
Low Latency Implementation of a Resource
Utilization Optimized State Discrimination

Algorithm

Semester thesis

Max Glantschnig

June 2021

Supervised by:
Roland Matt

Dr. Abdulkadir Akin
Prof. Dr. Jonathan Home

Trapped Ion Quantum Information
Institute for Quantum Electronics

Abstract

The aim of this semester thesis is to continue the development of
a new hardware platform for low latency parallel readout of trapped
ions using images from an EMCCD camera. I adapted a state discrim-
ination algorithm, which was designed to use fewer hardware resources
than the current implementation by Nick Schwegler, and implemented
it in the programmable logic. I also developed an Ethernet application
which runs on the processor integrated in the FPGA chip which allows
to send the configuration data for this algorithm from a control PC to
the board. Using a module which emulates the behavior of the camera,
I verified that the algorithm works correctly. The resource utilization
of the algorithm (in terms of LUTs and registers) for reading out 10
ions is 6x less than in the previous version. The new platform can
support the parallel readout of up to 100 ions while (in total) only us-
ing 16% of all LUTs and 10.45% of all registers, while maintaining the
low latency of the previous implementation, which makes this platform
suitable to be used in feedback based quantum error correction codes.

1

Contents

1 Introduction 3

2 Hardware platform 4
2.1 Advantages of the new hardware 4
2.2 High level view of the design 5

3 Ethernet communication 6
3.1 LightWeight IP (lwIP) . 7
3.2 Structure of the Ethernet message 7
3.3 Implementation - Zynq . 8

3.3.1 Struct for buffering received data 8
3.3.2 Receive callback function 9

3.4 Implementation - PC . 10

4 Image Processing Algorithm in Programmable Logic 10
4.1 Structure of the design . 11
4.2 Memory for storing calibration data 12

4.2.1 Mask coordinates . 13
4.2.2 Threshold values . 14

4.3 Thresholding algorithm . 14
4.4 Resource utilization and timing analysis 18
4.5 Functional verification . 20

5 Possible next steps 21
5.1 Integrate frame grabber and test with camera 21
5.2 Integration into experimental control system 22
5.3 Send and receive commands for the camera 22

6 Conclusion 24

References 25

A Appendix 26
A.1 Code for Ethernet application 26

A.1.1 Starting the application 26
A.1.2 Code for receive callback function 28
A.1.3 Levels . 29
A.1.4 Writing mask data to BRAM 31

A.2 Recreate Vivado project from GitLab 32
A.3 Recreate Vitis project from GitLab 32
A.4 Vivado Block design . 35

2

1 Introduction

Low latency parallel qubit readout is a key component of most error correct-
ing codes and hence a stringent requirement for building a universal quantum
computer [1, 2]. In trapped ions, the quantum information is encoded in elec-
tronic states of the atom [3, 4]. To perform readout, we make use of the fact
that if we shine a laser of certain frequency onto an ion, it will only scatter
photons if it is in a certain state, which we refer to as the bright state. If
it does not scatter photons, we say that it is in the dark state. Which elec-
tronic states actually serve as bright and dark states depends on both the
type of ion used as well as on how the quantum information is encoded (see
Chap. 3.1 in [5] for how this is done in 40Ca+). To decide which state the
ion is in, one collects scattered photons while the readout laser is turned on
(either using a PMT or a camera) and compares the number of photons with
a threshold (Chap. 3.2.2 and 5.2.2 in [5]).

In [6], Nick Schwegler simulated and implemented a readout device based on
processing the image of an EMCCD camera in an FPGA. He showed that
with his architecture, parallel readout of up to 60 ions in a chain is possible
in 225 µs with an upper bound infidelity of 10−4.

This project aims at migrating the image processing algorithm to a new
hardware platform, the Mars XU3 + EB1 from Enclustra. Last semester,
Adithyan Radhakrishnan started working on this and modified the algorithm
such that it uses less resources. He also explored how to enable Ethernet on
the new platform and developed a Python script that can detect regions of
interest (ROIs) given an image of the ions [7].

In this report, I will outline the work I contributed as part of a semester
thesis. In Sec. 2, I introduce the reasons for changing the hardware platform
as well as the new platform itself. This section also contains an overview over
the different parts of the hardware and software design. Sec. 3 contains an in-
depth discussion of the Ethernet application which I designed to interface the
FPGA with a control PC and is currently capable of sending configuration
data to the FPGA board. In Sec. 4, I explain what modifications where made
to the image processing algorithm compared to Schwegler’s version and how
these were implemented in the programmable logic. This is followed by a
discussion of the system level verification and by an analysis of the resource
utilization. Lastly, Sec. 5 contains an overview of the steps that still need
to be taken such that the new platform can be used to perform readout in
quantum information experiments.

3

2 Hardware platform

2.1 Advantages of the new hardware

In [6], Nick Schwegler simulated and implemented a device, which can per-
form parallel readout of trapped ions with high fidelity. Schwegler used the
Xilinx VC707 evaluation board in combination with the Abaco FMC422
frame grabber, which deserializes the pixel data sent via the Camera Link
interface and makes it available to the image processing algorithm in the
FPGA. There are a few reasons why the decision was made to move to a
new platform, which is the Mars XU3 SoC module in combination with the
Mars EB1 base board from Enclustra1,2. Adithyan Radhakrishnan, the stu-
dent who was working on this project before me, elaborated on this in his
report [7]. I would like to briefly summarize his points:

• The Mars XU3 + EB1 platform is approximately 8 times cheaper than
VC707 + FMC422.3

• The FMC422 has entered restricted production, which means that
Schwegler’s architecture cannot easily be replicated for use in other
experiments. The EB1 base board has two mini Camera Link connec-
tors. Together with a custom implementation of the frame grabber
in the FPGA fabric (developed by Giacomo Bisson in the Quantum
Optics group), the functionality is equal to the FMC422.

• The Mars XU3 features a Zynq Ultrascale+ MPSoC
(XCZU3EG-2SBVA484I) chip, which contains a Quad-Core ARMCortex-
A53 processor. So far, this microprocessor is used to run a program
which communicates via Ethernet with the PC. In the future, this can
also be used to do software based on-board image processing.

One downside of the new platform is that the resources in the programmable
logic (PL) are smaller than in the VC707. For this reason, Schwegler’s image
processing algorithm had to be adapted such that it used less resources.
Radhakrishnan proposed such an algorithm in [7] and tested it in a behavioral
simulation. In Sec. 4, I will explain how I modified his code to make it
synthesizable and how I interfaced it with the processing system (PS) in
order to set the configuration data for the algorithm.

1https://www.enclustra.com/en/products/system-on-chip-modules/mars-xu3/
2https://www.enclustra.com/en/products/base-boards/mars-eb1/
3Mars XU3 + EB1 cost 482 CHF + 288 CHF = 770 CHF. VC707 + Abaco frame

grabber cost 6200 CHF. Taken from [7] and Enclustra website.

4

https://www.enclustra.com/en/products/system-on-chip-modules/mars-xu3/
https://www.enclustra.com/en/products/base-boards/mars-eb1/

2.2 High level view of the design

Figure 1: Overview over the different parts of the design in the pro-
grammable logic and processor. The large dotted box represents the Xilinx
Ultrascale+ chip on the Mars XU3 module. The blue parts were implemented
and tested inside the FPGA for this semester thesis.

Fig. 1 shows a high-level block diagram of the design. On the very left of
the PL part of the design, we see the Camera Link interface, whose signals
are routed to the frame grabber. This module was designed and tested
by Giacomo Bisson during a semester thesis in the Quantum Optics group
[8]. It provides the pixel intensity as a 16 bit integer (within the Verilog
code it is usually called data or pixdata) and the three video sync signals
frame_valid , line_valid and data_valid , which are used to detect the
beginning of a new frame or a new line within the pixel stream (see Chap.
1.3.3 in [6] for a detailed discussion of the Camera Link interface). The pixel
intensity and the video sync signals are connected to the image processing
module which implements the actual state discrimination algorithm. An in
depth discussion of this part can be found in Sec. 4.

The top left corner shows the ARM processor. As mentioned above, it is
currently used to run a program that receives commands from the PC via
Ethernet and communicates with the programmable logic. The PS commu-
nicates with the PL via AXI buses. AXI (Advanced eXtensible Interface) is
a high-performance, multi-master, multi-slave communication interface that
Xilinx uses to connect peripherals to the processor. Most IP cores that Xil-
inx provides for its Zynq devices come with an AXI interface. In our design

5

we used the following IP cores:

• Two block memory (BRAM) modules for storing calibration data for
the image processing algorithm. BRAM is a convenient way of storing
larger amounts of data where only one item needs to be accessed per
clock cycle. For a more detailed discussion see Sec. 4.2.

• Two general input output (GPIO) modules, each with a data width
of 1 (not shown in Fig 1). They are used to drive a signal called
calibration_valid , which indicates to the algorithm that valid cal-
ibration data has been written to the BRAMs.

• A UART module for communicating with the camera. The Camera
Link interface has two dedicated LVDS pairs which serve as RX and
TX signals for UART serial communication. The camera can be con-
trolled by sending ASCII characters over this channel and answers from
the camera can be received in the same way. This module is depicted
in a light gray, because I have not interfaced it with the Ethernet com-
munication yet. I have, however, instantiated the necessary modules
in Vivado Block Design already and Bisson tested the hardware by
sending data from the PS to the camera [8].

On the right of Fig. 1, the transmitter module acts as an interface between
the image processing platform and the experimental control system. It sends
the result of the readout, the vector (bright, dark, dark, ...), using a serial
communication protocol explained in Chap. 2.1 of [6]. During the course of
this project, it was unfortunately not possible to test this module together
with the other parts of the platform.

3 Ethernet communication

Controlling lab devices via Ethernet has several advantages over using more
basic protocols such as UART. There is no direct wired connection necessary
between control PC and device, they merely need to be within the same
network. Also, when using the TCP/IP (acronym for Transmission Control
Protocol / Internet Protocol) protocol for transmission, it is guaranteed that
the data arrives in the exact order it was sent and that no data gets lost or
corrupted on the way [9].

In this chapter, I explain how the communication using the TCP/IP protocol
works on the software side. First, I introduce the software library I used,
then I cover the details of the implementation in the board and finally, I
briefly explain how to send data from the PC using a Python script.

As part of his semester thesis, Radhakrishnan set up the hardware of the
Mars XU3 + EB1 such that it is capable of running an Ethernet application

6

[7]. I heavily relied on this work for designing the software.

3.1 LightWeight IP (lwIP)

LightWeight IP (lwIP) is a software stack that has been developed to provide
TCP/IP networking functionality for embedded systems [10]. It is designed
to be used for a so-called "baremetal" application, meaning it runs directly
on the processor and does not require a full-fledged operating system such
as Linux. The Ethernet application is entirely written in C and I used Vitis
(successor of SDK), an IDE from Xilinx which has an inbuilt version of
lwIP4, to develop and test it. lwIP’s working principle is based on events
and callbacks. Whenever lwIP detects a certain event (such as "New TCP
connection established", "Data received" or "Data sent"), it calls a function
that has been specified by the user beforehand. I will give an example further
below.

Before being able to send and receive data, a TCP connection has to be
established. This involves a handshaking process, where one device acts as a
server, listening to connection requests, and the other one as a client, who is
actively initiating a connection. After the connection has been established,
both devices can send and receive data. In our implementation, the FPGA
acts as the server and the PC is the client.

Appendix A.1.1 explains the code required to start up the application and
configure it to act as a server.

3.2 Structure of the Ethernet message

Data sent on a TCP/IP connection can be thought of as a continuous stream
of bytes. As already mentioned, TCP guarantees that the bytes arrive in the
correct order and uncorrupted. It is, however, our job to keep track of the
beginning and end of a message and to interpret the bytes in terms of which
data they represent (e.g. ASCII characters, 32 bit integers, etc.). We de-
cided that every message should begin with a header composed of 11 bytes,
followed by the actual data (also referred to as payload). Sometimes I refer
to header + payload as one "packet" (to not confuse it with Ethernet packets
or segments, I will put quotation marks around it). The interpretation of
the bytes in the header is as follows (the names in the left column are also
the variable names in the C code):

4https://www.xilinx.com/support/documentation/application_notes/xapp1026.
pdf

7

https://www.xilinx.com/support/documentation/application_notes/xapp1026.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1026.pdf

Bytes Name Data type
1 level s8

2 num_packet u8

3 num_tot_packet u8

4-5 num_bytes u16

6-7 num_data u16

8-11 address u32

num_bytes are the number of bytes in the payload. Using this information,
we know where the message ends and (possibly) a new one begins. Because
num_bytes is a 16 bit integer, the maximum number of bytes in the payload
is 216−1 = 65535. If we want to sent data which is longer than this number,
we have to send it as two "packets". num_tot_packet is the total number of
"packets" one message consists of, num_packet denotes which "packet" it is.
For this project, all messages were so short that they fitted in one "packet",
so these two variables are currently not used. The idea behind num_data is
to indicate how many individual data items there are. For example, if we
send 32 bit integers, then num_data = num_bytes/4 . The 32 bit address can
be used to write values to an arbitrary memory location which the processor
has access to.

The most important byte of the header is the first one, referred to as level .
It is used to tell the receiver (i.e. the FPGA board) how to interpret the
payload. Currently, the application works with level values of 1 (for setting
the mask configuration data, see Sec. 4.2.1) and 2 (for setting the threshold
configuration data, see Sec. 4.2.2). In the code, I defined an enumerated
type level_t to refer to these values using MASK and THRESH , so it is more
obvious what they mean. Refer to Appendix A.1.3 for more information on
how this is implemented in the code.

3.3 Implementation - Zynq

This section covers the details of the implementation in the board. The
source code, which is referred to here and in Appendix A.1, can be found
in the TIQI Gitlab. In Appendix A.3 I included a small guide on how to
recreate the Vitis project after having cloned the GitLab repository.

3.3.1 Struct for buffering received data

To buffer the data which we receive on the Ethernet connection, I use a C
struct called w_job . Listing 1 shows its declaration.

8

1 struct w_job {

2 u16 header_pos; //header length is 11 bytes

3 char header[HEADER_LEN];

4

5 //unpacking the header

6 level_t level;

7 u8 num_packet;

8 u8 num_tot_packet;

9 u16 num_bytes;

10 u16 num_data;

11 u32 adress;

12

13 //for intermediate storage of the payload

14 char* data_point;

15 char* write_point;

16 u16 recv_bytes;

17 };

Listing 1: Definition of struct w_job

The array header serves as an intermediate storage for the bytes belonging
of the header. header_pos keeps track of how many bytes have already been
read from the Ethernet interface. Below are the different components of the
header as explained in Sec. 3.2. There is a function called resolve_header

which interprets the raw bytes and assigns the variables at lines 6-11. To
store the payload data, we do not use arrays, because the length of the
payload is not known at compilation time, we have to allocate memory dy-
namically (i.e. use malloc). data_point points to the first element of the
payload data and write_point to the position after the last payload byte
(it is called write_point because the next byte we receive will be written
to that position).

3.3.2 Receive callback function

The receive callback function tcp_recv_perf_traffic is executed every time
data is successfully received by lwIP. All other user defined functions (e.g.
write mask configuration data to BRAM, etc.) are called from within this
function. The function’s signature is shown in Listing 2:

9

1 static err_t tcp_recv_perf_traffic(void *arg,

2 struct tcp_pcb *tpcb,

3 struct pbuf *p,

4 err_t err)

Listing 2: Function signature of tcp_recv_perf_traffic

Here, the "protocol control block" tpcb contains information about the cur-
rent TCP connection. struct pbuf *p is the most interesting argument: it
contains the actual data that was received, stored as a void -pointer payload

to the first element and the number of bytes len . In fact, struct pbuf also
contains a pointer to another object of type struct pbuf - it is a linked list.
However, when I tested the application, the pbuf chain always had length 1.
Nevertheless, the code does handle the general case.

It may well happen that not the whole message we sent arrives with one pbuf.
The rest of the message will then be presented to the user the next time
when tcp_recv_perf_traffic is called (i.e. right after the current execution
of tcp_recv_perf_traffic finishes). But because the contents of the current
pbuf are not available anymore when the function returns, we need our own
buffer to store the data of a message that spreads across multiple calls of
tcp_recv_perf_traffic . In our implementation, struct w_job serves this
purpose and we access this struct through the arg variable. In Appendix
A.1.2, I explain this in more detail and give examples of the source code.

3.4 Implementation - PC

For sending the data to the board, I use the Python module socket. It offers
an easy to use API for opening and closing Ethernet connections and send-
ing/receiving data on them. I implemented a Python class called message

which through its methods creates the header and the payload from e.g. a
file (for the mask configuration data) or a Python list (for the threshold val-
ues). When we send numbers larger than one byte, one has to send them in
little-endian order.

4 Image Processing Algorithm in Programmable
Logic

The algorithm which is implemented and tested in this thesis was initially
developed by Adithyan Radhakrishnan during a semester thesis [7]. It is
functionally equivalent to Nick Schwegler’s version but the number of com-
parators used for detecting whether a pixel belongs to a ROI of an ion does

10

not scale with the number of ions N_ion_max or the ROI size N_roi_max .

Every clock cycle new values of pixdata_i , pos_x_i , pos_y_i are provided
to the module. The pixels arrive row-by-row from left to right, starting with
the top-left corner of the image (this the order dictated by the readout of
EMCCD camera, see Chap. 1.3.1 in [6]). Prior to the experiment, the user
determines a "region of interest" (ROI) for every ion. The intensity value for
pixels in the ROI are summed up (i.e. we "mask" the image) and compared
to a threshold. If the accumulated value is larger than the threshold we
classify the ion as "Bright", otherwise we classify it as "Dark". The ROI (or
mask) configuration data is provided to the algorithm as triplets (x, y, ion
number), i.e. a pixel with coordinates (x,y) belongs to the ROI of ion with
"ion number". The triplets have to be provided as an ordered list, where the
order is the same as the order of the pixels arriving from the camera. As an
example, [(26, 2, 1), (40, 2, 2), (25, 3, 1), (41, 3, 2)] would be a correctly
ordered list for two ions with ROI size 2. It is important to note here that
(in contrast to Schwegler’s implementation) one pixel cannot simultaneously
belong to the ROIs of two different ions, the reason being the following:

When a new frame starts, the first ROI triplet is stored in a register called
mask_current . pos_x_i and pos_y_i are continuously compared to the
current x (mask_current[15:0]) and y position (mask_current[31:16]). If
the signals are equal, the next ROI triplet is loaded to mask_current and
the value of pixdata_i is added to one of the camera_counts registers.

There are in total N_ion_max of these registers and we use ion_no_hit =
mask_current[47:32] −1. The −1 here is important, because currently the
ions are indexed using natural numbers starting from 1 in the triplets, but
starting from 0 in the hardware. The value of the camera_counts registers is
compared to the threshold (each ion can have an individual threshold value)
and the result (1 for bright, 0 for dark) is a N_ion_max bit signal, which can
then be sent to the control system of the experiment.

4.1 Structure of the design

Within the top module system_top , there are two main parts: The Vivado
block design, which contains all the AXI devices needed for exchanging infor-
mation between PS and PL, and the Verilog module top_image_processing ,
which (as the name suggests) contains the actual image processing algorithm.
The module pixel_generator simulates the behavior of an actual Camera
Link frame grabber (i.e. it provides pixel intensity data and the video sync
signals).

The most important block is the Zynq Ultrascale+ processing system, which
contains the ARM processor running the Ethernet application. It provides
two clocks Clk50 (at 50 MHz) and Clk100 (at 100 MHz), where the latter

11

one is used to clock all other modules. It also includes an AXI Master port,
which connects the modules implemented in the PL to the Zynq processing
system. Two of these modules are AXI BRAM controllers, used to write
configuration data for the image processing algorithm (Sec. 4.2 covers this
in more detail). Another two are 1-bit wide GPIOs that are used to signal
the image processing algorithm that the configuration data has been written
and the algorithm is ready to use.

Appendix A.4 shows a screenshot of the Vivado Block design with all the
instantiated IP cores from Xilinx.

4.2 Memory for storing calibration data

We decided to use block memory (BRAM) to store all calibration data that
have to be set by the user before the image processing algorithm is ready to
use. There are two main reasons for this:

• The data size scales heavily with the number of ions. For example, the
mask configuration data for 100 ions assuming a ROI size of 25 pixels
amounts 100 × 25 = 2500 triplets of the from (x, y, ion number). We
represent each of these numbers as a 16 bit integer. This amounts to
a data size of 2500 × 3 × 16 bits = 120 Kb. The FPGA in our device
(XCZU3EG) only has 141,120 CLB Flip-Flops available5, so we would
use up a significant amount of them. However, the amount of available
BRAM is 7.6 Mb, so we can easily store this amount of data.

• To issue read and write operations from the processor, one can use
an IP core from Xilinx, the AXI BRAM Controller. This reduces the
amount of debugging time necessary, because this IP has been tested
by the provider.

The BRAM blocks themselves were added to the Vivado Block design (the
IP core is called Block Memory Generator). Usually, for this IP core, one
can freely choose the width (i.e. the number of bits stored at one address)
and the depth (i.e. the number of data words). If we use the IP core together
with an AXI BRAM Controller, there are only certain combinations of width
and depth possible. In Fig. 2, we see that the widths have to be a power of
2 with the smallest one being 32 bits (the data bus width of the master AXI
port) and the same holds for the depth.

5https://www.xilinx.com/support/documentation/data_sheets/
ds891-zynq-ultrascale-plus-overview.pdf

12

https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf

Figure 2: Supported memory sizes if Block Memory Generator is used in
combination with AXI BRAM Controller. For the mask data we chose the
combination 64 bits, 4k depth and for the threshold vales 32 bits, 2k depth.
Taken from [11].

The reason for this can be found in one peculiarity about this configuration:
The Block Memory Generator must have the option "Byte Write Enable"
turned on. This means that the BRAM address actually indexes individual
bytes and not word, similar to the way how AXI adressing works. This
naturally gives rise to an address alignment rule. What I mean by that: For
a 64 bit wide BRAM, the address indexing the least significant byte (LSByte)
of the nth word needs to be n × 23. This is equivalent to saying that if we
right shift the address by three bits, we get the address of the data word (i.e.
n in the example). Fig. 3 shows a graphical representation of how the bytes
are arranged.

Figure 3: Arrangement of bytes and address layout for one data word of a
64 bit BRAM. Taken from [11].

4.2.1 Mask coordinates

As already mentioned in previous sections, the ROI or mask calibration data
are triplets (x, y, ion number), identifying which pixels belong to the ROI of
a specific ion. We represent each number using 16 bits, so one triplet uses
48 bits. Due to the above mentioned restriction of the data width, we used
a 64 bit BRAM to store this data.

13

Byte Addr n+ 7 n+ 6 n+ 5 n+ 4 n+ 3 n+ 2 n+ 1 n+ 0

Data 8’d0 8’d0 ion[15:8] ion[7:0] y[15:8] y[7:0] x[15:8] x[7:0]

Table 1: Byte arrangement for one mask triplet (x, y, ion number). This
represents the nth word for the 64 bit BRAM.

Table 1 shows that the bytes are arranged in little-endian order. This conve-
nient for two reasons: 1. Two consecutive bytes can be naturally interpreted
as a 16 bit number just by concatenating the bits. 2. The processor also uses
little-endian ordering, so there is no ambiguity on how to pass the numbers
to the C function which issues the AXI write command.

The depth of the BRAM was chosen to be 4096, this allows for the storage
of up to 163 ions with ROI sizes of 25 pixels each.

Appendix A.1.4 shows the C code which writes the buffered data from
struct w_job to the BRAM. A detailed description of how the image pro-
cessing algorithm accesses the BRAM is given in Sec. 4.3.

4.2.2 Threshold values

The threshold values are provided as 32 bit numbers to the algorithm. We
decided to use a 32 bit BRAM (with the minimum depth of 2048) to store
these values as well, although it is not as suitable here: The algorithm is
designed such that the comparison between camera counts and thresholds is
continuous and in parallel. So before the first frame arrives, we anyway need
to load the threshold values from the BRAM into N_ion_max registers (see
4.3).

We nevertheless decided to use BRAM because this approach was rigorously
tested with the mask configuration data (both how to write the data using
the processor and how to access it from within the algorithm).

4.3 Thresholding algorithm

The module top_image_processing contains the actual state discrimation al-
gorithm. It is divided into two submodules: pixel_positions and thresholding .

The clock for this module should be provided by the Frame Grabber (which
essentially forwards the clock from the Camera). This is because the readout
speed is dictated by the camera and one pixel is transferred in one clock
cycle. Because this design has not been tested with an actual camera, I
used the 100 MHz Clk100 from the PS for both top_image_processing and
pixel_generator , which mocks the behavior of the camera.

pixel_positions contains a state machine with 3 states (IDLE, READY,
ANALYZE_FRAME, very similar to Schwegler’s implementation). The

14

FSM transitions to READY, once calibration_valid goes high (i.e. once
mask and threshold values have been successfully written to the BRAMs).
If it is in the READY state, the transition to ANALYZE_FRAME occurs
when there is a positive simultaneous edge of frame_valid and line_valid ,
which marks the beginning of a new frame. During this state, the x and y
positions of the pixels are counted in the following way: The x counter is
incremented in every clock cycle during which all three video sync signals
are high. The y counter is incremented when a positive edge of line_valid

is detected.

Both counters start counting from one. This means that also the mask
triplets (x, y, ion) must index the coordinates starting from one. Also, the
pixel_positions module introduces one clock cycle of latency to the pixel
stream.

When the end of the frame is detected, the signal ion_states_valid is high
for one clock cycle. Right now, it is used to reset the thresholding module.
In the future, it can be used to initiate the transmission of the readout result
of the master control system.

Fig. 5 shows a more detailed schematic of the circuit layout with emphasis
on the part which determines mask_current . In the top center of the figure,
the inputs pos_x_i and pos_y_i are compared to mask_current . If the pixel
coordinates match, the equal signal is high in the same clock cycle. The
equal signal then triggers several different other events:

1. The register is_even is updated. If equal is high in one clock cycle,
is_even will be negated in the next cycle. This signal controls a
multiplexer which selects which register (even or odd) determines
mask_current

2. The register mask_count is incremented by 1. mask_count_d consti-
tutes the first 29 bits of the 32 bit address used to access the mask
BRAM. The three least significant bits are set to 0 because (as men-
tioned in Sec. 4.2) for accessing the data word we need to divide the
address by #bytes/data word= 8 = 23.

The architecture using even and odd in between mask_current and the
output of the BRAM mask_dout_i was initially intended to deal with the
one clock cycle latency associated with reading from the memory. This would
have caused issues when two consecutive pixels belong to some ROI, because
mask_count is only incremented at the next positive edge after equal is
high, i.e. the new mask value only arrives in the cycle after the second
pixel. This matter was eventually solved by applying mask_count +1 to the
address port of the BRAM if equal is high. This can also be seen in the
center right part of Fig. 5. While not strictly necessary, even and odd are

15

still useful because they cut the path between BRAM and comparators.

Fig. 4a shows the timing diagram of several signals that are involved in
the determination of mask_current . It shows the situation in the middle of
the analysis of a frame when there is a match for three consecutive pixels.
Initially, after the reset period, even and odd have to be filled with mask
triplets #0 and #1, only then the algorithm is ready to use. This is managed
by a second counter config_count . Fig. 4b shows the associated waveforms.

In the lower part of the schematic one can see the N_ion_max registers
(camera_counts) used for storing the accumulated pixel values. If equal

is high, the value of pixdata_i is added to the register corresponding to
ion_no_hit = mask_current[47:32] −1. The accumulated values are con-
tinuously compared to the thresholds. The results of this comparison make
up the N_ion_max bit signal ion_par_data_o which is the result of the state
discrimination and will transmitted to the experimental control system.

(a) (b)

Figure 4: (a) Timing diagram for the signals necessary to determine
mask_current (b) Timing diagram for the initialization sequence after the
reset period. The even and odd registers are filled with mask triplets #0
and #1.

16

Figure 5: Schematic of the thresholding module. See main text for de-
scription of the functionality. Some parts have been omitted for readability:
The logic which for the initialization sequence after the reset period is over,
the logic for filling the threshold registers is not shown.

17

4.4 Resource utilization and timing analysis

For the following analysis, I synthesized and implemented the design for
three different values of N_ion_max : 7 (this was the number of ions using
in testing), 10 (to compare it with Schwegler’s implementation), 100 (to
show that it scales). To make sure that the synthesizer does not optimize
away parts of the logic, I connected the signals that would eventually go
to the transmitter to a tool called Integrated Logic Analyzer (ILA)6. It lets
you "see" the values of certain signals within the programmable logic. The
resources taken up by the ILA are not included in the below analysis.

Fig. 6 shows the resource utilization in Nick’s implementation, classified ac-
cording to modules. I highlighted the row which is most relevant for compari-
son with our design. user_if contains the registers for storing the calibration
data, as well as the actual image processing module (thresholding). For a
fair comparison, we have to substract the resources that latency_measurement

and Transmitter use because this functionality is not (yet) implemented in
the new design.

Figure 6: FPGA resource utilization in Nick Schwegler’s implementation.
The marked module contains registers for configuration data and the actual
image processing algorithm. Taken from [6].

Fig. 7 shows the utilization in my implementation for N_ion_max = 10. To be
able to compare the figures, we have to not only take top_image_processing

but also the AXI BRAM controllers and AXI GPIOs have to be taken into
account. This is because Schwegler’s user_if also contains logic for the AXI
interface.

6https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/
pg172-ila.pdf

18

https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf

Figure 7: FPGA resource utilization in our implementation. We have to
add up top_image_processing and the AXI devices to be able to compare
the resources to 6.

Our implementation uses 989 LUTs, whereas Schwegler’s uses 7261, i.e. we
use about 7x less LUTs. Our register usage is 1,437 whereas for Schwegler
it is 9,175. This is a 6x reduction in register usage, which is mainly due
to the fact that we use BRAM for storing the calibration data for masks
and thresholds. The difference in LUT occupation is partly explained by
the fact that we changed the architecture of the image processing algorithm:
Instead of 2× N_roi_max × N_ion_max comparators we only use 2. Another
explanation is the following: If we substract the used LUTs in Schweglers’s
thresholding module from the total ones used in user_if , we see that
there are 3,617 LUTs used for the logic which translates AXI write and read
commands to the registers. I assume that we do not have this overhead in
our implementation because the translation from AXI to BRAM requires
less logic.

To show that our design can also support parallel readout of up to for several
tens of ions, I synthesized and implemented the design for N_ion_max = 100.
Table 2 shows the percentage of utilized resources for the three most im-
portant categories for both 10 and 100 ions classified according to modules
(only the module top_image_processing scales with the number of ions. We
see can see that there is enough space left to instantiate missing components
such as a transmitter for the ion states (Sec. 5.2) or the frame grabber (Sec.
5.1). According to [8], the frame grabber needs about 0.02 % CLB LUTs
and 0.013 % CLB registers.

19

Module CLB LUTs CLB registers BRAM
system_top (10 ions) 11.73 % 6.31 % 4.63 %
system_top (100 ions) 16.0 % 10.45 % 4.63 %�

Block design 11.10 % 5.67 % 4.63 %�

pixel_generator 0.06 % 0.04 % 0.0 %�

top_image_processing (10 ions) 0.57 % 0.6 % 0.0 %�

top_image_processing (100 ions) 4.84 % 4.74 % 0.0 %

Table 2: FPGA resource utilization for the implemented design. The ta-
ble also shows how the resources are distributed among the different sub
modules. top_image_processing scales with the maximum number of ions
supported, here it is shown for 10 and 100 ions.

The modules top_image_processing and pixel_generator are both supplied
with a 100 MHz clock. All timing constraints are met by the implementation
procedure. Eventually, this clock will be replaced by the one provided by the
camera. As the maximum operating frequency of the Camera Link interface
is 85 MHz, I expect the timing to also hold when the design is used with an
actual camera.

4.5 Functional verification

I created the Verilog module pixel_generator which simulates the behavior
of the frame grabber. Once the reset period is over, the module continuously
sends frames with a certain idle time between frames. This idle time is one
of the parameters given to the module along with the number of pixels in x
direction (width) and y direction (height), and the number of clock cycles
between two lines. The outputs of the module are the three video sync
signals frame_valid_o , line_valid_o , data_valid_o and the pixel intensity
data_o . For simplicity, data_o has the same value as the x coordinate as
the corresponding pixel. Simulating a real image in the programmable logic
would be harder and, in fact, unnecessary to verify the correct behavior of
the model. What we need to check is, whether the value in camera_counts

corresponds to what we expect given certain mask calibration values. To
have a value for camera_counts to compare to (a "golden model"), I wrote
a small Python script which calculates the accumulated pixel counts based
on the mask values.

As a first step, I tested top_image_processing using the Vivado Simulator.
This uses a behavioral model for the BRAMs which store the configuration
data. Once the correct functioning has been verified, I moved on to test the
module after the FPGA has been programmed. To view the camera_counts

and other signals, I used an ILA core. This way I could verify that the pixel
values are indeed correctly summed up and that the configuration data (mask

20

and thresholds) is correctly accessed by the image processing algorithm.

Fig. 8 shows a screenshot of the ILA waveforms that were generated as part
of the verification procedure. I tested the module for N_ion_max = 7. The
first seven signals are the camera_counts registers. The values seen in the
figure match with what the "Golden model" predicted. The screenshot also
shows how the registers are reset to 0 after a frame has passed. This reset
is triggered by the signal data_valid_o (second last in the figure), which is
high in the clock cycle after a full frame has passed.

Figure 8: ILA waveforms showing the camera_counts registers. The values
match with what is predicted by the Python script. One can also see in the
right of the screenshot that the registers are reset to zero. This is triggered
by the second last signal data_valid_o , which is high in the clock cycle after
the last pixel of a frame (one clock cycle is too narrow to see in the figure).

5 Possible next steps

5.1 Integrate frame grabber and test with camera

One of the next steps would be to integrate the frame grabber module,
developed by Giacomo Bisson, into the design and test it with the camera
currently used for readout in the eQual experiment of the TIQI group, the
Nuvu HNU128. The first thing we need to see is whether the algorithm
correctly detects a new frame and starts the thresholding process. This can
be done easily by making use of the ILA. Verifying that the accumulation is
done correctly, is a bit more cumbersome: One needs to monitor the pixel
intensity values using the ILA, export these values from Vivado to the Python
script (the "Golden model") and then compare the accumulated values from
the Python script with camera_counts from the ILA. Another option is to
configure the camera to send a known test image - however not all cameras
support this feature.

21

5.2 Integration into experimental control system

As mentioned before, there is currently no option to retrieve the results of
the algorithm, i.e. the bit string of length N_ion_max containing the states
bright (= 1) and dark (= 0), except using the ILA. As a first step towards
integrating our platform into the current experimental control system, one
can take the Transmitter module used in Schwegler’s version. It implements
a fast serial communication protocol for sending the ion states (see Chap.
2.1 in [6]). Similar to our new image processing scheme, it was designed
to be scalable to an arbitrary number of ions, so there are no compatibility
issues with the newly designed platform. Also, by using an interface that is
already successfully used, the integration into the control system will need
less debugging.

For determining the ideal threshold prior to the actual experiment, we need
to transfer the counts and ion states to the control PC. This can be either
done by adding additional AXI GPIO modules from which the processor can
read the result or by storing the counts inside another dual port BRAM.

5.3 Send and receive commands for the camera

To control the camera, set parameters such as (amongst others) readout
mode or exposure time, and receive answers from the camera, we can use
ASCII commands which are sent via a UART interface which is integrated in
Camera Link (CL): There are two dedicated LVDS pairs in the CL interface
for the RX and TX signals. As mentioned in 2.2, Giacomo Bisson used the
UARTlite IP core from Xilinx for this and tested the functionality with a
camera [8]. I have already added the relevant IP cores and IO buffers in the
block design available. There are, however, three things to be done, such
that this can be used in our design:

1. Our setup uses a different camera than what Bisson tested the module
with. So as a first step, one needs to verify that we can also send and
receive ASCII characters with the Nuvu camera.

2. The implementation of Xilinx’ UART Lite module uses a FIFO of
length 16 to buffer the data it receives [12]. Because the answers from
the camera can be (and usually are) longer than 16 bytes, one needs
to write C code which handles this, e.g. by continuously checking
whether the FIFO is non-empty and reading from it, until the character
sequence "OK" is received (this marks the end of the camera’s answer).

3. Currently, the C code does not support sending messages back to the
PC. However, I did test (with dummy data) how one can do this in
general, so I can give a quick overview on which modifications need to
be done in order to make this work:

22

• The function which is responsible for sending data on a TCP
connection is called tcp_write . The function signature is shown
in Listing 3. The first argument pcb is a struct containing all the
information about the current connection, arg is a pointer to the
actual data that is to be sent, len is the length of the data in
bytes, using apiflags one can change settings. tcp_write only
enqueues the data for sending, it does not send it right away. lwIP
automatically groups data together in larger groups because this
is more efficient. If one wants to send the data right away, one
has to call tcp_output following tcp_write .

• One should enclose the call to tcp_write with an if statement as
shown in Listing 3. This ensures that we only enqueue data for
sending if the send buffer is large enough (otherwise data might
be lost).

• As described in Sec. A.1.3, the Ethernet application actually
processes the data when execute_job is called. Currently, the
only argument of this function is of type struct w_job . Because
tcp_write also needs the current value of struct tcp_pcb , one
would need to pass this down from the receive callback function
to execute_job .

• Information on how to interact with the UART device drivers and
examples are given at Xilinx’ GitHub7.

1 err_t tcp_write (struct tcp_pcb* pcb,

2 const void* arg,

3 u16_t len,

4 u8_t apiflags

5)

6

7 if (tcp_sndbuf(pcb) > len) {

8 err = tcp_write(pcb, arg, len, apiflags);

9 }

Listing 3: Function signature of tcp_write

7https://github.com/Xilinx/embeddedsw/tree/master/XilinxProcessorIPLib/
drivers/uartlite

23

https://github.com/Xilinx/embeddedsw/tree/master/XilinxProcessorIPLib/drivers/uartlite
https://github.com/Xilinx/embeddedsw/tree/master/XilinxProcessorIPLib/drivers/uartlite

6 Conclusion

The main purpose of this project was to adapt and test a quantum state
discrimination algorithm on the new hardware platform Mars XU3 + EB1,
based on real-time processing of an image from an EMCCD camera. The
algorithm was designed such that it makes use of the FPGA resources more
efficiently. The necessary configuration data is supplied by a custom Ethernet
application, which exchanges data with a PC running a simple Python script
also created during this project.

It was demonstrated that this new platform can provide the same image
processing capabilities required for quantum information processing as the
platform which is currently in use while using approximately 6x less hardware
resources compared to the current solution deployed in the TIQI group.
It was also shown that the new design can support the parallel readout
of up to 100 ions while only using about 16 % of the available hardware
resources. This leaves room for possible augmentations of the algorithm
in the future, as well as other additional functionality. Despite extensive
changes in the hardware design, no additional latency was introduced which
makes this platform also suitable for experiments which include feedback
based on the measured quantum states of the qubits. Also, because the
Ethernet application was entirely written by us, it can be easily customized
by the user. The on board processor also opens the way for CPU based
image processing applications.

As of now the platform is not in its final state (i.e. it cannot be used in
quantum information experiments now), but there is a clear road map on
how to get there (see Sec. 5). The frame grabber developed by Bisson [8]
needs to be implemented in our design and tested with the Nuvu camera.
We need to interface the new platform with the current experimental control
system. This also requires our setup to be able to send commands to the
camera. Sec. 5.3 explained in detail which steps remain to be taken in order
to achieve this.

24

References

[1] P. W. Shor. “Scheme for reducing decoherence in quantum computer
memory”. In: Physical Review A 52.4 (Oct. 1, 1995). Publisher: Amer-
ican Physical Society, R2493–R2496.

[2] J. Roffe. “Quantum Error Correction: An Introductory Guide”. In:
Contemporary Physics 60.3 (July 3, 2019), pp. 226–245. arXiv: 1907.
11157.

[3] S. Haroche and J.-M. Raimond. Exploring the Quantum: Atoms, Cav-
ities, and Photons. Publication Title: Exploring the Quantum. Oxford
University Press, Aug. 2006.

[4] H. Häffner, C. F. Roos, and R. Blatt. “Quantum computing with
trapped ions”. In: Physics Reports 469.4 (Dec. 1, 2008), pp. 155–203.

[5] A. H. Burrell. “High fidelity readout of trapped ion qubits”. PhD thesis.
Oxford University, UK, 2010.

[6] N. Schwegler. “Towards Low-Latency Parallel Readout of Multiple
Trapped Ions”. Master thesis. Zürich: ETH Zürich, Oct. 16, 2018.

[7] A. Radhakrishnan. “Low Latency Parallel Readout of Multiple Trapped
Ions Using Field Programmable Gate Array”. Semester thesis. Zürich:
ETH Zürich, Apr. 2021.

[8] G. Bisson. “FPGA based Fast Camera Readout and Laser Beam Pro-
filing”. Semester thesis. Zürich: ETH Zürich, June 2021.

[9] “Transmission Control Protocol Darpa Internet Program Protocol Spec-
ification”. Information Sciences Institute, University of Southern Cali-
fornia, Sept. 1981.

[10] A. Dunkels. “Design and Implementation of the lwIP TCP/IP Stack”.
Thesis. Swedish Institute of Computer Science, Feb. 20, 2001.

[11] Xilinx. AXI Block RAM (BRAM) Controller v4.1: LogiCORE IP Prod-
uct Guide. May 22, 2019.

[12] Xilinx. AXI UART Lite v2.0: LogiCORE IP Product Guide. Apr. 5,
2017.

25

https://arxiv.org/abs/1907.11157
https://arxiv.org/abs/1907.11157

A Appendix

A.1 Code for Ethernet application

This section contains details about the software implementation of the Ether-
net application. It presents the source code of the most important functions,
as well as pseudocode to support the understanding of the working principle.

A.1.1 Starting the application

Listing 4 shows parts of the function start_application , which configures
the application to act as a server. The error handling parts ([...]) have been
omitted for better readability. The variables of type struct tcp_pcb contain
all the relevant information about the current state of the TCP application.
The function tcp_listen_with_backlog (line 16) tells the software to listen
for incoming connections and to accept at most 1 at a time.

1 void start_application(void** current_job)

2 {

3 err_t err;

4 struct tcp_pcb *pcb, *lpcb;

5

6 /* Create Server PCB */

7 pcb = tcp_new_ip_type(IPADDR_TYPE_ANY);

8 [...]

9

10 err = tcp_bind(pcb, IP_ADDR_ANY, TCP_CONN_PORT);

11 [...]

12

13 /* Set connection queue limit to 1 to serve

14 * one client at a time

15 */

16 lpcb = tcp_listen_with_backlog(pcb, 1);

17 [...]

18

19 /* We pass the pointer to the current job as an argument */

20 tcp_arg(lpcb, current_job);

21

22 /* specify callback to use for incoming connections */

23 tcp_accept(lpcb, tcp_server_accept);

24

25 xil_printf("The application has been started.\r\n");

26

27 return;

26

28 }

Listing 4: Function start_application

The functions tcp_arg and tcp_accept serve an important purpose in terms
of the callbacks mentioned in Sec. 3.1. tcp_accept (line 23) tells the ap-
plication to call the function tcp_server_accept (see Listing 5) when the
event "New connection accepted" happens. Every callback function (such
as tcp_server_accept) has as its first argument void *arg . Using the func-
tion tcp_arg (line 20) we specify that current_job will be passed to every
callback function. (Note that current_job is of type void** whereas it
is passed as void* to the callback function. We will need to take care to
correctly interpret this pointer! More details in Appendix A.1.2)

As an example, consider Listing 5. This function is called whenever a new
connection is established. Its main purpose is to specify new callback func-
tions (e.g. in line 14: when data is received on this connection, call
tcp_recv_perf_traffic).

1 static err_t tcp_server_accept(void *arg, struct tcp_pcb *newpcb,

2 err_t err)

3 {

4 if ((err != ERR_OK) || (newpcb == NULL)) {

5 return ERR_VAL;

6 }

7 /* Save connected client PCB */

8 c_pcb = newpcb;

9

10 print_tcp_conn_stats();

11

12 /* setup callback functions for the current connection */

13 tcp_arg(c_pcb, arg);

14 tcp_recv(c_pcb, tcp_recv_perf_traffic);

15 tcp_err(c_pcb, tcp_server_err);

16

17 return ERR_OK;

18 }

Listing 5: Accept callback function

27

A.1.2 Code for receive callback function

To access the same instance of struct w_job across multiple calls of
tcp_recv_perf_traffic , we use the variable arg which is passed to every
callback function and has to be interpreted as void** . The reason for this
is that the variable of type struct w_job will only be dynamically allocated
from within tcp_recv_perf_traffic . malloc will return a pointer to the new
instance of struct w_job and we make arg point to this pointer. Listing 6
shows how this is done in the function process_pbuf , which is called from
within tcp_recv_perf_traffic . We first have to cast arg to type void**

and then check whether *arg_point is a NULL pointer. If so, we have to
create a struct w_job , otherwise we interpret *arg_point as a pointer to
struct w_job .

1 err_t process_pbuf(void* arg, u16* payload_len, char** payload_point){

2 [...]

3 void** arg_point = (void**)arg;

4 struct w_job* current_job;

5

6

7 if(*arg_point == NULL) {

8 //This means there exists no struct w_job yet

9 // −> beginning of a new message

10 *arg_point = malloc(sizeof(struct w_job));

11 [...]

12

13 current_job = *((struct w_job**)arg_point);

14 [...] //actual copying of the data from pbuf to w_job

15

16 } else {

17 //parts of the message have been read in previous calls of

18 //tcp_recv_perf_traffic

19 current_job = *(struct w_job**)arg_point;

20 [...] //actual copying of the data from pbuf to w_job

21 }

Listing 6: Parts of function process_pbuf

To illustrate the idea behind the algorithm of tcp_recv_perf_traffic con-
sider Pseudocode 1. The small right arrow means we access a variable inside
a struct (as in C syntax). The names of the variables in the pseudo code
are the same as in the actual C code. payload_point points to the first un-

28

read byte in the current pbuf, payload_len indicates how many bytes have
not been read yet in the current pbuf. The first if statement distinguishes
the case where the pbuf chain is longer than one or not. Then we enter a
while loop, which repeatedly executes a function to buffer the contents of
the payload until everything has been buffered (i.e. payload_len is zero).

Pseudocode 1 tcp_rcv_perf_traffic
Input: void *arg, struct pbuf *p

if p→next 6= NULL then
current_pbuf ←− p
while current_pbuf 6= NULL do

payload_point ←− current_pbuf→payload
payload_len ←− current_pbuf→len
while payload_len 6= 0 do

execute process_pbuf(arg, adr(payload_len), adr(payload_point))
end while
current_pbuf ←− current_pbuf→next

end while
else {p→next = NULL}

payload_point ←− p→payload
payload_len ←− p→len
while payload_len 6= 0 do

execute process_pbuf(arg, adr(payload_len), adr(payload_point))
end while

end if

In Pseudocode 2 the overall working principle of process_pbuf is explained
(heavily simplified: Most variables are member variables of current_job ,
which is of type struct w_job . I omitted writing " current_job−> " for easier
readability.) The reason why this function is so long and convoluted is
because we don’t know how many bytes will be presented to us in the pbuf.
It may well be (however rather unlikely) that, for example, not all 11 bytes
of the header are contained within on pbuf. This is why we check in line 5
whether payload_len is smaller then the header size. If not, we can interpret
the bytes of the header in line 15 and start reading the actual payload in line
16. Then, we check whether we have already received the whole message (i.e.
compare recv_bytes with what we expect, num_bytes). If this is true, we
call the function execute_job , which actually performs the operation that
we intended to do with the message we sent. More on this in the next section.

A.1.3 Levels

The first byte of the header carries the information on how the payload of
the message should be interpreted. We call it the level variable, which is
a part of struct w_job (see Listing 1). The function execute_job essen-
tially consists of a switch statement, which depending on level executes
a function specific to the required functionality. For example, if level is

29

Pseudocode 2 process_pbuf
Input: void* arg, u16* payload_len, char** payload_point

if arg is a NULL pointer (see Listing 6) then
current_job ←− allocate memory for struct w_job
header_pos ←− 0
recv_bytes ←− 0

5: if payload_len < HEADER_LEN (i.e. 11) then
copy payload_len bytes from payload_point to header
header_pos ←− payload_len
payload_len ←− 0

else
10: copy HEADER_LEN bytes from payload_point to header

header_pos ←− HEADER_LEN
payload_len ←− payload_len - HEADER_LEN
payload_point ←− payload_point + HEADER_LEN

15: resolve_header(current_job) {Filling the variables from Listing 1}
read_payload(current_job, payload_len, payload_point)

end if
if num_bytes = recv_bytes then

execute_job(current_job)
20: end if

else
current_job ←− arg
if header_pos 6= HEADER_LEN then

if payload_len < HEADER_LEN - header_pos then
25: copy payload_len bytes from payload_point to (header + header_pos)

header_pos ←− header_pos + payload_len
payload_len = 0

else
copy HEADER_LEN - header_pos bytes from payload_point to (header +
header_pos)

30: payload_len ←− payload_len - (HEADER_LEN - header_pos)
payload_point ←− payload_point + HEADER_LEN - header_pos

resolve_header(current_job)
read_payload(current_job, payload_len, payload_point)

35: end if
else

read_payload(current_job, payload_len, payload_point)

if num_bytes = recv_bytes then
40: execute_job(current_job)

end if
end if

end if

30

equal to 1 (meaning it is ROI/mask data), the function execute_mask is ex-
ecuted (defined in levels.c). This function interprets six consecutive bytes
as three 16 bit numbers (x, y, ion) and writes them to the BRAM as will be
explained in Sec. 4.2.1.

To add additional functionality to the application, the user has to follow
these steps:

1. Add a new level to the level_t enum type in w_job.h

2. Write a function in levels.c which interprets the raw bytes from the
payload and processes them (similar to execute_mask)

3. Add a new case to the switch statement in execute_job which calls
the new function if level happens to have that value.

A.1.4 Writing mask data to BRAM

Listing 7 shows a part of the function execute_mask that writes the mask
calibration data to the BRAM. The code expects that the mask data is
sending a sequence [x, y, ion number, x, y, ion number, x, ...] with 3 ×
number of ions× size of ROI numbers.

1 //j is a pointer of type struct w_job (see Listing 3)

2 char* point = j−>data_point; //points to the first byte in the payload

3

4 u16 num[4];

5 u32 offset = 0;

6

7 //j−>write_point points to the location behind the last byte

8 while (point != j−>write_point) {

9

10 //the masks come as [x, y, ion_no, x, y, ion_no, ...]

11 //where ion_no, x and y are all 16−bit unsigned integers

12 for (int i = 0; i < 3; i++) {

13 //interpret 2 consecutive bytes as 16−bit unsigned integer

14 num[i] = (u16)*point | (u16)*(point + 1) << 8;

15 point = point + 2;

16 }

17 num[3] = 0;

18

19 u32 num1 = *(u32*)num;

20 u32 num2 = *(u32*)(num + 2);

21 //bram.Config.MemBaseAddress is the AXI base address of the

22 //AXI BRAM Controller

31

23 XBram_Out32(bram.Config.MemBaseAddress + offset, num1);

24 XBram_Out32(bram.Config.MemBaseAddress + offset + 4, num2);

25

26 offset = offset + 8;

27 }

Listing 7: Part of the function execute_mask which writes the mask triplets
(x, y, ion) to the BRAM

A.2 Recreate Vivado project from GitLab

The Vivado project can be found in the TIQI GitLab within the "Parallel
Readout Vivado" repository. The directory structure looks as follows:

/
python
scripts
src

bd
Mars_XU3

constr
hdl

tb
ip

The scripts directory contains a tcl script, which recreates the Vivado
project based on the files in the directories above. I decided to also include
all files associated to the Block design and the IP cores in the repository (in
contrast to only including a script which recreates the block design), following
Xilinx’ recommendation for using Vivado with revision control systems.8 The
advantage of this approach is that using this approach the project does not
need to be recreated with the same version of Vivado which it was created
with.

The python repository contains a Python script ("Golden model") which
simulates the behavior of the thresholding module (see Sec. 4.5).

A.3 Recreate Vitis project from GitLab

The Vitis project can be found in the TIQI GitLab within the "Parallel
Readout Vitis" repository. It only contains the "Application Project" (which
includes the C source files for the user, but no hardware information, device

8https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/
ug892-vivado-design-flows-overview.pdf

32

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug892-vivado-design-flows-overview.pdf

drivers or build files). So to recreate the entire Vitis workspace, one has to
follow these steps.

(The application project was created with Vitis 2020.1, but I tested the
following procedure with Vitis 2020.2)

1. Open Vitis and create a new Platform Project (I called it MARS_EB1
in this example). Select the .xsa file that was created by Vivado when
exporting the hardware platform (use options "Fixed" and "Include
bitstream, when exporting the hardware).

2. Keep the default options for "Operating system", "Processor", "Archi-
tecture" and "Boot components".

3. Clone the GitLab repository to you local machine (do not clone it
into the Vitis workspace, it is easier to keep the source files and the
workspace seperate)

4. Back in Vitis select "File" -> "Import...". The "Import Projects" will
pop up. Select "Import projects from Git". On the next page select
"Existing local repository". Add the path to the git repository and hit
next. Make sure that "Import existing Eclipse projects" is selected.
If everything is done right, the last page will look as in Fig. 9a. Hit
"Finish".

(a) (b)

Figure 9: (a) Importing the git project into the current Vitis workspace.
(b) How the Vitis explorer should look like after steps 1-5 are completed.

5. There might be an error message "Platform ’...’ could not be resolved
to a valid platform. [...]" Select "Change referred platform" and ignore

33

the following "Failed to read the system project settings for ’TCPTest’"
message.

6. In the explorer (see Fig. 9b) on the left, double click on "TCPTest_system.sprj".
Make sure that the selected "Platform" is the Platform Project that
we have created in step 1. If not, click on the three dots and select it.

7. Double click on "platform.spr" in the explorer and then on "Board
Support Package" beneath "standalone on psu_cortexa53_0". Click
on "Modify BSP Settings...", and select "lwip211". In the same win-
dow on the left, go to lwip211, and modify the following settings under
"temac_adapter_options": emac_number = 3 and phy_link_speed
= 1000 Mbps.

8. If you use version 1.2 of lwip, there should be a file called "xemacp-
sif_physpeed.c". Go to https://github.com/enclustra/GigabitEthernetAppNote
and replace this file with the file provided in this GitHub repository.

9. Build the project. If the building finishes without any errors, the ap-
plication is ready to run on the board.

All changes to the C source files in the "TCPTest" are now tracked by git
but not the build files (which are easily recreated once you have all the source
files, the building process takes max. 1 min).

34

https://github.com/enclustra/GigabitEthernetAppNote

A.4 Vivado Block design

35

�
�
��
��
�
�
�
�
�
�	

	
�

�
�
��
��
�
�
�
�
�
�	

	
�

�
�
�
�
�
�
�
�

�
	

�
�
�
�
�
�
�
�

�
�

�
��
�
	

�
��
�
	
	

�
�
��
�
	

�
�
��
�
�

�
�
�
�
�
�
�	

	
�

�
��
�
�

�
�
�
�
�
�
�
�
�
�	

	
�

�
�
�
�
�
�
�
�
�
�	

	
�

�
�
�
�
�
�
�
�
�
�	

	
�

�
�
�
�
�
�
�
�
�
�	

	
�

�
��
�

!�
"
�
#�
!�
�
	

�
�
�$

�
�
�
$�
%
&
�!
%
��'
!

�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
�
��
�
�
#�
�

��
�
��
�
�
!'
�'
�&

�
��
�

!�
"
�
#�
!�
�
�

�
�
�$

�
�
�
$�
%
&
�!
%
��'
!

�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
�
��
�
�
#�
�

��
�
��
�
�
!'
�'
�&

�
��
�
(
)
�%
�
	

�
�
�$
�
�
��

�
�
�
�
�

�
�
��

��
�
��
�
�
#�
�

��
�
��
�
�
!'
�'
�&�
��
�
(
)
�%
�
�

�
�
�$
�
�
��

�
�
�
�
�

�
�
��

��
�
��
�
�
#�
�

��
�
��
�
�
!'
�'
�&

�
��
�
��#
�
	

�
�
�$
��
�

�
�
�
�
�

��
�

�#
��
�

�#
��
%

�#
��
�

�*
�
�
�

�*
�
�
%

�*
�
�
�

��
�
��
�
�
#�
�

��
�
��
�
�
!'
�'
�&

��#
�
�&
�#
�
�!
)
�

(
)
%
�	

	
�

�
��
�
�&
�'
!#
%
&
&
'
#�
�
	

�
�
�$
�&
�'
!#
%
&
&
'
#�

�
	
	
�
�
�
�

�
	
	
�
�
�
�

�
	
�
�
�
�
�

�
	
�
�
�
�
�

�
	
+
�
�
�
�

�
	
,
�
�
�
�

�
	
�
�
�
�
�

�
	
-
�
�
�
�

�
	
.
�
�
�
�

�
�
�
/

�
�
�
�
�
�
�

�
	
	
�
�
�
�
/

�
	
	
�
�
�
�
�
�
�
�

�
	
	
�
�
�
�
/

�
	
	
�
�
�
�
�
�
�
�

�
	
�
�
�
�
�
/

�
	
�
�
�
�
�
�
�
�
�

�
	
�
�
�
�
�
/

�
	
�
�
�
�
�
�
�
�
�

�
	
+
�
�
�
�
/

�
	
+
�
�
�
�
�
�
�
�

�
	
,
�
�
�
�
/

�
	
,
�
�
�
�
�
�
�
�

�
	
�
�
�
�
�
/

�
	
�
�
�
�
�
�
�
�
�

�
	
-
�
�
�
�
/

�
	
-
�
�
�
�
�
�
�
�

�
	
.
�
�
�
�
/

�
	
.
�
�
�
�
�
�
�
�

�
��
�
0
�
!�
���
'
�
#�
"
'
!�
�
#�
!�

�
�
�$
�
�
!�
���
'

�
�
�
�
�

�
�
�
�

!� ��
��
�
��
�
�
#�
�

��
�
��
�
�
!'
�'
�&

�&
�'
!!
0
)
�

��
�
"
'
"
�
(
'
&
�
�

�%
#�
$�
'
"
%
!1
$�
'
&
'
!�
�%
!

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��#
�
�#
��
�%

0
22

�
���
��1
$

0
22
'
!

��

�
3
�
��
�
�
�	

	
�

��

�
3
�
��
�
��
	

	
�

��

�
3
�
��
�
�
�	

	
�

��

�
3
�
��
�
��
�	

	
�

��#
�
�*
�
�
�%

0
22

�
���
��1
$

0
22
'
!

��

�
3
�
��
�
�
�	

	
�

��

�
3
�
��
�
��
	

	
�

��

�
3
�
��
�
�
�	

	
�

��

�
3
�
��
�
��
�	

	
�

�'
*

�
�
�$
�
�
��

�
�
�
�
�

�
�
��

(
)
�%
�
�%
�
%
�	

	
�

��
�
��
�
�
#�
�

��
�
��
�
�
!'
�'
�&

"
�
��
�
"
'
"
%
!1

�%
#�
$�
'
"
%
!1
$�
'
&
'
!�
�%
!

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

)
!%

'
�
%
0
�	
�
	
�	

	
�

)
��
�1
��
!�
�

�
!%
#'
��
%
!$
�
1�
�'
"
$�
'
�'
�

��
%
4
'
��
�
�1
&
#�
#�
�

'
��
�
!'
�'
��
�&

�
0
��
!'
�'
��
�&

"

�
*
'

0
(
�
�1
��
!�
�

*
#"
�
�%
#�
'
*

"

�
!'
�'
�

0
��
��
!0
#�
�
!'
�'
��
	

	
�

)
'
!�
)
5
'
!�
��
!'
�'
��
	

	
�

�&
�'
!#
%
&
&
'
#�
�
�
!'
�'
�&
�	

	
�

)
'
!�
)
5
'
!�
��
�
!'
�'
�&
�	

	
�

�1
��
'
"
�
"
�
&
�
(
'
"
'
&
��
4
�6

�
1�
�'
"
$�
�
&
�
(
'
"
'
&
�$
7
�6
�
!*

�
�
�
�
��
�
��
�

8
)
�
8
&

��
�
��
�
�
#�
�

��
�
��
�
�
!'
�'
�&

�)
�
�&
�#
�
�!
)
�

0
�'
!�
�'
"
)
�
�
��
!"
�
%
0
�

9#
#�
&
��
�
��
!"
�
%
0
�

9#
#)
��
&
��)
�
�
��
!"
�
%
0
�

9#
#)
��
&
�2
)
�
�
��
!"
�
%
0
�

9#
#)
��
0
��
�
��
!"
�
%
0
�

9#
#�
0
��
�
��
!"
�
%
0
�

%
��
%
0
�

#5
�
&
&
'
��
%
0
��
�

	
�

'
%
#�
%
0
�

�
��
!"
�
%
0
�

'
%
��
%
0
�

0
�1
�
%
0
�

0
�
!�
�
!�
�
*
�
0
22

�
���
��1
$

0
22
'
!

�
�
/
�
��
�
�

�

�
3
�
�
�
�
�
�	

	
�

�

�
3
�
�
�
�
�
�	

	
�

�

�
3
�
�
�
�
�	

	
�

0
�
!�
�
��
�
*
�
0
22

�
���
��1
$

0
22
'
!

�

�
3
�
��
�	

	
�

�

�
3
�
�
�
�
�
�	

	
�

�

�
3
�
�
�
�
�
�	

	
�

9�
%
�
	

8
��
$:
8
�!
�0
�
�$�
&
)
0
�;
�
0
�)
0
�<

#�
�

)
!%

'
�
%
0
�	
�	

	
�

61
&
=
�
0
��!
�
�
)
��
'

>
1&
=
$�
��!
�
�
#�
�'
?
$�
�
�
%
�

�
�
�
�
��
@
�
�
	
�
�
�
�

"
�
��
5
)
"
	
�
�)
*
�
�
#�
�

)
��
!'
�'
�&
	

)
��
#�
�	

)
��
#�
��

	Introduction
	Hardware platform
	Advantages of the new hardware
	High level view of the design

	Ethernet communication
	LightWeight IP (lwIP)
	Structure of the Ethernet message
	Implementation - Zynq
	Struct for buffering received data
	Receive callback function

	Implementation - PC

	Image Processing Algorithm in Programmable Logic
	Structure of the design
	Memory for storing calibration data
	Mask coordinates
	Threshold values

	Thresholding algorithm
	Resource utilization and timing analysis
	Functional verification

	Possible next steps
	Integrate frame grabber and test with camera
	Integration into experimental control system
	Send and receive commands for the camera

	Conclusion
	References
	Appendix
	Code for Ethernet application
	Starting the application
	Code for receive callback function
	Levels
	Writing mask data to BRAM

	Recreate Vivado project from GitLab
	Recreate Vitis project from GitLab
	Vivado Block design

