating frame.
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2. Theoretical concepts

2.1.3 Cat states

Now that the coherent states were introduced let us focus on something
more exotic. As the name already suggests, cat states are the realization
of the famous thought experiment proposed in 1935 by Erwin Schrödinger.
The cat state could be viewed as a quantum superposition of ”macroscopic”
states, which are the coherent states described in the previous subsection.
The most general cat’s state vector can be written as:

|ψcat〉 =
1√
N
(eiϕ1 |α1〉+ eiϕ2 |α2〉) (2.17)

where the normalization pre-factor 1√
N

takes into account the overlap of
|α1〉 and |α2〉. If |α1 − α2| � 1, then the overlap between |α1〉 and |α2〉 is
negligible and the following approximation is valid:

|ψcat〉 ≈
1√
2
(eiϕ1 |α1〉+ eiϕ2 |α2〉) (2.18)

The quantum coherence of such state can is represented by the non vanish-
ing off diagonal elements of the density matrix:

ρ̂cat = |ψcat〉 〈ψcat| ≈
1
2
(|α1〉 〈α1|+ |α2〉 〈α2|

+ ei(ϕ1−ϕ2) |α1〉 〈α2|+ ei(ϕ2−ϕ1) |α2〉 〈α1|)
(2.19)

An interesting case of cat states are phase cats, which are obtained by fixing
the differnece between ϕ2 and ϕ1 to ±1 [3]. The phase cat states take the
following form:

∣∣ψ±cat
〉
=

1√
2(1± e−2|α|)

(|α〉 ± |−α〉) (2.20)

even parity cats are denoted by the + sign whereas the - sign is attributed
to the odd parity cats. Thus, such states are the eigenstates of the parity
operator P̂ = (−1)â† â with eigenvalues ±1:

P̂
∣∣ψ±cat

〉
= ±

∣∣ψ±cat
〉

(2.21)

To conclude the discussion about the phase space, a formal way for state
representations called Wigner function is introduced in the next subsection.
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2.1. Phase space

2.1.4 Wigner function

Previously we described intuitively how to represent quantum states of the
harmonic oscillator in phase space, now we introduce a very powerful and
more formal representation to this end.

The Wigner function W(α) is a quasi-probability distribution used for the
representation of pure and mixed quantum states in phase space. As we
shall see, it is real valued and can take both positive and negative values
unlike classical probability distributions, which are always ≥ 0. Formally, it
is the 2D Fourier Transform of the symmetric characteristic function Cs(λ).
The latter is the expectation value of the displacement operator D̂(λ) in a
state described by the density operator ρ̂. By looking at the power series
expansion of D̂(λ) we note that all products of operators appearing in such
a series are naturally symmetrized [3]:

D̂(λ) = 1 + (λâ† − λ∗ â) + λ2(â†)2 − λλ∗(â† â + h.c.) + λ∗2 â2... (2.22)

from (2.22) follows the definition of the symmetric characteristic function:

C[ρ̂]
s (λ) = 〈D̂(λ)〉 = Tr

{
ρ̂eλâ†−λ∗ â

}
(2.23)

Since D̂(λ) is a unitary operator, the absolute value of C[ρ̂]
s (λ) is upper

bounded by 1 and reaches its maximum value at the origin:

C[ρ̂]
s (0) = Tr{ρ̂} = 1 (2.24)

to conclude, the conjugation property of C[ρ̂]
s (λ):

C[ρ̂]
s (−λ) = (C[ρ̂]

s (λ))∗ (2.25)

implies that the Fourier transform of the characteristic function (i.e. W(α))
is real valued. Now that the most important properties of C[ρ̂]

s (λ) are clear,
let us define the Wigner function as:

W(α) =
1

π2

∫
d2λC[ρ̂]

s (λ)e(αλ∗−α∗λ) (2.26)

with α, λ ∈ C we can write λ = λ′ + iλ′′ and α = α′ + iα′′ = q + ip. These
definitions imply that (2.26) is just a Fourier relation since αλ∗ − α∗λ =
2iλ′p− 2iλ′′x. The inverse Fourier transform yields:

C[ρ̂]
s (λ) =

∫
d2αW(α)e(−αλ∗+α∗λ) (2.27)

The evaluation of (2.27) in λ = 0 leads to the conclusion that W(α) is nor-
malized, as a consequence of (2.24):

C[ρ̂]
s (0) =

∫
d2αW(α) = 1 (2.28)
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2. Theoretical concepts

There exist two equivalent representations of the Wigner function. The first
one is constructed in terms of non-diagonal elements of the density operator,
the second one is expressed in terms of the parity operator P̂ = (−1)n̂

introduced previously. From the first representation one can see that the
knowledge of W(α) is linked to the coherence properties of the state and
that it is equivalent to the knowledge of ρ̂. This in turn, leads to the fact that
we can compute the expectation value of any field observable from W(α).
The representation in terms of P̂ has the following form:

W(α) =
2
π

Tr
{

D̂(−α)ρ̂D̂(α)P̂
}
=

2
π
〈P̂〉 (2.29)

since W(α) is the expectation value of an observable quantity like P̂, it is
directly measurable. Furthermore, the parity operator eigenvalues (which
are ±1) set the upper and the lower bound for W(α):

− 2
π
≤W(α) ≤ 2

π
(2.30)

The integration of W(α) over one quadrature yields the probability distribu-
tion of the orthogonal quadrature. This provides the marginal probability
distribution of field quadratures and by writing α = α′ + iα′′ = q + ip we
find:

P(q) =
∫

dα′′W(α)

P(p) =
∫

dα′W(α)
(2.31)

The next two examples show how the Wigner distribution looks like for
quasi classical states and non-classical states.

Example 1: Coherent states Let us consider a coherent state |β〉 for which
the characteristic function is:

C[|β〉〈β|]
s (λ) = 〈β| D̂(λ) |β〉 = e−

|λ|2
2 eβ∗λ−λ∗β (2.32)

the corresponding Wigner function will be a gaussian of width 1
2 centered

at the classical amplitude β:

W(α)[|β〉〈β|] =
2
π

e−2|α−β|2 (2.33)

The coherent state represents the classical behavior of the harmonic oscilla-
tor and unsurprisingly the Wigner function shows properties of a classical
probability distribution, which is always positive as shown in the Fig(2.7):
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2.1. Phase space

Figure 2.7: Wigner function of a coherent state |β〉. The marginal probability
distributions for field quadratures are plotted on the sides.

Example 2: Phase cat states The phase cat state has no classical analog so
we expect the Wigner function to behave in a different way. For a pure cat
state

∣∣ψ±cat
〉

the Wigner function is:

W(α)[cat,±] =
1

π2N±

∫
d2λeαλ∗−λ∗α(〈β| D̂(λ) |β〉+ 〈−β| D̂(λ) |−β〉

± 〈β| D̂(λ) |−β〉 ± 〈−β| D̂(λ) |β〉)
(2.34)

assuming β ∈ R and α = α′ + iα′′ we get a Wigner function that takes both
positive and negative values:

W(α)[cat,±] =
4

πN±
(e−2|α−β|2 + e−2|α+β|2 ± 2e−2|α| cos 4α′′β) (2.35)

Such a W(α) cannot represent a classical probability distribution and is as-
sociated with non classical states. The plot of W(α)[cat,+] i.e. the even parity
cat state for N+ ≈ 1√

2
is shown in the Fig.(2.8)

Figure 2.8: Wigner function of an even pure cat state
∣∣ψ+

cat
〉
. The central

part of the plot represents the quantum interference, with red standing for
positive values of W(α) and blue for negative ones.
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2. Theoretical concepts

Notice however that the negativity of the Wigner function alone is not suf-
ficient to tell whether we are dealing with a purely quantum state. As a
matter of fact, squeezed states are genuine quantum states with no classical
analog but their Wigner function is always ≥ 0.

2.2 Trapped ions

All the concepts introduced in the previous section have to be realized by
some physical system. The states of harmonic oscillator that we want to
explore can be implemented in trapped ion. In this section we want to give
a closer look at the techniques used to realized the states we are interested
in.

The system that we want to consider consists of a two level system built on
the quadrupole transition between Zeeman sub-levels |↓〉 =

∣∣S1/2, mj = 1/2
〉

and |↑〉 =
∣∣D5/2, mj = 3/2

〉
of the 40Ca+ ion coupled to the axial mode of the

quantized harmonic motion of the trapping potential through a laser field
(see Fig. 2.10):

Figure 2.9: Schematic representation of a trapped ion system.

Such a system can be described by the Hamiltonian [9]:

ĤI = −
1
2

ih̄Ω0e−i(ωLt+ϕ)(σ̂+eiω0t)eiη(âe−iωzt+â†eiωzt) + H.c

= −1
2

ih̄Ω0ei((ω0−ωL)t−ϕ)σ̂+eiη(âe−iωzt+â†eiωzt) + H.c
(2.36)

which is the interaction Hamiltonian with respect to:

Ĥ0 = h̄ωz(â† â +
1
2
) + h̄ω0

σ̂z

2
(2.37)

in (2.36) the phase between the laser and the atomic polarization is rep-
resented by ϕ and ω0 is the transition frequency of the two level system.
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2.2. Trapped ions

σ̂+ = |↑〉 〈↓| and σ̂− = |↓〉 〈↑| are the rising or lowering operator acting on
the internal levels of the state whereas â and â† are the annihilation and
creation operators of the motional part of the state (to not be confused with
the annihilation and creation operators of the photon field). The Rabi fre-
quency Ω0 incorporates the laser field intensity (represented by a coherent
state) and and can be thought as the frequency at which we exchange the
population in the atomic levels. We also define the Lamb-Dicke parameter
η ,coming from the momentum recoil of the laser field, as:

η =
2π

λ
cos θ︸ ︷︷ ︸
kz

√
h̄

2mωz︸ ︷︷ ︸
z0

(2.38)

where kz is the projection of the wave vector of the laser field in the direc-
tion of the axial mode and z0 is the extension of the ion’s wave function in
the motional ground state. Next, we make an approximation and expand
the hamiltonian in (2.37) to the 1st order in η. Such approximation is called
Lamb-Dicke regime and it is valid if η � 1 and η2(2n + 1) � 1 are both
satysfied. The first condition is satysfied if proper experimental parameters
are chosen. The second condition can be fulfilled if the system has a suffi-
ciently small phonon occupancy which can be achieved by cooling down the
system first with doppler cooling then with sideband cooling. The resulting
interaction hamiltonian reads:

ĤI ≈ −
1
2

ih̄Ω0ei((ω0−ωL)t−ϕ)σ̂+(1 + iη(âe−iωzt + â†eiωzt)) + H.c (2.39)

Let us now examine the different transitions that we may drive with our
laser.

Carrier transition :
In the following discussion we set the laser frequency to match the atomic
transition frequency i.e. ωL = ω0. The interaction hamiltonian has the
following form:

ĤI,carrier ≈ −
1
2

ih̄Ω0e−iϕσ̂+(1 + iη(âe−iωzt + â†eiωzt)︸ ︷︷ ︸
=0

) + H.c (2.40)

here we performed the rotating wave approximation (RWA) and dropped
the off-resonant terms. Thus, ĤI,carrier acts on the Hilbert space of the two
level system with σ̂± and on the Hilbert space of the phonons with the
identity 1 driving resonant transitions at the rabi frequency Ω0:

ĤI,carrier ≈ −i
1
2

h̄Ω0(e−iϕσ̂+ ⊗ 1− eiϕσ̂− ⊗ 1) (2.41)
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2. Theoretical concepts

Red sideband transition :
We set the laser frequency to ωL = ω0 −ωz to get:

ĤI,RSB ≈ −
1
2

ih̄Ω0ei(ωzt−ϕ)σ̂+(1 + iη(âe−iωzt + â†eiωzt)) + H.c

= −1
2

ih̄Ω0ei(ωzt−ϕ)σ̂+ ⊗ 1 +
1
2

h̄Ω0ηe−iϕσ̂+ ⊗ â

+
1
2

h̄Ω0ηei2ωztσ̂+ ⊗ â† + H.c

(2.42)

we again apply the RWA and drop the off resonant terms obtaining:

ĤI,RSB ≈
1
2

h̄Ω0η(σ̂+ ⊗ âe−iϕ + σ̂− ⊗ â†eiϕ) (2.43)

for ϕ = 0 this expression corresponds to the Janes-Cummings model but the
role of the electromagnetic field is now played by the phonons.

Blue sideband transition :
With similar arguments the laser pulse is ωL = ω0 + ωz, this leads to:

ĤI,BSB ≈ −
1
2

ih̄Ω0ei(−ωzt−ϕ)σ̂+(1 + iη(âe−iωzt + â†eiωzt)) + H.c

= −1
2

ih̄Ω0ei(−ωzt−ϕ)σ̂+ ⊗ 1 +
1
2

h̄Ω0ηe−i(ϕ+2ωz)σ̂+ ⊗ â

+
1
2

h̄Ω0ηe−iϕσ̂+ ⊗ â† + H.c

(2.44)

by applying the RWA and dropping the off-resonant terms we get:

ĤI,BSB ≈
1
2

h̄Ω0η(σ̂+ ⊗ â†e−iϕ + σ̂− ⊗ â†eiϕ) (2.45)

(2.46) can be regarded as anti-Janes-Cummings model provided that ϕ = 0.

As a last remark we point out that the eigenstates of the uncoupled system
described by (2.37) are the dressed states |↓, n〉 and |↑, n〉. Those states are
coupled by (2.39) with different strengths depending on the laser frequency
ω0. The figure below shows schematically how the dressed states ladder
gets coupled through the laser field:
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2.2. Trapped ions

Figure 2.10: Ladder of dressed states with laser couplings marked with dif-
ferent colours. Green represents the carrier, red/blue stands for red/blue
sideband respectively.

the action of the interaction hamiltonians in (2.41),(2.43) and (2.46) on dressed
states provides us with the coupling strengths:

ĤI,carrier |↓, n〉 = 1
2

h̄Ωe−iϕ |↑, n〉

ĤI,RSB |↓, n〉 = 1
2

h̄Ωη
√

ne−iϕ |↑, n− 1〉

ĤI,BSB |↓, n〉 = 1
2

h̄Ωη
√

n + 1e−iϕ |↑, n + 1〉

(2.46)

this explains the Fig.2.10 and leads to the conclusion that the carrier pulse
Ĥcarrier couples the states |↓, n〉 and |↑, n〉 with the rabi frequency Ω0. The
red sideband pulse couples |↓, n〉 and |↑, n− 1〉 with an effective rabi fre-
quency Ωe f f ,R = Ω0η

√
n and the blue sideband pulse couples |↓, n〉 and

|↑, n + 1〉 states with Ωe f f ,R = Ω0η
√

n + 1. Since we are in the Lamb-Dicke
regime (η2(2n + 1) � 1) the sideband transitions are much slower than the
carrier and they are sensitive to the occupancy of the motional states.

Now we are going to explain how cat states, introduced previously, can be
created using the trapped ions.

2.2.1 State dependent force

If we combine the interaction hamiltonians of the blue and red sidebands
through a bichromatic laser pulse, we get a total interaction hamiltonian of
the form:
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2. Theoretical concepts

ĤI,SDF = ĤI,RSB + ĤI,BSB

≈ h̄ΩBη

2
(σ̂+ â†e−i(δt+ϕB) + σ̂− âei(δt+ϕB))

+
h̄ΩRη

2
(σ̂+ âei(δt−ϕR) + σ̂− â†e−i(δt−ϕR))

(2.47)

such hamiltonian in general contains a detuning of the laser frequency from
the sidebands δ which in an ideal resonance situation can be set to zero.
For the simulation purposes we will consider δ = 0 getting rid of the time
dependence, in an experiment though this term plays a role. If ΩB = ΩR =
Ω and ∆ϕ = ϕR−ϕB

2 and ϕ̄ = ϕR+ϕB
2 the hamiltonian in (2.47) can be re-

written as:
ĤI,SDF =

h̄Ωη

2
σ̂ϕ̄(âei∆ϕ + â†e−i∆ϕ) (2.48)

where σ̂ϕ̄ = σ̂x cos ϕ̄ + σ̂y sin ϕ̄. As long as this hamiltonian is time indepen-
dent (which is the case if the phases and the amplitudes of the sidebands
are time independent over the time evolution), the time propagator is given
by:

Û(t) = e−i
ĤI,SDFt

h̄ = eσ̂ϕ̄(α(t)â−α(t)∗ â†) = D̂(α(t)σ̂ϕ̄) (2.49)

where α(t) = −i Ωηt
2 ei∆ϕ. The displacement operator in (2.49) can be inter-

preted as a state dependent force (SDF) which displaces the motional part
of the state according to the sign set by the σ̂ϕ̄ eigenstate of the two level
system, let us see how it acts on a state prepared in |↓, 0〉 when ∆ϕ = ϕ̄ = 0:

D̂(α(t)σ̂x) |↓, 0〉 = exp
{

σ̂x(α(t)â− α(t)∗ â†)
} |+〉+ |−〉√

2
|0〉

=
1√
2
(D̂(α(t)) |+〉 |0〉+ D̂(−α(t)) |−〉 |0〉)

=
1
4
( |↓〉︸︷︷︸

bright

(|α(t)〉+ |−α(t)〉)︸ ︷︷ ︸
even

+ |↑〉︸︷︷︸
dark

(|α(t)〉 − |−α(t)〉)︸ ︷︷ ︸
odd

)

(2.50)

thus if α(t) is sufficiently big, upon measurement we collapse the state into
an even parity cat state or an odd parity cat state. However, the measure-
ment itself in a trapped ion system is a huge problem. As already mentioned
in the introduction, if the system is detected in the ground state, the momen-
tum of several (around 1000) photons scattered in the process of the fluores-
cence detection randomize the motional part of the state. This obligates us
to work only with odd parity cats. It also means that we can only create odd
cats probabilistically by post selecting the dark counts from the fluorescence
detection. Thus, the dark state detection is not invasive and one can analyze
the motional degree of freedom further and apply another SDF for example.
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2.2. Trapped ions

Notice though that after the application of sequential displacement opera-
tors the state acquires a geometric phase independent of the motional state
proportional to the area spanned by the trajectories of the displacement in
the phase space [10]. For 2 sqeuential displacements we get:

D̂(α)D̂(β) = D̂(α + β) exp{i Im{αβ∗}} (2.51)

the geometric phase acquired by the state is Φ = Im{αβ∗} and constitutes
another degree of freedom when creating states in phase space which in-
volve more than one displacement.

Now we will give an example in which the SDF hamiltonian is used to create
the grid state.

Grid state :
In order to get the logical zero grid state, reported in the introduction,
we need to start with the phononic part of the state in the sqeezed vac-
uum. Such a state can be achieved with high fidelity by using the reser-
voir engineering [11]. The initial state can be represented by |ψ〉init =
1̂⊗ Ŝ(r) |↓, 0〉, where the sqeueezing operator is Ŝ(r) = exp

{
r(â2 − â†2)/2

}
with the squeezing parameter r being real and ≈ 0.9. The Wigner function
of the motional part is shown in the figure below:

Figure 2.11: Wigner function of the squeezed vacuum state.

Then, we apply the SFD with ϕ̄ = ∆ϕ = 0, α = l =
√

2π/2 (parameters
used in the simulation) to |ψ〉init. By post selecting the dark counts in the
measurement we get, with probability 1/2 the state:

21



2. Theoretical concepts

Figure 2.12: Even superposition of sqeezed states obtained after the applica-
tion of the SDF and post-selection of dark counts.

to get the smallest possible grid state we have to apply the operations above
again to the state we obtained and post select again the dark counts to get,
with probability 1/4, the state whose Wigner function is shown in the figure
below:

Figure 2.13: Wigner function of a grid state.

Thus, we see that experimentally the problem lies in the fact that the grid
state can be created only probabilistically by post selecting the data from
many measurements. In the next chapter, we try to solve this issue by im-
plementing a gradient ascent based algorithm in order to find an optimal
sequence of sideband pulses which produce the grid state without post se-
lection of data.
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Chapter 3

Simulation

In this chapter the control technique known as Gradient Ascent Pulse En-
gineering (GRAPE) and its implementation are presented. In the first part
we analyze the algorithm and explain how to properly choose the parame-
ters for the simulation of the state coherent transfer. Next, we consider the
experimental constraints to be taken into account in order to produce the
target state in an experimentally affordable manner. The last section shows
the results of the simulation for diverse harmonic oscillator states.

3.1 GRAPE

Gradient ascent based algorithms are a standard tool in numerical optimiza-
tion problems. The main idea behind such algorithms exploits the fact that
the gradient of any function is a vector pointing in the direction of maximal
increase, such information is then used to update the parameters of interest.
The problem can be translated into a maximization of an objective function
f (x) which depends on certain parameters x ∈ Rn. In the unconstrained
case, the aim is to solve:

max
x

f (x) (3.1)

in other words, we want to find the parameters x that maximize f (x). A
numerical solution to (3.1) could be found by calculating ∇ f (x) and use the
latter to update the parameters as follows:

xnew = xold + ε∇ f (x) (3.2)

where ε is chosen such that the incremental change of xold is small. The
procedure results to be computationally efficient if there exist an efficient
method to evaluate the gradient.
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3. Simulation

3.1.1 coherent state transfer

The case for which we want to employee the gradient ascent algorithm is
called coherent state transfer. The idea to use this control technique in
a quantum system was originally formalized and proposed by N.Khaneja
et.al.[4], where a series of optimized pulses was used in the context of NMR
spectroscopy. Our goal is to reach a desired quantum state ρ̂target, by apply-
ing opportune laser pulses to our trapped ion system prepared in an initial
state ρ̂0 at time T = 0.

To start the discussion, we need a formal way of measuring the distance
between the states represented by a density matrix ρ̂(T), at any given time
T, and the target state density matrix ρ̂target. Such a distance ,which we will
denote with F (·) , is the trace distance between two states:

F (ρ̂target, ρ̂(T)) = Tr
{

ρ̂†
targetρ̂(T)

}
(3.3)

Let us lie down few properties of (3.3) which will be important in the im-
plementation of the algorithm [5]. The Frobenius inner product, defined in
(3.3) can be re-written for two complex n× n matrices X and Y as:

〈X|Y〉F = Tr
{

X†Y
}
= ∑

i
∑

j
x∗jiyij (3.4)

and it naturally induces a norm on X:

‖X‖F =
√
〈X|X〉 =

√
∑

i
∑

j

∣∣xij
∣∣2 (3.5)

The main properties of such norm are:

〈X|Y〉F = 〈Y|X〉F〈
X†
∣∣∣Y〉

F
=
〈

Y†
∣∣∣X〉

F

X = X†,Y = Y† =⇒ 〈X|Y〉F ∈ R

(3.6)

The last property in (3.6) is very important since it implies that if X and Y
are square hermitian matrices their overlap according to the Frobenius inner
product yields a real number. At this point it is reasonable to pick as a figure
of merit for the optimization problem, the distance between X and Y:

Φ = ‖X−Y‖2
F (3.7)

Now we want to show that minimizing Φ = ‖X−Y‖2
F is equivalent to

maximizing Φ0 = Re{〈X|Y〉F}. Exploiting the linearity of the inner product
we write:
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3.1. GRAPE

‖X−Y‖2
F = 〈X−Y|X−Y〉F = 〈X−Y|X〉F − 〈X−Y|Y〉F
= 〈X|X〉F − 〈X|Y〉F − 〈Y|X〉F + 〈Y|Y〉F
= ‖X‖2

F − 2 Re{〈X|Y〉F}+ ‖Y‖
2
F

(3.8)

with ‖X‖2
F and ‖Y‖2

F being positive by definition, the problem can be turned
into the maximization of Φ0 = Re{〈X|Y〉F} as stated previously. Furher-
more, in our case we are dealing with density matrices which are hermitian,
such that by the last property in (3.6) we find Φ0 = Re{〈X|Y〉F} = 〈X|Y〉F
and thus we want to maximize:

Φ0 = 〈X|Y〉F (3.9)

With this being said, let us focus on how to steer the initial state ρ̂0 into the
target state ρ̂target over time. In absence of relaxation and in the Schrödinger
picture, the time evolution of a density matrix is given by the Liouville-Von
Neumann equation:

∂ρ̂(t)
∂t

=
1
ih̄
[
Ĥ, ρ̂(t)

]
(3.10)

The exact solution of such an equation is not easy to evaluate in the case
of time dependent hamiltonians. To solve the issue more easily we suppose
that we can write the time dependent hamiltonian in the following way:

Ĥ = Ĥ0 +
m

∑
k=1

uk(t)Ĥk (3.11)

where Ĥ0 is the bare hamiltonian and Ĥk are the control hamiltonians. The
set of uk(t) represent the control amplitudes which we are going to vary in
order to solve:

max
uk(t)
F (ρ̂target, ρ̂(T)) (3.12)

Further, we assume that the transfer time T is discretized in N equal steps
such that a small time step ∆t = T

N is defined. Another assumption we make
is that all the control amplitudes uk(t) are constant over the time interval ∆t
for each time step j. Now we are allowed to treat the total hamiltonian of
the system in (3.11) as time independent and the time evolution during the
time step j is given by the propagator:

Ûj = exp

{
−i∆t(Ĥ0 +

m

∑
k=1

uk(j)Ĥk)

}
(3.13)

Thus, after the transfer time T the density operator ρ̂0 will read:

ρ̂(T) = ÛN · · · Û1ρ̂0Û†
1 · · · Û†

N (3.14)
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by substituting the equation above into the definition of (3.3) we get:

Φ0 = F (ρ̂target, ρ̂(T)) = Tr
{

ρ̂†
targetρ̂(T)

}
= Tr

{
ρ̂†

targetÛN · · · Û1ρ̂0Û†
1 · · · Û†

N

} (3.15)

in addition to that, we use the trace invariance under cyclic permutations in
order to re-write Φ0 in a convenient way:

Φ0 = 〈Û†
j+1 · · · Û†

N ρ̂targetÛN · · · Ûj+1︸ ︷︷ ︸
λ̂j

| Ûj · · · Û1ρ̂0Û†
1 · · · Û†

j︸ ︷︷ ︸
ρ̂j

〉F (3.16)

we can interpret ρ̂j as the system density matrix propagated in time from
t = 0 to t = j∆t and λ̂j as the target state density matrix back-propagated
from t = T to t = j∆t.

Let us now explore the crucial part of the algorithm, the gradient calculation.
Consider the small perturbation of the kth control amplitude at time step j:

uk(j) −→ uk(j) + δuk(j) (3.17)

such variation provokes a change in Ûj. Noticing that in general, when
taking derivatives of exponentials, the following formula holds [6]:

∂ez(λ)

∂λ
=
∫ 1

0
dαe(1−α)z ∂z

∂λ
eαz (3.18)

where z is an analytic function and λ ∈ C. Extending this definition to
complex n× n matrices and assuming perturbations up to the first order in
δuk(j) and

∥∥Ĥ0 + ∑m
k=1 uk(j)Ĥk

∥∥∆t� 1 we find:

∂Ûj

∂uk(j)
≈ −i∆tĤkÛj +O(∆t2) (3.19)

considering the expansion in ∆t up to the 1st order. Knowing this we can
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derive the expression for the gradient of the figure of merit Φ0 [5]:

∂Φ0

∂uk(j)
=

∂

∂uk(j)
〈Û†

j+1 · · · Û†
N ρ̂targetÛN · · · Ûj+1︸ ︷︷ ︸

λ̂j

| Ûj · · · Û1ρ̂0Û†
1 · · · Û†

j︸ ︷︷ ︸
ρ̂j

〉F

= Tr
{

λ̂†
j

∂ρ̂j(uk(j))
∂uk(j)

}
= Tr

{
λ̂†

j (Ûj · · · Û1ρ̂0Û†
1 · · ·

∂Û†
j

∂uk(j)
+

∂Ûj

∂uk(j)
· · · Û1ρ̂0Û†

1 · · · Û†
j )

}
≈ Tr

{
λ̂†

j i∆t(Ûj · · · Û1ρ̂0Û†
1 · · · Û†

j Ĥk − ĤkÛj · · · Û1ρ̂0Û†
1 · · · Û†

j )
}

= Tr
{

λ̂†
j i∆t(ρ̂jĤk − Ĥkρ̂j)

}
= −

〈
λ̂j
∣∣i∆t

[
Ĥk, ρ̂j

]〉
F

(3.20)

where the approximation made in the 4th line results from (3.19). If we
update the control amplitudes according to:

uk(j) −→ uk(j) + ε
∂Φ0

∂uk(j)
(3.21)

we will observe an increase in the objective function Φ0 and solve approxi-
mately the problem defined in (3.12). The choice of an appropriate ε will be
explained in the last section, for now ε is just a constant such that the change
in uk(j) is small.

3.1.2 Implementation

The main steps necessary to implement the GRAPE algorithm can be sum-
marized in five steps:

1. Guess initial control amplitudes uk(j).

2. Start from ρ̂0 and compute ρ̂j = Ûj · · · Û1ρ̂0Û†
1 · · · Û†

j for all j ≤ N.

3. Start from ρ̂target and compute λ̂j = Û†
j+1 · · · Û†

N ρ̂targetÛN · · · Ûj+1 for
all j ≤ N.

4. Compute the approximate gradient ∂Φ0
∂uk(j) according to (3.20) and up-

date all the m× N control amplitudes with the rule defined in (3.21).

5. Take the new m×N control amplitudes and repeat the algorithm from
point 2. until the convergence.
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Notice that in order to terminate the algorithm a threshold to Φ0 must be
set. Moreover, in the first step, a well educated guess for the initial control
amplitudes ease the convergence. Another aspect concerning the implemen-
tation is the fact that if we want to use the algorithm with uk(j) ∈ R, we
have to make sure that the gradient is real valued. The comparison between
the last property of the Frobenius inner product in (3.6) and the approximate
gradient of Φ0 in (3.20) leads to the conclusion that the ∂Φ0

∂uk(j) ∈ R if Ĥ†
k = Ĥk.

In other words, we need to write down the hamiltonian in such a way that
all individual control hamiltonians Ĥk are hermitian operators.

In this work GRAPE was implemented in Python with QuTiP, a quantum
toolbox used for simulating the dynamics of open quantum systems. The
code of the algorithm is provided in the Appendix A.

3.2 Experimental constraints

In this section we want to analyze the main experimental constraints and
include them in the algorithm in the form of penalty terms.

To see why certain bounds are needed, let us first consider the unconstrained
case and see how the algorithm performs in absence of experimental bounds.
For simplicity of treatment we choose the cat state, introduced in the previ-
ous chapter, as the target state. The initial state is a vacuum state with
phonon occupancy set to N=50, such that the Hilbert space of the motional
part of the state is big enough and when applying the state dependent force
we do not encounter the ”hard wall” set by the Lamb-Dicke approximation.
The state dependent force hamiltonian, which governs the time evolution, is
written in the form:

ĤSDF =gR(σ̂+ âe−iϕR + σ̂− â†eiϕR) + gB(σ̂− âeiϕB + σ̂+ â†e−iϕB)

=gR cos ϕR (σ̂− â† + σ̂+ â)︸ ︷︷ ︸
Ĥ1

+gR sin ϕR [i(σ̂− â† − σ̂+ â)]︸ ︷︷ ︸
Ĥ2

+gB cos ϕB (σ̂− â + σ̂+ â†)︸ ︷︷ ︸
Ĥ3

+gB sin ϕB [i(σ̂− â− σ̂+ â†)]︸ ︷︷ ︸
Ĥ4

(3.22)

where gB,R =
h̄ΩB,Rη

2 . The equation above is a simplified expression of ĤSDF
where we have already neglected all non resonant terms along with the
nearly resonant carrier term. Furthermore, we assumed to be exactly on
resonance, setting the detuning δ from the energy levels to zero. The last
line in (3.22) shows how ĤSDF may be written such that all its separate terms
are hermitian. The control amplitudes for the simulation will be the phases
and the amplitudes of the blue and the red side band laser pulses. Since
all the pre-factors of each Ĥk appearing in (3.22) are products of two control
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parameters that we want to update, we divide them into the quadrature Q
and in-phase I components:

IB,R = gB,R cos ϕB,R

QB,R = gB,R sin ϕB,R
(3.23)

then we use the rule in (3.21) to update I and Q:

I′B,R = IB,R + α

Q′B,R = QB,R + β
(3.24)

where α = ε ∂Φ0
∂I and β = ε ∂Φ0

∂Q . At this point, I′ and Q′ are fixed numbers
and we can use the following formula to recover the updated values of ϕB,R
and gB,R:

ϕ′B,R = arctan

(
Q′B,R − β

I′B,R − α

)
g′B,R =

√
(Q′B,R − β)2 + (I′B,R − α)2

(3.25)

The control amplitudes resulting from the unconstrained simulation are
shown in the Fig.3.1:

(a) (b)

Figure 3.1: In-phase and quadrature components of the control parameters
in the unconstrained case: a) blue side band control amplitudes b) red side
band control amplitudes.

For this simulation the time axis was divided into 20 time steps of fixed size
∆t = 0.322µs. Notice that the parameters ε and ∆t are related. Since ∆t
appears directly in the expression of the gradient in (3.20) and ε multiplies
the gradient when updating the control amplitudes, the product ε× ∆t will
set by how much uk(j) will grow (3.21). Thus one has to be careful in the
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choice of these two parameters, an excessive value of the product causes the
overshoots in the control amplitude uk(j), on the other hand if the product
is too small the number of steps needed for the convergence will increase.
Furthermore it is very unlikely to get a monotone convergence for ε fixed.
Ideally one could solve the problem with the line search algorithm, this
method though could be very time consuming and difficult to implement in
practice for optimizing Φ0. In our case the dimension of the parameter space
is small enough to allow us to adjust the value by hand. The parameter ε
used in the update rule (3.17) was set to:

ε =

{
5× 1010, if Φ0 ≤ 0.3
0.6× 1010, if Φ0 > 0.3

(3.26)

in this example, such choice guarantees a monotone convergence of the ob-
jective Φ0 (see Fig3.2):

Figure 3.2: Φ0 vs. number of steps of the algorithm. In this case #steps = 995
and Φ0(#steps = 995) ≈ 0.99

For the sake of completeness, the Wigner functions of ρ̂target and ρ̂(T) are
shown below:
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(a) (b)

Figure 3.3: Wigner functions of the cat state a)ρ̂target and b)ρ̂(T).

Hence, with this procedure we are able to avoid the projective measurement
and create a cat state deterministically. The final remark on this simulation
is that it is experimentally unfeasible. The physical limit to the values of
in-phase and quadrature components of the side bands is Imax = Qmax ≈
310000a.u., by looking at the maximum values reached by the side band
pulses in the Fig.3.1 it is clear that the physical limit is exceeded by far.
Moreover, the smallest time resolution available with the lab instruments is
∆t ≈ 1.4µs, such lower bound is violated since for the simulation we choose
∆t = 0.0.322µs. Lastly, no limitations were imposed on the derivative of
the control amplitudes implying ,that in more complicated cases than our
example, the Fourier spectrum broadens. To overcome these limitations we
need to constrain the amplitude and the spectrum. Following the approach
adopted in [7] instead of maximizing Φ0 only, we include the Lagrange
mutipliers in the optimization problem:

max
uk(t)

(F (ρ̂target, ρ̂(T))−∑
i

λiγi(uk(j))) (3.27)

where λi ≥ 0 are the Lagrange multipliers and γi ≥ 0 are the constraints
to the solution. The latter act as penalty terms with the strength set by the
magnitude of λi. The constraints that we want to include, should punish the
gradient directions which lead to an overshoot in the amplitude and sharp
variations in time of the control parameters. Thus, the constraint functions
should have the following form:

γamplitude = ∑
j
(|uk(j∆t)| − umax)

2Θ(|uk(j∆t)| − umax)

γslope = ∑
j
(uk((j + 1)∆t)− uk(j∆t))2 (3.28)

where Θ(·) is the Heaviside step function. The update of the control param-
eters in (3.21) is modified to:
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3. Simulation

uk(j) −→ uk(j) + ε
∂Φ0

∂uk(j)
−∑

i
λi

∂γi(uk(j))
∂uk(j)

(3.29)

The derivatives of the constraint functions in (3.28) with respect to the con-
trol amplitudes are:

∂γamplitude

∂uk(j)
= 2sgn(uk(j∆t))(|uk(j∆t)| − umax)Θ(|uk(j∆t)| − umax)

+ (|uk(j∆t)| − umax)
2δ(|uk(j∆t)| − umax)︸ ︷︷ ︸
≡0

∂γslope

∂uk(j)
= −2uk((j + 1)∆t) + 4uk(j∆t)− 2uk((j− 1)∆t)

(3.30)

here we notice that the second term of ∂γamplitude
∂uk(j) identically vanishes. The sec-

ond thing we may notice is that ∂γslope
∂uk(j) has a non causal expression involving

the knowledge of the control amplitudes at times t = (j± 1)∆t. This causes
problems when evaluating the control amplitudes at t = 0 and t = N∆t.
In order to overcome this issue we assume that the slope of uk(j) does not
change between the intervals at the end [(N − 1)∆t, N∆t], [N∆t, (N + 1)∆t]
and at the beginning [0, ∆t], [−∆t, 0]. With this adaptation we can extend
the definition of uk(j) defining its values at t = −∆t and t = (N + 1)∆t:

uk((−∆t)) = uk(0)− (uk(∆t)− uk(0))
uk((N + 1)∆t) = uk(N∆t) + (uk(N∆t)− uk((N − 1)∆t))

(3.31)

We also respected the resolution allowed by the experiment by dividing the
time axis into 8 steps of equal size ∆t = 1.61µs. Once again, the value of the
parameter ε was regulated by hand to:

ε = 5× 109 (3.32)

in addition to that, the values of 8 Lagrange multipliers (4 per each side
band, since we want to limit both the amplitude and the derivative of all
uk(j)) were also set by hand such that the punishment by violation of the
constraints is big enough:

λIB λQB λIR λQR

γamplitude 1 1 1 1
γslope 0.1 0.1 0.1 0.1

the control amplitudes produced with this setting are shown in the figure
below:
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3.2. Experimental constraints

(a) (b)

Figure 3.4: In-phase and quadrature components of the control parameters
with constraints: a) blue side band control amplitudes b) red side band
control amplitudes.

the amplitude overshoots of the side band signals are gone in this case. Us-
ing (3.25) we can recover the coupling strengths and the phases of the side-
band pulses:

(a) (b)

Figure 3.5: Coupling strengths of the sidebands a) blue sideband b) red
sideband.
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3. Simulation

(a) (b)

Figure 3.6: Phases of the sidebands a) blue sideband b) red sideband.

The time evolution of the population of the internal states and the phonon
population is shown in the figure below:

(a) (b)

Figure 3.7: a) All the population is transferred from the ground state to the
excited state durig the transfer time b) Avarage number of phonons upon
the application of sidebands.

The Fig.3.8 shows the evolution of Φ0 as a function of number of times the
algorithm is executed, such number has increased from the unconstrained
case:
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3.2. Experimental constraints

Figure 3.8: Φ0 vs. number of steps of the algorithm. In this case #steps = 447
and Φ0(#steps = 447) ≈ 0.99

The Wigner functions of the target cat state and ρ̂(T) are shown below:

(a) (b)

Figure 3.9: Wigner functions of the cat state a)ρ̂target and b)ρ̂(T). The time
evolution of the Wigner function can be seen in the GIF attached to the PDF
of the report.

This concludes the comparison between the simulation with the physical
constraints and the unconstrained case. The next section analyzes the grid
state creation which is a more challenging case. However all the procedures
being presented in this chapter still apply.

35



3. Simulation

3.3 Grid state

Before we start to discuss the creation of the grid state, let us point out a few
aspects of the GRAPE algorithm. The first thing to notice is that GRAPE
is a 1st order algorithm and does not provide any information about the
curvature of Φ0, making the achievement of the global maximum of such
function improbable. The second aspect to look at is the strong dependence
of Φ0 on the choice of the initial conditions. Some initial conditions lead to
local maxima: since the gradient becomes progressively smaller as we ap-
proach the local maximum and no stochastic component exists in the actual
implementation of the algorithm, we are trapped in such region. One way
to overcome such problem could be the introduction of a stochastic part in
the algorithm, which gives a ”kick” in a random direction as we stay in the
region of a local minimum (which can be spotted by setting a threshold to
the value of Φ0) for too long (in terms of the number of iterations of the al-
gorithm). A less sophisticated strategy to solve the problem, much simpler
from the implementation point of view, consists in the employment of the
pseudo-random number generator used to produce the initial conditions for
the algorithm. In the latter case, we run the algorithm many times and keep
as the ”good” result the initial conditions which lead to a higher value of Φ0.
In this work we will follow the latter trial and error approach to implement
the coherent state transfer. Of course the choice of appropriate parameters
such as ε and λi is also important for the convergence as already explained
in the previous chapter.

In order to create the logical zero grid state we chose to start in the sqeezed
vacuum state with squeezing parameter r ≈ 0.9. We divide the time axis
into 18 steps of size ∆t = 1.43µs which results in a transfer time T which is
4 times higher than the time needed to create a cat state without constraints.
The parameter ε was set to:

ε =

{
1× 1010, if Φ0 ≤ 0.62
1× 109, if Φ0 > 0.62

(3.33)

The corresponding Lagrange multipliers are reported in the table below:

λIB λQB λIR λQR

Φ0 ≤ 0.62
γamplitude 1 1 1 1

γslope 0.1 0.1 0.1 0.1

Φ0 > 0.62
γamplitude 1 1 1 1

γslope 0.09 0.09 0.09 0.09

Table 3.1: Lagrange multipliers changed accordingly with ε.
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3.3. Grid state

To give an illustrative example of the creation of the grid state, we run the
algorithm for 7 times for 5285 iterations (this number was chosen to be
big enough to observe the convergence of the algorithm) with 7 different
initial conditions. The initial values of ϕB, ϕR, gB and gR were generated
randomly and all simulations were run with settings in the table 3.1 and
equation (3.33).The plot of the objective function Φ0 for these diverse initial
conditions is shown in the next figure:

Figure 3.10: Φ0 vs. number of steps of the algorithm. Different initial condi-
tions are marked with different colours.

as we can observe form the Fig.3.10, there are two main values at which Φ0
saturates, the lower value corresponds to Φ0 ≈ 0.667 and the bigger value
is Φ0 ≈ 0.99. If we look more carefully at the plot, we notice that Φ0 is not
monotone in the initial part of the algorithm:
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3. Simulation

(a) (b)

Figure 3.11: a) In the interval #steps = [10, 50] we see a dramatic decrease
in the yellow curve, which has a monotone increase afterwards. The blue
curve also experiences a small decrease in the region #steps = [10, 30] and
saturates to Φ0 ≈ 066. b) The cyan curve shows a small dip in the region
around #steps ≈ 750 and the green curve starts to decrease at #steps ≈ 1500
and increases again after #steps ≈ 2000.

Thus, we see that finding a local maximum is not obvious and it is not easy
to say after how many iterations of the algorithm this maximum does not
change anymore. This leads to the conclusion that the implementation of a
stochastic gradient descent algorithm or an adaptive parameter ε would not
be a straight forward task. In order to select the best local maximum among
all the simulated values of Φ0 we can look at the last part of the algorithm:

Figure 3.12: Φ0 vs. number of steps of the algorithm in the interval #steps =
[5000, 5285]. The black curve coincides with the purple one.

Now, since there are multiple initial conditions which lead Φ0 ≈ 0.99 and
Φ0 ≈ 0.667, we can ask ourselves whether the values of control amplitudes
converge to the same final configurtion when the trace distance approaches
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3.3. Grid state

Φ0 ≈ 0.99 or Φ0 ≈ 0.667. To answer this question we can compare the
control amplitudes produced by the green curve and red curve, they both
approach Φ0 ≈ 0.99 in Fig.3.12. The next figures shows such comparison:

(a) (b)

Figure 3.13: In-phase and quadrature components of the blue sidebands in
their final configuration for: a)green curve b)red curve.

(a) (b)

Figure 3.14: In-phase and quadrature components of the red sidebands in
their final configuration for: a)green curve b)red curve.

As we can observe in Fig.3.13 and in Fig.3.14, the green and the red curve
produce different values for the control parameters even though they both
approach Φ0 ≈ 0.99. We can also compare the black and the purple curve
since their Φ0 is the same in the last part of the algorithm as shown in
Fig.3.12. The plots of the sideband pulses for such curves are shown below:
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3. Simulation

(a) (b)

Figure 3.15: In-phase and quadrature components of the blue sidebands in
their final configuration for: a)black curve b)purple curve.

(a) (b)

Figure 3.16: In-phase and quadrature components of the red sidebands in
their final configuration for: a)black curve b)purple curve.

also in this case we get different pulseshapes for the sidebands. With this
approach we can reach different local maxima in the parameter space of ϕB,
ϕR, gB and gR.

The next thing to notice is that in the interval considered in the Fig.3.12 all
the values of the maxima do not change in an appreciable manner anymore.
The highest value of Φ0 is reached by the green curve and it corresponds to
Φ0,green(5285) = 0.9944418594175465. The initial conditions which produced
the green curve allow us to reach a high value of Φ0, so they are a good con-
figuration to start with. We can now add a small perturbation to the initial
conditions which generated the green curve and we can check whether it is
possible to reach a higher value of objective function. Such perturbations
are chosen randomly between 0 and 1% of the maximum values allowed
for [ϕB,green, ϕR,green, gB,green, gR,green] (i.e 1% of [2π, 2π, 310000, 310000]) and
between 0 and 10% of such values. The figure below shows the result after
5285 cycles of the algorithm with the perturbations in the initial conditions
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and the original curve:

Figure 3.17: Φ0 vs. number of steps of the algorithm. The unperturbed
initial conditions produce Φ0 marked with green, the blue and the orange
curves represent Φ0 created with the initial conditions perturbed by 10%
and 1% respectively.

If we look at the last part of the simulation, we can see that the orange
curve, whose initial conditions were perturbed by 1% in a random direction,
outperforms the green curve with no perturbations:

Figure 3.18: Φ0 vs. number of steps of the algorithm in the interval #steps =
[5000, 5285].

In our example we keep the orange curve as the ”good” result which in the
last point of the simulation reaches Φ0,orange(5285) = 0.9957544827350344.
The sideband pulses corresponding to this curve are shown below:
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3. Simulation

(a) (b)

Figure 3.19: In-phase and quadrature components of the control parameters
corresponding to the orange curve: a) blue sideband control amplitudes b)
red sideband control amplitudes.

Using the eqauation in (3.25) we can obtain the coupling strengths and the
phases of the sidebands relative to the in-phase and quadrature components
in Fig.3.19:

(a) (b)

Figure 3.20: Coupling strengths of sidebands corresponding to the orange
curve a) blue sideband b) red sideband.
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(a) (b)

Figure 3.21: Phase pulses of sidebands corresponding to the orange curve a)
blue sideband b) red sideband.

The evolution of the populations of the internal states and the phonons,
upon application of the sidebands are shown below:

(a) (b)

Figure 3.22: a) Time evolution of the populations, the system was initialized
in the excited state and after the transfer time all the population ends up in
the excited state b) Time evolution of the avarage number of phonons.

the Wigner function of the logical zero grid state obtained with such settings
and the ideal grid target state are shown below:
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3. Simulation

(a) (b)

Figure 3.23: Wigner functions of the grid state a)ρ̂target and b)ρ̂(T). The time
evolution of the Wigner function can be seen in the GIF attached to the PDF
of the report.

The last thing we want to analyze is the stability of the configuration reached
by the orange curve. To do so, we add a perturbation to [ϕ

f inal
B,orange, ϕ

f inal
R,orange,

g f inal
B,orange, g f inal

R,orange] randomly chosen between 0 and 10% of [2π, 2π, 310000, 310000].
The next plot shows the result for 40 different perturbations added to the
final control amplitudes:

Figure 3.24: Φ0 vs. number of perturbations of the final configuration of
sideband pulses shown in Fig.3.19.

The mean value of the objective function with perturbed configuration in 40
iterations is Φ0,mean = 0.794627576428 whereas the smallest value assumed
by Φ0 in the simulation is Φ0,min = 0.6042165395821802. The Wigner func-
tion which corresponds to Φ0,min is plotted in the next figure:
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3.3. Grid state

Figure 3.25: Wigner function of the perturbed grid state which corresponds
to the lowest value of the overlap Φ0,min with the target grid.

Even though the values of Φ0 reached in this example are not extremely high,
we illustrated the principle to follow in order to find many local maxima
with the 1st order GRAPE algorithm. With more simulations and a different
choice of ε and Lagrange multipliers higher values of Φ0 might be obtained.
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Chapter 4

Conclusion and outlook

This chapter concludes the semester project by presenting the reached re-
sults reached and lies down suggestions for possible further research.

Despite being far from the experimental implementation, the concepts intro-
duced in the previous chapters allow us to create and study complicated
states of harmonic oscillator such as the grid state. The algorithm was ana-
lyzed in a way that enabled us to find different local maxima and pick up a
high value for Φ0 and create the desired states faithfully.

Future possibilities :
The coherent state transfer considered in this semester thesis could be im-
proved both physically and numerically.

From a physical point of view, the simulated time evolution is based on the
hamiltonian in (3.22). The latter neglects all the off resonant terms, one of
which is the carrier term. This term coming from the sidebands is nearly
resonant, and starts to play a role when the amplitude of the signals gB,R ∝
ΩB,R becomes large with respect to the trap frequency ωz. The higher order
terms are unimportant as long as we are in the Lamb-Dicke regime. Thus
in a future work, a time dependent hamiltonian including the carrier term
has to be studied. Another physical aspect neglected in the simulation is the
decoherence of the system, which could be included by defining the collapse
operators and simulate the dissipative dynamics.

For what concerns the implementation of the algorithm, the adaptive choice
of ε and λi should be taken into account in order to get an unsupervised
algorithm. Moreover, one can also consider the use of higher order deriva-
tives and implement a 2nd order GRAPE algorithm proposed in [8]. This
would speed up the simulation since the information about the curvature of
Φ0 would be exploited. In addition, an algorithm that realizes unitary gates
instead of the coherent state transfer should also be implemented.
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Lastly, we want to point out that the red and blue sideband pulses generated
with GRAPE might not be suitable for an experiment with trapped ions.
The map of the bichromatic laser, with non trivial waveforms such as those
considered in this project, could be very complicated to implement. Thus,
one may consider a hamiltonian different from the SDF hamiltonian in (3.22).
A nice candidate for this task could be a combination of one of the sideband
hamiltonians in (2.46) and (2.43) and a tickling term, which is physically
represented by a shake of the trapping potential by means of the electrodes
of the trap. The hamiltonian takes the following form:

ĤI,control = ĤI,BSB/RSB + (εtickling â + h.c)

= ĤI,BSB/RSB + (gteiϕt â + h.c)

= ĤI,BSB/RSB + (gt cos ϕt(â + â†) + gt sin ϕt(i(â− â†)))

(4.1)

where the gt and ϕt represent the coupling and the phase of the tickling
hamiltonian. Other terms like a resonant carrier term are also possible can-
didates for the experimental implementation.
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Appendix A

GRAPE Python code

Listing A.1: Python code for the creation of grid states
import qutip as q

import numpy as np

N = 50#number of Fock levels I want to consider

n=q.num(N)

g = q.basis (2,1)

e = q.basis (2,0)

#grid states as target

#1) create the squeezed state

sqzparam =0.89 #squeezing parameter

alpha= np.sqrt (2*np.pi)

sq_op =q.squeeze(N, sqzparam)

sq_state=q.squeeze(N, sqzparam )* coherent(N, 0)

rho0=(q.tensor(e,sq_state )*q.tensor(e,sq_state ).dag ()). unit()

#2) grid states

zero =((q.displace(N,-alpha )+2+q.displace(N,alpha ))* sq_state ).unit()

one=(q.displace(N,alpha /2)* zero).unit()

plus= (zero+one).unit()

minus1 =(zero -one).unit()

minus=(q.displace(N,1j*alpha /2)* plus).unit()

plusy= (zero+1j*one).unit()

minusy1 =(zero -1j*one).unit()
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A. GRAPE Python code

minusy =(q.displace(N,1j*alpha /2)* plusy).unit()

#here we can choose among different logical grid states ,

#we chose as the target state the logical zero in this example

grid0=q.tensor(e,zero)

rhot=grid0*grid0.dag()

grid1=q.tensor(e,one)

grid0_dm=grid1*grid1.dag()

grid_plus=q.tensor(e,plus)

gridplus_dm=grid_plus*grid_plus.dag()

grid_minus=q.tensor(e,minus)

gridminus_dm=grid_minus*grid_minus.dag()

#def of pauli matrices

sx=q.sigmax ()

sy=q.sigmay ()

sz=q.sigmaz ()

#define the hamiltonian in the hermitian form

sp=q.sigmap ()

sm=q.sigmam ()

H1=q.tensor(sm,q.destroy(N))

H1dag=H1.dag()

#associated to BSB

H_herm1a =(H1+H1dag)

H_herm1b =1.j*(H1-H1dag)

H2=q.tensor(sm,q.create(N))

H2dag=H2.dag()

#associated to RSB

H_herm2a =(H2+H2dag)

H_herm2b =1.j*(H2-H2dag)
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def H_sdf_herm(coupb ,coupr ,p1 ,p2):

H=coupr*np.cos(p2)* H_herm2a+coupr*np.sin(p2)* H_herm2b\

+coupb*np.cos(p1)* H_herm1a+coupb*np.sin(p1)* H_herm1b

return H

#define single hermitian hamiltonians

def H_1():

H=H_herm1a

return H

def H_2():

H=H_herm1b

return H

def H_3():

H=H_herm2a

return H

def H_4():

H=H_herm2b

return H

#define the forward time propagation

def timef(coupb ,coupr ,p1 ,p2 ,rho ,dt):

times = np.linspace (0.0,dt ,100)

result = q.mesolve(H_sdf_herm(coupb ,coupr ,p1 ,p2), rho ,times , [], []

,options=q.Options(nsteps =1000))

return result.states

#define the backward time propagation

def timeb(coupb ,coupr ,p1 ,p2 ,rho ,dt):

times = np.linspace (0.0,dt ,100)

result = q.mesolve(-H_sdf_herm(coupb ,coupr ,p1 ,p2), rho ,times , [], []

,options=q.Options(nsteps =1000))

return result.states

#forward propagated state

def rho_j(rho_init ,n_steps ,dt ,coupb ,coupr ,p1 ,p2):

phia =[]

#n_steps=n_steps +1

if n_steps ==0: return rho_init

elif n_steps >0:

for i in range(n_steps ):

if i==0:
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A. GRAPE Python code

a=timef(coupb[i],coupr[i],p1[i],p2[i],rho_init ,dt)

phia.append(a[-1]. unit ())

if i>0:

a=timef(coupb[i],coupr[i],p1[i],p2[i],phia[-1],dt)

phia.append(a[-1]. unit ())

return phia

#backward propagated state

def lambda_j(rho_target ,n_steps ,dt ,coupb ,coupr ,p1 ,p2):

phia =[]

ph1=p1[::-1]

ph2=p2[::-1]

coupb1=coupb [:: -1]

coupr1=coupr [:: -1]

#n_steps=n_steps +2

if n_steps ==0: return rho_target

elif n_steps >0:

for i in range(n_steps ):

if i==0:

a=timeb(coupb1[i],coupr1[i],ph1[i],ph2[i]

,rho_target ,dt)

phia.append(a[-1]. unit ())

if i>0:

a=timeb(coupb1[i],coupr1[i],ph1[i],ph2[i]

,phia[-1],dt)

phia.append(a[-1]. unit ())

return phia

#gradient

def gradient(l_j ,p_j ,H_i ,dt):

#mult1 ,mult2 are the lagrange multipliers

f=1.j*dt*commutator(H_i ,p_j)

#gradient of the ith control amplitude

#at time j with lagrange multipliers

grad_i =(-(l_j.dag ()*f).tr()). real

return grad_i

def grad1(mult1 ,amp ,amp_max ):#amplitude gradient

grada=mult1 *(2*np.sign(amp)*(abs(amp)\

-amp_max )*np.heaviside ((abs(amp)-amp_max ),1))

return grada

def grad2(mult2 ,amplate ,amp ,ampbefore ):#derivative gradient

gradd=mult2 *((-2* amplate +4*amp -2* ampbefore ))

return gradd
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def main_calculation(time_steps =18, threshold =5285 ,rho0 ,rhot\

,coup =310000 , t_tot =(2/ coup )*4)

m=numpy.zeros((4, time_steps )) #1st index is the column index ,

#2nd index is the row index

#m will be the matrix of coefficients

#define the time for which we want to apply the SDF

sdf_t1=t_tot

#arrays for forward propagation , randomly generated

phi_b=np.random.rand(1, time_steps )*2*np.pi

phi_r=np.random.rand(1, time_steps )*2*np.pi

coupb=np.random.rand(1, time_steps )*1* coup

coupr=np.random.rand(1, time_steps )*1* coup

#initialize the lagrange multipliers

#4 multipliers for blue 4 multipliers for red

mult =[1 ,0.1 ,1 ,0.1 ,1 ,0.1 ,1 ,0.1]

epsilon =1e10

fidelity =[]

#matrix of coefficients

for j in range(0,( time_steps ),1):

m[0][j]= coupb [0][j]*np.cos(phi_b [0][j])

m[1][j]= coupb [0][j]*np.sin(phi_b [0][j])

m[2][j]= coupr [0][j]*np.cos(phi_r [0][j])

m[3][j]= coupr [0][j]*np.sin(phi_r [0][j])

f1=0

flag=0

while(flag <= threshold ):

a=lambda_j(rhot ,time_steps ,sdf_t1/time_steps ,coupb [0][:]

,coupr [0][:] , phi_b [0][:] , phi_r [0][:])

b=rho_j(rho0 ,time_steps ,sdf_t1/time_steps ,coupb [0][:]

,coupr [0][:] , phi_b [0][:] , phi_r [0][:])

for j in range(0,( time_steps ),1):

if j==0:

dummie0 =( gradient(a[time_steps -1],rho0 ,H_1()

,sdf_t1 /( time_steps )))

dummie1 =( gradient(a[time_steps -1],rho0 ,H_2()

,sdf_t1 /( time_steps )))

dummie2 =( gradient(a[time_steps -1],rho0 ,H_3()

,sdf_t1 /( time_steps )))

dummie3 =( gradient(a[time_steps -1],rho0 ,H_4()

,sdf_t1 /( time_steps )))

if j>0:

dummie0 =( gradient(a[time_steps -1-j],b[j-1],H_1()
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,sdf_t1 /( time_steps )))

dummie1 =( gradient(a[time_steps -1-j],b[j-1],H_2()

,sdf_t1 /( time_steps )))

dummie2 =( gradient(a[time_steps -1-j],b[j-1],H_3()

,sdf_t1 /( time_steps )))

dummie3 =( gradient(a[time_steps -1-j],b[j-1],H_4()

,sdf_t1 /( time_steps )))

#these are the gradients of the penalties

if j==0:

a_first =2*m[0][0] -m[0][1]# epsilon0(n-1) blue1 Pb

a1_first =2*m[1][0] -m[1][1]# epsilon0(n-1) blue2 Qb

b_first =2*m[2][0] -m[2][1]# epsilon0(n-1) red1 Pr

b1_first =2*m[3][0] -m[3][1]# epsilon0(n-1) red2 Qr

#gradient for Pb

dummieba_Pb=grad1(-mult[0],m[0][j],coup)

dummiebd_Pb=grad2(-mult[1],m[0][j+1],m[0][j]

,a_first)

#gradient for Qb

dummieba_Qb=grad1(-mult[2],m[1][j],coup)

dummiebd_Qb=grad2(-mult[3],m[1][j+1],m[1][j]

,a1_first)

#gradient for Pr

dummiera_Pr=grad1(-mult[4],m[2][j],coup)

dummierd_Pr=grad2(-mult[5],m[2][j+1],m[2][j]

,b_first)

#gradient for Qr

dummiera_Qr=grad1(-mult[6],m[3][j],coup)

dummierd_Qr=grad2(-mult[7],m[3][j+1],m[3][j]

,b1_first)

elif j>0 and j<( time_steps -1):

#gradient for Pb

dummieba_Pb=grad1(-mult[0],m[0][j],coup)

dummiebd_Pb=grad2(-mult[1],m[0][j+1],m[0][j]

,m[0][j-1])

#gradient for Qb

dummieba_Qb=grad1(-mult[2],m[1][j],coup)

dummiebd_Qb=grad2(-mult[3],m[1][j+1],m[1][j]

,m[1][j-1])

#gradient for Pr

dummiera_Pr=grad1(-mult[4],m[2][j],coup)

dummierd_Pr=grad2(-mult[5],m[2][j+1],m[2][j]

,m[2][j-1])

#gradient for Qr

dummiera_Qr=grad1(-mult[6],m[3][j],coup)
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dummierd_Qr=grad2(-mult[7],m[3][j+1],m[3][j]

,m[3][j-1])

elif j== time_steps -1:

# epsilon0(n+1) blue1 Pb

a_last =2*m[0][ time_steps -1]-m[0][ time_steps -2]

# epsilon0(n+1) blue2 Qb

a1_last =2*m[1][ time_steps -1]-m[1][ time_steps -2]

# epsilon0(n+1) red1 Pr

b_last =2*m[2][ time_steps -1]-m[2][ time_steps -2]

# epsilon0(n+1) red2 Qr

b1_last =2*m[3][ time_steps -1]-m[3][ time_steps -2]

#gradient for Pb

dummieba_Pb=grad1(-mult[0],m[0][j],coup)

dummiebd_Pb=grad2(-mult[1],a_last ,m[0][j],m[0][j-1])

#gradient for Qb

dummieba_Qb=grad1(-mult[2],m[1][j],coup)

dummiebd_Qb=grad2(-mult[3],a1_last ,m[1][j],m[1][j-1])

#gradient for Pr

dummiera_Pr=grad1(-mult[4],m[2][j],coup)

dummierd_Pr=grad2(-mult[5],b_last ,m[2][j],m[2][j-1])

#gradient for Qr

dummiera_Qr=grad1(-mult[6],m[3][j],coup)

dummierd_Qr=grad2(-mult[7],b1_last ,m[3][j],m[3][j-1])

#update of matrix of coefficients

m[0][j]=m[0][j]+ epsilon*dummie0+dummieba_Pb+dummiebd_Pb\

+dummieba_Qb+dummiebd_Qb+dummiera_Pr+dummierd_Pr+dummiera_Qr\

+dummierd_Qr

m[1][j]=m[1][j]+ epsilon*dummie1+dummieba_Pb+dummiebd_Pb\

+dummieba_Qb+dummiebd_Qb+dummiera_Pr+dummierd_Pr+dummiera_Qr\

+dummierd_Qr

m[2][j]=m[2][j]+ epsilon*dummie2+dummieba_Pb+dummiebd_Pb\

+dummieba_Qb+dummiebd_Qb+dummiera_Pr+dummierd_Pr+dummiera_Qr\

+dummierd_Qr

m[3][j]=m[3][j]+ epsilon*dummie3+dummieba_Pb+dummiebd_Pb\

+dummieba_Qb+dummiebd_Qb+dummiera_Pr+dummierd_Pr+dummiera_Qr\

+dummierd_Qr

#update of parameters used in the propagation

phi_b [0][j]=np.arctan2 ((m[1][j]-(epsilon*dummie1+dummieba_Pb\

+dummiebd_Pb+dummieba_Qb+dummiebd_Qb+dummiera_Pr+dummierd_Pr\

+dummiera_Qr+dummierd_Qr ))

,(m[0][j]-(epsilon*dummie0+dummieba_Pb+dummiebd_Pb\

+dummieba_Qb+dummiebd_Qb+dummiera_Pr+dummierd_Pr+dummiera_Qr\

+dummierd_Qr )))

coupb [0][j]=np.sqrt((m[0][j]-(epsilon*dummie0\
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+dummieba_Pb+dummiebd_Pb+dummieba_Qb+dummiebd_Qb\

+dummiera_Pr+dummierd_Pr+dummiera_Qr+dummierd_Qr ))**2\

+(m[1][j]-(epsilon*dummie1+dummieba_Pb+dummiebd_Pb\

+dummieba_Qb+dummiebd_Qb+dummiera_Pr+dummierd_Pr\

+dummiera_Qr+dummierd_Qr ))**2)

phi_r [0][j]=np.arctan2 ((m[3][j]-(epsilon*dummie3\

+dummieba_Pb+dummiebd_Pb+dummieba_Qb+dummiebd_Qb\

+dummiera_Pr+dummierd_Pr+dummiera_Qr+dummierd_Qr ))

,(m[2][j]-(epsilon*dummie2+dummieba_Pb+dummiebd_Pb\

+dummieba_Qb+dummiebd_Qb+dummiera_Pr+dummierd_Pr\

+dummiera_Qr+dummierd_Qr )))

coupr [0][j]=np.sqrt((m[2][j]-(epsilon*dummie2\

+dummieba_Pb+dummiebd_Pb+dummieba_Qb+dummiebd_Qb\

+dummiera_Pr+dummierd_Pr+dummiera_Qr+dummierd_Qr ))**2\

+(m[3][j]-(epsilon*dummie3+dummieba_Pb+dummiebd_Pb\

+dummieba_Qb+dummiebd_Qb+dummiera_Pr+dummierd_Pr\

+dummiera_Qr+dummierd_Qr ))**2)

#if the amplitude exceeds the bounds

#assign the max possible value

if m[0][j]>coup or m[0][j]<(-coup):

if m[0][j]>0:

m[0][j]=coup

elif m[0][j]<0:

m[0][j]=-coup

if m[1][j]>coup or m[1][j]<(-coup):

if m[1][j]>0:

m[1][j]=coup

elif m[1][j]<0:

m[1][j]=-coup

if m[2][j]>coup or m[2][j]<(-coup):

if m[2][j]>0:

m[2][j]=coup

elif m[2][j]<0:

m[2][j]=-coup

if m[3][j]>coup or m[3][j]<(-coup):

if m[3][j]>0:

m[3][j]=coup

elif m[3][j]<0:

m[3][j]=-coup

answer3=rhot

answer4=rho_j(rho0 ,time_steps ,sdf_t1/time_steps ,

coupb [0][:] , coupr [0][:] , phi_b [0][:] , phi_r [0][:])

#f1 is the trace distance after 1 cycle of the algorithm

f1=(( answer3.dag ()* answer4[time_steps -1]).tr()). real
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flag=flag+1

if (f1 >0.62):

epsilon =1e9

mult =[1 ,0.09 ,1 ,0.09 ,1 ,0.09 ,1 ,0.09]

fidelity.append(f1)

return (fidelity ,answer4 ,coupb [0][:] , coupr [0][:] ,

phi_b [0][:] , phi_r [0][:])
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