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Abstract

This Master’s semester project aims to optimise the coupling of a laser beam into an
optical fibre using an optimisation algorithm. To this end, a genetic algorithm (GA)
is implemented on a micro-controller ESP32 that orchestrates the movement of 4 servo
motors, adjusting two mirrors to achieve optimal fibre coupling. Parameter optimisation
experiments with the GA identify that a mutation rate of 0.1, a population size of
70 with 5 elite individuals, and a maximum of 30 generations produce a robust and
effective algorithm, resulting in a module capable of replacing manual fibre coupling
in experimental procedures. Challenges encountered include defining optimal stopping
criteria and addressing signal fluctuations. Finally, further enhancements of the GA
involving the integration of additional optimisation algorithms are highlighted.
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Chapter 1

Introduction

1.1. Motivation

Coupling a laser to an optical fibre is essential for the optical setup in many experiments.
However, the manual process can be tedious and inefficient. Additionally, environmen-
tal factors such as mechanical stress on the setup or other influences can degrade the
coupling over time, necessitating frequent re-coupling. This inefficiency in experimental
setups highlights the need for process automation. The aim of this semester project is
to automate the re-coupling of the laser into the optical fibre when the laser’s alignment
drifts and coupling efficiency decreases.

Before delving into the specifics of optical fibres and fibre coupling tools, an overview
of the tools and methods used in this semester project is provided.

To automate the re-coupling process, embedded programming was employed to im-
plement an optimisation algorithm on an ESP32 micro-controller. This micro-controller
controls four servo motors, which adjust the positions of two mirrors. The alignment of
these mirrors relative to the incoming laser beam affects the efficiency of the laser cou-
pling into the fibre. The output from the fibre is measured using a photodiode, and the
analogue signal is converted to digital via an Analog-to-Digital Converter (ADC). This
digital feedback signal is then used by the algorithm to optimise the coupling efficiency.

1.2. Optical fibre and fibre Coupling

In this section, a brief overview of optical fibres and the fundamentals of fibre coupling
is provided.

Optical Fibre Optical fibres confine light and transmit it efficiently over long dis-
tances. They are widely used in optical setups due to their excellent ability to carry stable
signals with minimal loss and low interference from external electromagnetic sources.

The fibre mode describes specific solutions to Maxwell’s equations, representing stable
patterns of electromagnetic fields within the fibre. Single-mode fibres, with smaller diam-
eters, exclusively support a single Gaussian mode, namely the fundamental Transverse
Electromagnetic mode (TEM00). Multi-mode fibres support multiple modes or solutions
of light waves.
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1. Introduction

The basic structure of an step-index optical fibre consists of a core surrounded by
cladding. The core diameter varies in size, typically around 9 µm for single-mode fi-
bres and 50 to 62 µm for multi-mode fibres. Thus, this difference in diameter leads to
fundamentally different behaviour.

The Numerical Aperture (NA) measures the fibre’s ability to collect light, defining the
range of angles over which the fibre can accept incoming light. The NA is influenced by
the fibre’s core size: a smaller core results in a wider acceptance cone, leading to a larger
NA.

Furthermore, the coupling efficiency describes how effectively incoming light is trans-
mitted into the fibre. It is determined by the overlap integral of the Gaussian mode of the
laser beam and the Gaussian (fundamental) mode of the fibre. Therefore, the efficiency
is high when the fibre’s spot size closely matches the mode size of the light source.

Laser-to-Fibre Coupling In this project, the focus lied on coupling a free-space laser
beam to an optical fibre, specifically not fibre-to-fibre coupling. The laser beam must
be incident on a fibre collimator connected to an optical fibre. The lens of the fibre
collimator focuses the parallel beam into the fibre, ensuring proper mode matching. [1],
[2]

When coupling a laser to a fibre, six degrees of freedom are considered: The first
four include the coordinates xi and yi of the laser beam incident on the plane of the
optical fibre, and the angles of the beam relative to the perpendicular of the fibre’s
plane, namely θx,i and θy,i . The remaining two degrees of freedom are the the focal
length of the collimator, as well as the distance between the fibre collimator lens and the
fibre endface. However, these two parameters are stable and cannot be easily modified:
The focal length is fixed by the geometry of the collimator’s lens, and since the optical
fibre is mounted into the fibre collimator, this degree of freedom also remains unchanged.

Manual Fibre Coupling Manual fibre coupling is a tiresome tasks that begins with
attaching a light pen to the output end of the fibre to send laser light through it. This
allows both the laser and light pen to transmit through the fibre and collimator in
opposite directions. In a first step, one aims for maximal overlap between the laser beam
and the light pen’s beam by adjusting the aforementioned four degrees of freedom. This
step ensures some degree of fibre coupling.

In order to enhance the coupling, the light pen is subsequently replaced with a power
meter to precisely measure the coupling efficiency. The alignment is then refined through
a technique called ’Beam Walking’, wherein two interrelated degrees of freedom are iter-
atively adjusted until an optimal signal is attained. These degrees of freedom can either
be the vertical displacement of the laser beam relative to the perpendicular of the optical
fibre and the laser’s angle relative to it, or the horizontal displacement and angle.
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1.3. Electronics

1.3. Electronics

This thesis project is multifaceted as it integrates optical, electrical, and software compo-
nents into a singular system. The primary motivation behind this module is its flexible
integration into various experimental setups. Therefore, the software runs on embedded
systems, resulting in an independent, modular system.

The electronic components of the module are responsible for managing optical signals
(received by a photodiode) and controlling servo motors. Detailed descriptions of these
components and their integration within the system are provided in the following sections.

1.4. Optimisation Algorithm

The objective of this semester project was to employ an optimisation algorithm to achieve
optimal fibre coupling. An overview of typical and suitable optimisation algorithms
for this specific problem is presented, followed by a detailed description of the genetic
algorithm used in this project. In order to perform fibre coupling, the algorithm aims
to find the optimal 4 mirrors’ positions to maximise the photodiode signal F , which
measures the optical power transmitted through the optical fibre. In this sense, one has
4 variables x, θx, y, θy and a fitness function F .

Grid Search Grid search is an optimisation technique that methodically evaluates the
fitness of a set of coordinates corresponding to specific combinations of parameters within
a predefined space. Prior to applying the algorithm, this space must be explicitly defined
by specifying the lower and upper bounds of each parameter, as well as the intervals
between discrete steps. As implied by its name, grid search systematically traverses this
grid, computing the objective function for each coordinate. Ultimately, it identifies the
parameter set that yields the optimal performance. The algorithm inherently converges
upon evaluating all possible combinations within the grid. However, it is also possible to
terminate the search early upon achieving a predefined performance target. [3] [4] [5]
This exhaustive search method can be further refined by applying more focused search
techniques, such as random search or Bayesian optimisation, around the region of in-
terest identified in the initial grid search iteration. Random search involves the random
selection of coordinates and is often effective in high-dimensional spaces. [6] The more
sophisticated Bayesian optimisation technique employs a probabilistic model to selec-
tively and purposefully explore the most promising regions of the grid. [4] [5] [7]
One advantage of grid search is its straightforward implementation and result traceabil-
ity. However, the algorithm is computationally expensive, as the grid size grows expo-
nentially with each additional parameter. Consequently, this method is only appropriate
for low-dimensional spaces and objective functions that require minimal computational
resources.
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1. Introduction

Gradient Descent Gradient Descent is an advanced mathematical technique that it-
eratively finds a local minimum by calculating the gradient of the objective function. The
core idea is to compute the gradient of a convex, differentiable, multi-variable function
f at a point a and move in the direction opposite to the gradient in small, adjustable
steps α. The vector x is then iteratively optimised according to Equation 1.1. This
process produces a monotonically decreasing sequence of coordinates f(xn) ≥ f(xn+1),
converging to the optimum a.

xn+1 = xn − αn∇f(xn) (1.1)

For gradient descent to be applicable, the objective function must be differentiable, to
allow computation of gradients, and convex, to ensure that the local minimum is also
the global minimum. Further, the step size, or learning rate α, is crucial. If α is too
large, the algorithm may overshoot the optimum and fail to converge as seen in figure
1.1. Conversely, if α is too small, the algorithm will require many iterations and may not
converge within a reasonable number of steps.

This method is extensively used in complex optimisation tasks, such as parameter
optimisation in machine learning applications.

Gradient descent typically aims to find a local or global minimum. Conversely, gradient
ascent is used to find a local or global maximum, by applying the same technique to
−f(x).

Despite the advantages of this optimisation algorithm, it was decided not to apply it
due to the following reasons: Firstly, the explicit form of the fitness function F is un-
known. This necessitates measuring the photodiode signal Fi for multiple configurations
xi, θx,i, yi, and θy,i. From this dataset Fi, one could introduce small perturbations to the
parameters, compute the resulting fitness, and estimate the partial derivative to approx-
imate the gradient. While this perturbative approach to gradient descent is intriguing,
it would be computationally expensive and yield only approximate results. [8] [9]

Genetic Algorithm As implied by its name, the genetic algorithm draws inspiration
from biological evolution. Analogous to a species, the algorithm operates with a popu-
lation comprising individuals characterised by diverse genetic configurations. Through
mating, these individuals produce offspring that inherit genetic traits from their parents.
Over successive generations, natural selection favours the reproduction of more successful
individuals while less fit offspring are phased out. This process, driven by the principle of
"survival of the fittest," facilitates the algorithm’s convergence towards optimal solutions.
In other words, the genetic algorithm aims to simulate evolutionary principles within a
computational framework. With each generation, the algorithm evaluates and refines
the current solutions. The iterative improvements are coupled with mutation to explore
new spaces efficiently. As a result, it offers a robust methodology for solving complex
optimisation and search problems across various domains. A more detailed description
of the genetic algorithm can be found in section 2.3. [11], [12], [13]
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1.4. Optimisation Algorithm

Figure 1.1.: The left plot depicts the iterative process of gradient descent to reach the
local minimum. On the right image, one can observe how the large step size
α prohibits the algorithm to correctly converge. [10]
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Chapter 2

Methods

The project’s setup required integration of optical, electrical, and software components,
detailed below.

2.1. Electrical Components

The electrical components of this project included 4 servo motors controlled by a micro-
controller and servo driver.

2.1.1. Servo Motors

Servo motors are motors controlled by Pulse Width Modulation (PWM), where the
rotation angle of the motor’s arm is determined by the duration of the electrical pulse
applied. In our setup, servo motors are connected to the screws of mirror mounts.
Rotating the servo motors adjusts the mirrors within the mounts, thereby controlling
the fibre coupling alignment through electronic signals from the ESP32 micro-controller.
For this project the servo motor ’A12 610’ by KST was used. The servo is fast, robust
and has a range of ±50◦.

2.1.2. Electrical Setup

The micro-controller used in this setup is an ’Olimex ESP32-POE-ISO-WROVER’ with
Power over Ethernet (PoE) capability. It interfaces with an ’SparkFun Qwiic 12 Bit’
Analog-to-Digital Converter (ADS1015) and an ’Adafruit 16-Channel 12-bit PWM/Servo
Driver’ (PCA9685). The Adafruit board connects to the 4 servo motors, allowing for pre-
cise control over their movements. The ADC converts the continuous analogue signal from
the photodiode into a digital signal, providing feedback to the optimisation algorithm.

2.2. Optical Setup

Central to this project is the optical breadboard, on which a laser, a fibre collimator
with an attached optical fibre, and two mirrors are mounted as shown in Figure 2.1. The
mirrors are crucial for directing the laser beam into the optical fibre. Each mirror is
mounted on a mirror mount that allows tilting along two axes, thereby controlling two
of the four degrees of freedom previously discussed. The adjustment screws of the mirror
mounts are coupled to the servo motors to facilitate electronic adjustment. The custom

6



2.3. Genetic Algorithm

Figure 2.1.: Optical setup: The laser is directed by two mirrors into the fibre (collimator).
Each mirror is mounted onto the custom module introduced in Figure 2.2
and connected to two servo motors. This connection allows the mirror to be
tilted according to the movement of the servo arms controlled by the micro-
controller.

modules were designed specifically for this project to securely fasten servo-controlled
mirror mounts. See Figure 2.2 for details.

2.3. Genetic Algorithm

The fundamental building blocks of a genetic algorithm (GA) are the individuals that
form a population, a fitness function for evaluating individuals, the parent selection
method, the crossover and mutation methods, and termination conditions. The process of
generating a new population based on the previous generation is depicted in figure 2.3. It
involves the repetition of parent selection, (genetic) crossover, mutation, and performance
evaluation. Various techniques exist for implementing each of these fundamentals. This
section delves deeper into the techniques chosen for this project.

Individual The population of a generation consists of individuals, or chromosomes.
For this project, each chromosome is structured as an ordered array of 4 angles and a
fitness value. As previously discussed, there are 4 degrees of freedom to control in this
optical setup, managed by the servo motors that adjust the mirrors to the desired angles.
These four angles are translated into the array structure of each chromosome. The fitness
of each chromosome is determined by the output signal of the photodiode, converted by
an Analog-to-Digital Converter (ADC).

7



2. Methods

Figure 2.2.: Custom module for servo-controlled mirror mounts: The arms of the servos
connect to the mirror mounts, allowing for the servos to control the position-
ing of the optical mirror and thus control 2 degrees of freedom. The servos
are further connected the an electric control system, which is not pictured
here.

Figure 2.3.: Genetic Algorithm Process: Each individual in the initial population is eval-
uated based on its performance. Individuals are then selected as parents
to produce offspring through mating. The offspring inherit genetic material
from their parents, with potential adjustments introduced through mutation.
The new generation is subsequently evaluated to determine if the stopping
criteria have been met.[14]
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2.3. Genetic Algorithm

Population Initialisation The algorithm is based on the evolution of a population,
necessitating an initial population. The goal is to produce a robust algorithm that
achieves high fibre coupling quality regardless of the initial population. Therefore, the
population initialisation method is based solely on randomness, where 4 random angles
are generated within a symmetrical range around 0 degrees of deflection for each chro-
mosome. This is practical since initial manual coupling is performed with servo arms set
at 0 degrees, enabling the algorithm to maximise coupling from this baseline.

Parent Selection To produce offspring, the genes of two parents need to be combined.
The selection of parents significantly impacts the genes passed through generations, de-
termining the algorithm’s success. Various selection methods exist; here the ’Roulette
Wheel’ method was chosen, which favours parents in proportion to their fitness compared
to the total fitness of the generation. This ensures successful individuals are chosen more
frequently for reproduction. Additionally, this method can be made more aggressive or
elitist by propagating some of the best-performing chromosomes unchanged to the next
generation, known as ’Elitism’. Other selection methods include:

• Truncation Selection: Chromosomes are ranked based on fitness, and parents are
chosen randomly from the top-performing individuals.

• Rank-Based Selection: Similar to Truncation, but selection probability is dis-
tributed according to rank rather than absolute fitness.

• Tournament Selection: A random subset of chromosomes is formed, from which
the highest-performing individuals are selected as parents.

• Steady-State Selection: Most chromosomes pass to the new generation unchanged,
with only a few parents selected to produce offspring.

• Random Selection: Parents are chosen randomly.

All methods share similarities but differ in the number of unchanged members passed to
the new generation and the randomness factor in selecting successful parents. Balancing
elitism and exploration is crucial, and this project aimed to achieve this balance by
combining the Roulette Wheel method with Elitism. This approach allows fitness-based
favouritism while ensuring exploration. Early generations benefit from gene pool variance
to avoid early stagnation and local optima convergence.

Crossover After selecting two parents, the gene combination method can vary. This
project used ’Single-point crossover’, where a random point in the gene string is chosen,
resulting in the offspring inheriting the first parent’s genetic material up to that point
and the second parent’s material beyond it.
Multiple crossover points, random gene interchanges, or gene permutations could also
be used. However, in this project, the 4 degrees of freedom are treated as independent,
rendering permutations ineffective. Nevertheless, the vertical (or horizontal) position
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2. Methods

and angle are linked in coupling. This suggests a potential improvement in crossover by
exchanging for instance only the ’vertical’ (or ’horizontal’) genes between parents.

Mutation Similar to biological evolution, mutation introduces diversity by randomly
altering a gene. Mutation occurs with a probability defined by the mutation rate. If a
random generated number is smaller than the mutation rate, a mutation happens. The
probability of mutation is thus steered by the mutation rate. The mutation rate can be
updated during the algorithm, according to the current performance of the fitness history.
For instance, if stagnation of sub-sequential generations is observed, the mutation rate
can be increased to allow for a more diverse gene pool again. In this sense, the adjustment
of mutation rates directly influences the balance between stagnation and convergence.
Other mutation strategies include gene (order) shuffling or (order) swapping. Those
methods couple to crossover functions however. Thus, this project opted for generating
a new gene with a random angle, using a uniform distribution without favouring any
specific angle within the range.

Termination The genetic algorithm is such that there is no natural definite conver-
gence and thus termination, meaning that the stopping criteria have to be set manually,
or artificially. While this offers the benefits of more control over the algorithm’s be-
haviour, is also poses the difficult question of appropriate criteria. In this semester
thesis, a myriad of stopping conditions were combined. Firstly, the algorithm ensures
sufficient exploration of the parameter space by running for a minimum of 5 generations.
Secondly, the algorithm stops if a chromosome achieves a predefined fitness, or if pre-
vious generations converge within an acceptable range of the target fitness, termed the
’leniency’ range. Additionally, a maximum number of generations serves as a safety exit
strategy.

2.4. Programming

The algorithm was implemented in C++ within the ’platform.io’ environment using the
Arduino framework.

Inter-Integrated Circuit protocol In 2.1, the various electrical components have
been detailed, many of which necessitate specific communication protocols with the
ESP32 micro-controller. The Inter-Integrated Circuit (I2C) protocol is employed for
communication between the micro-controller ESP32 and both the ADC and the Servo
Driver Printed Circuit Board (PCB). I2C utilises a two-wire serial communication pro-
tocol: The Serial Data Line (SDA) transmits data, while the Serial Clock Line (SCL)
allows for timing control by the controller. This facilitates bidirectional communication
where devices with unique addresses can be accessed by the ESP32, enabling interaction
with multiple peripherals over a single bus. [15]

Physical interfacing involves connecting the ESP32’s SDA and SCL pins to correspond-
ing pins on the ADC and servo driver module. On the software side, the communication
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2.4. Programming

is handled by the Arduino library ’Wire’. For detailed information on this library, refer
to the Wire - Arduino Reference.

ADC Signal Readout As stated above, the micro-controller communicates with the
Analog-to-Digital Converter via the I2C protocol. To facilitate this communication, the
’SparkFun ADS1015 Arduino Library’ abstracts communication protocols and converts
raw digital data from the ADC into meaningful signal readouts. This library simplifies
configuration tasks such as setting I2C addresses, selecting signal input modes (single-
ended or differential), and adjusting gain amplification or voltage reference points. Fur-
ther details can be found on the github repository SparkFun ADS1015 Arduino Library.

PWM control The ESP32 controls servo motors connected to the servo driver module
via I2C communication. The ’Adafruit PWM Servo Driver Library’ simplifies communi-
cation between the ESP32 and the servo driver, enabling precise PWM control over the
servos. The source code for this library is available on the Github repository Adafruit
PWM Servo Driver Library.
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Chapter 3

Results

The outcome of this semester project includes the electrical and optical setups, as well
as a genetic algorithm that optimises fibre coupling, starting from initial alignment.

Before discussing the performance of the algorithm, it is important to elaborate on the
choice of parameters and their values.

3.1. Parameters

Range The range of the servo is limited to a deflection of ±50◦ degrees from 0 degrees.
However, the connection of the servo arms to the mirror mount screws reduces this
range to approximately ±35◦. Given that the two servos in a module are mounted in
an anti-parallel configuration and their range of motion is limited on only one side, it
is practical to assume a symmetric range around 0 degrees in the algorithm. These
modules are designed to be flexible and interchangeable within a setup. If the range were
not symmetric around the zero point, users would need to measure the motion range for
each servo individually and hard-code this into the genetic algorithm.

Stopping Signal As discussed, the genetic algorithm requires artificial termination
conditions. In this project, one such condition is achieving a fitness, i.e. ADC output
signal, higher than a parameter Stopping Signal. Meeting this criterion designates the
termination type of the algorithm run as Fitness, distinct from the other types, Conver-
gence or Max. Generation, which will be further discussed later. It is reiterated that
the objective of this algorithm is to re-couple a laser beam into fibre, after coupling has
been performed but lost due to mechanical stress or drift. This implies that even though
coupling is not at an optimal level, it has not been lost entirely. It is relevant, as the per-
formance of the genetic algorithm does depend on its initial setup. For example, a laser
beam that does not impinge on the fibre collimator will surely not be able to maximise
coupling. This dependence poses the challenge of finding an optimal Stopping Signal. A
suitable stopping signal must be adjusted for every setup, as a too-low value results in
premature termination, while unrealistic values drive the algorithm to over-fitting and
worse performance. Over-fitting in this context means the algorithm continues to op-
timise beyond the point where best solutions were found, causing the performance to
deteriorate. Furthermore, the signal will depend on the photodiode’s gain, which must
be set appropriately to avoid saturating the ADC. In this project, a gain of 40 has been
found to be appropriate.

12



3.1. Parameters

The algorithm was tested with 3 different setups, for which different maximal fitness val-
ues were recorded. The parameter Stopping Signal was set to 1250 for all measurements,
unless stated otherwise.

Leniency and Convergence In addition to the Stopping Signal, convergence within
a lower fitness regime than the desired Stopping Signal was used as an alternative ter-
minating condition. The algorithm’s parameters include both the Leniency value, which
determines the lower fitness regime, and Convergence. It represents the maximum fitness
difference between successive generations to qualify as convergence. The Leniency was
set to 10% of the Stopping Signal, though this parameter has not been tested. If the
algorithm does not terminate under the Fitness condition but achieves generational con-
vergence within the lenient fitness regime, its termination type is recorded as Convergence
and Max. Generation otherwise.

Population Size The population size significantly influences the algorithm’s outcome.
Larger population sizes encourage exploration but require more generations to converge,
risking over-fitting or saturation while consuming more computational resources. To find
the optimal number of individuals per generation, the algorithm was tested with different
population sizes between 10 and 100. For each parameter value, the algorithm was applied
10 times to compare average ending fitness, ending generation, and termination type. The
results in Figure 3.1 indicate that a population size of 70 is optimal for achieving the
best ending fitness, earliest algorithm termination, and minimal errors.

Mutation Rate The Mutation Rate supports or hinders variance in the algorithm. A
Mutation Rate = 0.1 resulted in the best algorithm performance, as shown in Figure
3.2. This figure highlights the importance of the correct amount of exploration, realised
by mutation. Too little exploration limits the search, preventing higher fitness values.
Conversely, a mutation rate as high as 0.2 is too high, resulting in suboptimal fitness
values and longer convergence times. Further testing with mutation rates of 0.075 or
0.125 could increase precision. Although the possibility of updating the mutation rate
during the algorithm was discussed, it was not further developed due to inconclusive
preliminary results.

Elitism Elitism is a method of favouring the best-performing individuals in a popula-
tion by passing them unchanged to the next generation. This can be adjusted by choosing
the number of elite individuals to pass on, where a parameter value of elitism = 0 cor-
responds to no elitism. In this project, different values for the parameter elitism were
tested. It is important to balance stagnation, i.e., convergence to a premature result,
and convergence at a desired fitness. A high elitism value may result in a faster fitness
increase over generations but limits the exploration of possible angles. Based on the
results presented in Figure 3.3, it is recommended to set elitism = 5 for a population
size of 70, which is approximately 7.1% of the population size.

13



3. Results

Figure 3.1.: Population Size: The average ending fitness increases with population size
until approximately Population Size = 70 as fitness fluctuations diminish.
The average terminating generation also decreases as desired, with termina-
tion types shifting from largely Convergence to Fitness. Please note that for
these measurements, the Stopping Signal was set to 880, corresponding to
the highest recorded fitness value in this setup.

Number of Generations In theory, setting a maximum number of generations is
unnecessary. However, practically, it makes sense to stop the algorithm if it evidently
does not reach the desired fitness value and to allow for a restart. As shown in Figure 3.1,
with a population size of 70, the terminating generation is well below 15 on average. With
the discussed parameter values, setting a maximum generation of 30 should guarantee a
successful outcome if the algorithm performs well.

Resulting Parameter Set Based on the results above, the following parameter set is
recommended for optimal performance:

• Range: ±35◦

• Stopping Signal: To be adjusted per setup (Gain = 40)

• Leniency: 10% of Stopping Signal

• Population Size: 70 individuals

• Mutation Rate: 0.1

• Elitism: 5

• Maximum Generations: 30

14



3.1. Parameters

Figure 3.2.: Mutation Rate: This plot displays the effect of different mutation rates on
the ending fitness and generation count. A Mutation Rate = 0.1 provides
a balance between exploration and convergence, resulting in better perfor-
mance and faster termination. Please note that for these measurements, the
Stopping Signal was set to 880, corresponding to the highest recorded fitness
value in this setup.

Figure 3.3.: Elitism: This plot shows the averaged ending fitness and terminating genera-
tion for elitism values set to 1, 3, 5, 7, and 9. For elitism = 5, the fluctuations
over multiple measurements are minor, and the terminating generation drops
significantly compared to the result for elitism = 3.
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3. Results

Figure 3.4.: Fitness improvements per generation: With each generation, the best fitness,
as well as the average fitness increase (almost perfectly) monotonously.

3.2. Genetic Algorithm Performance

The performance of the genetic algorithm is evaluated through three distinct tests.
Firstly, the improvement in the best fitness per generation is demonstrated. Secondly,
the algorithm’s stability across multiple measurements given an identical parameter set
is assessed. Lastly, a comparison of the algorithm’s performance against manual fibre
coupling is conducted.

It is important to note that all measurements presented below are based on the afore-
mentioned parameter set.

Improvement over generations In figure 3.4, it is evident how both the average
fitness and the final best fitness improve progressively with each generation, indicating
the algorithm successfully converges towards optimal fitness levels.

Multiple measurements To assess the algorithm’s robustness, its outcomes were
compared across multiple measurements of the same parameter set. Figures 3.5 present
the results of two measurement sets (with differing Stopping Signals) of 5 measurements
each. In both plots, the final fitness remains largely consistent, indicating robustness of
the algorithm, especially considering the initial random population initialisation. Out of
10 measurements, only one (measurement 5 in Figure 3.5b) shows a slight deviation.
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3.2. Genetic Algorithm Performance

The average fitness fluctuates across multiple measurements, which is expected as the
algorithms terminate at varying generations. Generally, longer algorithm runs result in
higher average fitness levels, as observed in both Figure 3.5a and 3.5b.

Evaluation of Algorithm Performance Against Manual Coupling The algo-
rithm’s results were measured against those of manual coupling to assess the algorithm’s
overall performance and usability. Manual alignment produced a maximum power of
49 µW with a corresponding ADC signal of 1450. The algorithm yielded similar results,
with a measured power of 48 µW and an ADC signal of 1480. These findings demonstrate
that the project successfully met its objectives.

Further, the laser beam was measured with a power meter in free space, yielding
0.930mW. This indicates a very low coupling efficiency, which is expected. The mea-
surements were conducted using a green laser with a wavelength of 532 nm. The laser’s
suboptimal performance, due to its highly non-Gaussian beam profile, accounts for the
low coupling efficiency.

Fluctuations Variations in the algorithm’s outcomes are expected due to the diverse
angular positions generated for the servos, resulting in differing final fitness levels. How-
ever, even when the servos remain static, the output signal exhibits fluctuations, as shown
in Figure 3.6. For these five measurements, the fitness was measured over approximately
one minute each. Although the standard deviation per measurement is small, as seen in
Figure 3.6a, an individual measurement can fluctuate considerably over the duration of
approximately one minute, as depicted in Figure 3.6b.
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3. Results

a First set of 5 measurements with Stopping Signal = 1350.

b Second set of 5 measurements with Stopping Signal = 1250.

Figure 3.5.: Performance comparison: Based on the same parameter set, the algorithm
output is measured 5 times each. The plot shows that the ending fitness
remains stable and thus proves the robustness of the algorithm. The termi-
nating generation is indicated above each ending fitness measurement. The
average fitness fluctuates more strongly than the ending fitness.
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3.2. Genetic Algorithm Performance

a Fluctuations over multiple measurements with mean fitness and error.

b Fluctuations over one single measurement.

Figure 3.6.: Measurement Fluctuations: Over five measurements, the fitness of an op-
timal solution was assessed, with each measurement conducted over one
minute. In the first plot, the blue graph shows the mean recorded signals for
each measurement along with their errors. The combined error for all mea-
surements, shown in red, is ≈ 14.5. The lower figure depicts the variation in
fitness over a single measurement.
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Chapter 4

Discussion

4.1. Results

Based on our parameter value measurements, the algorithm operates using the parameter
set 3.1. With this configuration, the algorithm consistently demonstrates incremental
improvements per generation until termination, primarily driven by achieving the desired
fitness level. The algorithm’s robustness is evident in its ability to consistently produce
the same final fitness results, as illustrated in Figure 3.5. As outlined in paragraph 3.2, the
algorithm proved to perform well with respect to the manual coupling process. Therefore,
this setup can confidently replace manual coupling in experimental procedures.

4.2. Challenges

Multiple components to genetic algorithm While developing the genetic algo-
rithm, tracing unsatisfactory results proved to be challenging. This issue is inherent
to genetic algorithms, as the various fundamental building blocks collectively and sim-
ilarly influence the behaviour of the algorithm. For instance, attributing the lack of
performance to the parent selection method instead of the crossover technique is almost
impossible. This highlights the importance of coordination between the algorithm’s com-
ponents.

Stopping Criteria As previously mentioned, the genetic algorithm lacks inherent
convergence criteria, necessitating the artificial setting of stopping conditions. In this
project, criteria were employed such as the maximum number of generations, the achieve-
ment of a desired fitness level, or the observation of fitness convergence over multiple
generations within a specified fitness regime. A notable challenge lies in determining
the optimal Stopping Signal, which varies depending on setup and alignment precision.
Eliminating the Stopping Signal entirely in favour of relying solely on fitness convergence
poses challenges as well. Early convergence to local optima and defining closeness be-
tween fitness values then become critical issues, requiring a thorough understanding of
optimal fitness ranges.
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4.3. Improvements

4.3. Improvements

Laser and measurement improvements All measurements were performed using
the same laser, which exhibited a diffraction pattern instead of the desired Gaussian
profile. This profile negatively impacts coupling efficiency and causes fluctuations. For
future work, it is recommended to update the laser to a beam with a proper Gaussian
profile.

Other critical factors in the measurements include keeping the mirrors clean and ensur-
ing proper alignment between the fibre and the fibre collimator. Properly cleaned mirrors
significantly increased the power output. Additionally, the setup is extremely sensitive,
making it crucial to correctly mount the fibre into the fibre collimator. Incorrect mount-
ing can result in an inaccurate system focal length, further affecting performance.

Fluctuations In paragraph 3.2, significant signal fluctuations in the measurements
were detailed, while the computed error remained within a reasonable range. To enhance
the algorithm’s precision, it is proposed to calculate the fitness of an individual multiple
times and continue with the mean value. This approach addresses the unreliability of
single-shot measurements, resulting in more accurate and consistent outcomes. How-
ever, eliminating signal fluctuations entirely proves challenging, as the variance likely
stems from vibrations of the servo motors. To mitigate this issue, a strategy known as
pre-loading has been implemented to reduce noise associated with servo movements by
effectively addressing backlash. Backlash occurs when the servos fail to engage their
gears or linkages fully, causing them to miss the commanded movement entirely or move
by an incorrect degree. To counteract this, the servos are initially directed to move in the
opposite direction of the final intended angle. This amplifies the overall movement, en-
suring any gaps or backlash are closed. Moreover, the mechanical setup can be improved
by very securely fastening all components, thereby reducing play that would otherwise
be continuously exacerbated by the frequent movement of the servo motors.

Mutation rate A promising avenue for enhancing the genetic algorithm involves dy-
namically adjusting the mutation rate based on algorithm performance across genera-
tions. For instance, increasing the mutation rate during early convergence phases and
decreasing it during periods of significant fitness improvement could optimise exploration
and exploitation phases. Another potential enhancement involves modularly adjusting
mutation rates for individual candidates—lower rates for top performers and higher rates
for less successful individuals. Implementing these strategies would require careful testing
and analysis due to their potential impact on algorithm behaviour and outcomes.

Server interface The current server interface is basic and could benefit from further
development. Future iterations might include creating a user-friendly starting page listing
available endpoints, or integrating the web server with more advanced frameworks like
Pydase for enhanced functionality and interactivity.
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4. Discussion

Modularity Expanding modularity beyond beam walking—where servo numbers up to
four can be adjusted with minimal code modifications—could significantly enhance the
project’s versatility. Future developments might explore implementing multiple align-
ment systems concurrently, allowing optimisation of several modules simultaneously for
more complex experimental setups.

Algorithm combinations In section 1.4, three optimisation algorithms are intro-
duced: grid search, gradient descent, and the genetic algorithm. Future work could
involve implementing the former two algorithms and comparing their performance and
computational costs with those of the genetic algorithm. Additionally, there is poten-
tial to combine these techniques. For instance, the genetic algorithm could be used to
identify a region of interest, within which grid search could be then applied.
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Chapter 5

Conclusion

The optical, electrical, and software components, including the developed genetic algo-
rithm, of this Master’s semester project constitute a flexible module for laser-to-fibre
re-coupling. This module can be easily integrated into an experimental setup, replacing
manual coupling procedures and thereby saving valuable time.

Within the scope of this thesis, the algorithm’s parameters were tested and adjusted
to ensure optimal outcomes. Measurements of the genetic algorithm applied to fibre
coupling demonstrated its robustness and ability to consistently achieve high-quality
coupling. Finally, the genetic algorithm performs at least as well as manual coupling,
validating its usability in experimental work.
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Appendix A

Applying the Automated Fibre
Coupling Module

This practical project culminates in a setup featuring an algorithm designed to be flexibly
incorporated into experimental setups to optimise fibre coupling. Therefore, the practical
application of the genetic algorithm is explained.

Usage of Genetic Algorithm The source code of the genetic algorithm can be ac-
cessed on the github repository Automated Fibre coupling.

Before applying the genetic algorithm, consideration should be given to the setup it
can be applied to. In an optical configuration where the laser beam is partially coupled
into the optical fibre, four servos are connected to the servo driver module. The ADC
connected to the ESP32 micro-controller reads signals from a photodiode measuring the
optical fibre’s output.

Furthermore, the ESP32 is equipped with Ethernet connectivity, enabling it to host a
web server for remote command execution. The available endpoints for these commands
are outlined below. When the genetic algorithm has been engaged and has terminated
successfully, the final mirror configuration will be saved to a file on the micro-controller.
This configuration can then be requested, and the servos can be directed to assume these
positions.

• endpoint /: Starting page

• endpoint /get_latest_config: Returns the latest configuration of servo positions
saved on the ESP32.

• endpoint /use_latest_config: Sets the 4 servos to the most recently saved con-
figuration on the ESP32.

• endpoint /optimise: Initiates the genetic algorithm for optimising servo positions.
The resulting positions are automatically saved to the ESP32 configuration.

• endpoint /status_optimisation: Provides the current status of the optimisation
process, indicating whether the algorithm is still in progress or has completed.
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Beam Walking This setup provides modularity, enabling the algorithm to selectively
address fewer than all four servos simultaneously. This flexibility supports Beam Walk-
ing—a aforementioned optimisation process for two interrelated degrees of freedom. Dur-
ing the upload of the source code to the ESP32, unnecessary servos can be commented
out. This configuration directs the algorithm to utilise only the remaining two servos for
optimisation, thereby facilitating Beam Walking.
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