ETH ZURICH

Simulating grating MOT designs

Supervisors:

Gillenhaal BECK

Author:

Johannes EBERLE
Prof. Dr. Jonathan HOME

September 15, 2023

ETH:-urich

Abstract

This report presents a simulation-based study aimed at determining the optimal pa-
rameters for a grating in a magneto-optical trap (MOT) for applications in trapped ion
quantum computers. The study investigates the effects of different grating geometries

and parameter configurations on the performance of the MOT.

Throughout the study, we have developed a code in a modular way, allowing for easy mod-

ifications and the addition of other grating geometries and analysis methods as needed.

By leveraging advanced simulation techniques, we have identified an optimal grating de-
sign that exhibits high grating efficiency while having minimal impact on the polarization
of the laser source. Specifically, we have found a grating with cylindrical holes as unit
cells that exhibits a high grating efficiency where 82.4% is emitted into the first order
which is emitted at an azimuthal angle of 42.6°, while inducing only a slight change in
polarization. The resulting ratio of the major to the minor axis in the polarization ellipse
is r = 1.10. Additionally, we have found parameters for a blazed grating where 74% of
the source power is emitted into a single order emitted at an azimuthal angle of 43.5°. In

this case, the ratio of the major to the minor axis in the polarization ellipse is r = 1.3.

This finding is of importance for trapped ion quantum computers, as it provides a tech-
nique to transport ions from the source to the ion trap and eventually achieving higher

ion loading efficiencies.

Contents

2 Methods

[2.1 Code implementation details|

[2.1.1 Metascript|.

[2.1.2 Set up the grating geometry| . . .

[2.1.3 Set up light sources and monitors|

[2.1.4 Analysis of monitor results|
[2.1.5 Define the parameter sweep or parameter optimization|
2.2 Grating geometries|
[2.2.1 Linear (blazed) grating|
[2.2.2 Cylindrical grating (with sidewall angle)]
2.3 Simulationsl
[2.3.1 Parameter sweeps|
[2.3.2 Parameter optimization|
B__Results|
3.1 Linear (blazed) grating|

(3.2 Cylindrical grating (with sidewall angle)|

4__Conclusion!

[Acknowledgements|

[References|

© N o A~ R

10
11
12

12
13
13
13
13
14

14
14
16
16
16
17

18
19
21

25

27

28

30

1 Introduction

Trapped ion quantum computers have emerged as one of the leading platforms for realiz-
ing large-scale, fault-tolerant quantum computing. Central to the success of these systems
is the precise control and manipulation of individual ions within an electromagnetic trap.
One possible approach to achieving this involves utilizing a grating within the setup of

the magneto-optical trap (MOT).

A grating MOT consists of two parts: the magnetic trapping and the optical trapping.
To realize the latter, a diffraction grating is used which converts a single laser beam at
normal incidence into several first order beams at an azimuthal angle of 45°, effectively

creating a trapping potential.

This report focuses on a simulation-based study aimed at determining the optimal param-
eters for a grating in a magneto-optical trap (MOT) for trapped ion quantum computers.
Our objective is to gain deeper insights into how different grating parameters impact the

performance of the MOT.

In the forthcoming sections, we will discuss the principles of Fraunhofer diffraction, light
polarization, and grating MOTs. Subsequently, we will introduce the simulation methods
and the implemented code. Finally, we will present and analyze the outcomes of the

simulations,

1.1 Fraunhofer diffraction

Diffraction occurs when waves encounter obstacles, pass through apertures or scatter

from surfaces with periodic structures.
In general, we distinguish between two major regimes: the near field and the far field.

In the near field, which is also known as the Fresnel regime, the observation point is
relatively close to the diffracting elements compared to their overall dimensions. As
a result, the diffracted wave fronts remain curved, and the individual diffracted waves

interfere with each other.

On the other hand, the far field, also referred to as the Fraunhofer regime, corresponds

to observation points that are sufficiently far away from the diffracting element - this is

described by the Fraunhofer condition:

Np =0/ d <1, (1)

where Ny is the Fresnel number, d is the distance between the diffracting element and the
observer, A is the wavelength and b is the size of the diffracting element (e.g. the size of
the aperture) [14]. In this regime, the wave fronts can be considered nearly planar, and the
individual diffracted waves are approximately parallel (see figure . As a consequence,
the interference patterns formed are simpler and can be described using the principles of
Fourier optics. In Fourier optics, the propagation of light is described using the Fourier
transform. By decomposing complex light patterns into simpler sinusoidal components
through Fourier transforms, spatial frequencies are used to analyze how light propagates

through optical systems, such as lenses or apertures [14]. [14].

Initial

wave—_ 1

front ~~

Slit width a

e’ S’ S’ S S S

Figure 1: Huygen’s principle illustrates the formation of wavelets. In the far field, the wavefronts
can be considered parallel. Figure taken from [17].

To do so, let us assume the simple case of a transmission grating at z = 0 with the

aperture function

1, inside the aperture
p(z,y) = (2)
0, outside the aperture

and the intensity of the incoming light is ;. In the Fraunhofer approximation, the complex

amplitude at z = d, where d is the distance from the grating, is then given by

ry
~ /ThoP(=, L), 3
9(x.y) = V/IihoP(. 1) (3)
where P(v,, 1) is the Fourier transform of p(x,y) and hy = 35exp(—ikd).
The intensity at (x,y,d) is therefore given by

I; Y

Ia,y) = (\d)2 ‘P(E’ ¥

2
| (4)
Often, the geometry is more complex and the usage of different materials, each with
unique optical properties, lead to a non-trivial transmission and therefore to a non-trivial

aperture function. Hence, solving the problem analytically becomes unfeasible, and a

numerical simulation is needed to determine the diffraction pattern.

We can already estimate the period of the grating by applying the grating equation,
which reads [5]:

sin(0,) = — (5)

that relates the emission angle 6,, of the n-th order at wavelength A\ and normal incidence

of light to the periodicity d of the grating (see figure [2)).

We see that the range of emission angles of the first order between 40° and 50° corresponds

to a period range between 550 nm and 660 nm.

1.2 Polarization

The polarization of light £(r,t) is defined as the space- and time dependent direction
of the electric field [14]. For a plane wave at a fixed position r, the endpoint of the
polarization vector moves along an ellipse which lies in the plane that is orthogonal to the
propagation direction of the electromagnetic field. The polarization ellipse - among other
descriptions, such as the Poincaré sphere, can be used to characterize the polarization. In
the following chapters, we will use two parameters that fully characterize the normalized
polarization axis: The ratio of the major to the minor axis and the angle of the major axis

relative to the axis of P-polarization. Note that we impose the condition (a? + %) = 1,

grating
normal

Figure 2: A reflective grating with incoming and outgoing rays. The path difference between
two reflected rays is d(sinf + sina). For constructive interference, we require this difference to
be a multiple of the wavelength, such that nA = d(sinf + sina), where n € Z is referred to
as the diffraction order. For normal incidence (v = 0) and by defining 6,, = 3, we obtain the
grating equation [5| Figure taken from [I3]

Figure 3: The ratio of the major axis a to the minor axis b and the angle ¢ of the major axis
determine the shape of the ellipse.

where a and b are the lengths of the major and the minor axes, respectively. In general,
the reflection off a medium is polarization-dependent, and so is also the diffraction off
a reflection-grating. This needs to be considered when choosing the geometry of the
grating. Circularly polarized light is defined by a ratio » = 1 of the major to the minor

axis. In the following sections, this ratio will be simply referred to as “ratio”.

1.3 Grating MOT

Charged ions can be confined using magnetic and electric fields [2]. This technique,
however, does not work for neutral atoms. A commonly used method of confining neutral

atoms is magneto-optical trapping. Here, a combination of magnetic fields and optical

7

A Energy

/Me=+1

. 1.
= =3

M,=-1

—> 6—_—
o, beam % o_ beam

- M,=0

4 Position

Figure 4: The energy levels of the atom in a magnetic field. Figure taken from [6] with permission
from Springer Nature.

forces is used to cool and confine atoms. This can be done in all three spatial dimensions.
To illustrate the fundamental concept, we will focus solely on the trapping mechanism
in one direction. However, the trapping in the other two dimensions functions similarly.
To create a confining potential in z-direction, the magnetic field is chosen to be linearly
inhomogeneous: B(z) = Byz [6]. We now focus on an atom with a ground and an
excited state. The ground state has a total angular momentum of J = 0, while the
excited state has a total angular momentum of J = 1. The magnetic field introduces a
location-dependent Zeeman shift of the exited state levels with m; = £+1 and therefore
lifts the degeneracy of the excited state. Additionally, two counter-propagating beams
with opposite circular polarization o, and o_ are focused on the center of the trap. The
beams are red-detuned by ¢, such that w; + = dy, where dy is the energy difference
between the (J = 0,m; = 0)| ground state and the (J = 1,m; = 0| excited state.

If an atom is located in the center of the trap, it will not experience a Zeeman shift due to
the vanishing magnetic field and therefore the interaction probability between the photon
and the atom remain low. If the atom is moving in 4z direction, the energy difference
between the (J = 1,m; = £1| and the (J = 1, m; = 0] state increases until it is equal to
0. It will then absorb a o+ polarized photon that is incident from the Fz direction which

results in a restoring force the center of the trap [6].

In a grating MOT, a grating is illuminated by a laser and due to diffraction, intensity
peaks of higher order can be observed. In our case, we are determining an optimal grating
design for which the first-order beams are high in intensity and approximately at a 45°

angle to the surface normal of the grating.

Figure 5: General design of a grating MOT. The left figure depicts a linear grating and the
right figure depicts a circular grating geometry. Both gratings produce a diffraction pattern
that is suitable to trap ions. The red arrows show the propagation vectors of the first-order
peaks. Figure taken from [7].

In 2013, Nshii et al. found that a grating of cylindrical elements (see figure [5|on the right
side) achieves the highest number of trapped atoms. [7]. Based on this observation, we
will simulate a grating MOT with a cylindrical grating, as depicted in figure 5] Addition-
ally, we will simulate a cylindrical grating with a sidewall angle as well as a linear blazed

grating and determine the optimal parameters for a maximal trapping efficiencies.

Lastly, the source produces circularly polarized light. The ideal gratingMOT conserves
polarization and therefore, we aim to find a geometry that leaves the polarization of the
first order as little affected as possible. As a figure of merit, we use the ratio of the major
to the minor axis (see section , that is » = 1 for circularly polarized light, and r > 1

for non-circularly polarized light.

1.4 Finite Difference Time Domain method

For the simulation, the software Lumerical was used. Specifically, the Finite Difference

Time Domain (FDTD) method was used for all simulations.

The Finite-Difference Time-Domain (FDTD) method is a numerical technique used for
solving Maxwell’s equations in both time and space domains. It provides a powerful
computational approach for simulating and analyzing a wide range of electromagnetic

phenomena, such as wave propagation, scattering, and interaction with various structures

The method is based on Yee’s algorithm that Kane Yee introduced in 1966 [18] and that

gained popularity with increasing computing power.

In the FDTD (or Yee) method, the space volume is discretized by dividing it into a
rectangular and structured mesh. For each mesh point, the time-dependent solution of
Maxwell’s equation, i.e. the electric and magnetic field components, are calculated [3].
By discretizing the space and time, the method approximates the continuous Maxwell’s

equations.

The FDTD method operates in a time-stepping manner, advancing the fields through
time in small increments. At each time step, the electric and magnetic fields are updated
based on their previous values and the interactions with the surrounding environment,
including sources and boundaries. This iterative process allows the simulation to capture
the temporal and spatial behavior of electromagnetic fields accurately. The derivatives

in the equations are expressed as finite differences between neighboring mesh points [18]

One of the notable advantages of the FDTD method is its ability to handle complex
geometries and material properties. It can simulate the interaction of electromagnetic
fields with various objects, including metallic structures, dielectric materials, and disper-

sive media. This makes it a versatile tool in photonics. [9].

There are several mesh termination techniques, out of which the ABC (Absorbing Bound-
ary Condition) and the PML (Perfectly Matched Layer) are the most common [3]. Both
techniques absorb the light at the boundary, however, the PML method is generally con-
sidered the state-of-the-art [I5]. A more elaborate description of these two methods and

the different variations within these methods can be found in [3] and [15].

The periodic boundary is another frequently utilized mesh termination. It allows sim-
ulating a single unit cell in a periodic structure, such as a grating. The fields leaving

trough one side of the cell are simply injected at the opposite side.[I]]

1.5 Particle Swarm Optimization

Originally developed by James Kennedy, Russell C. Eberhart and Yuhui Shi [4] [16],
the particle swarm optimization (PSO) is an optimization method that does not use the
gradient of the function that is optimized. The general idea is that a swarm of particles

is used to search the search space for the global maximum or minimum. An analogy

10

in nature can be found in a bee swarm searching for the best nectar sources, where
the bees communicate with each other. A particle is a point in the search space and the
properties are its function value, location and velocity. At the beginning of each iteration,
the particle moves one step in the search space along the velocity vector. The particle
then receives information from its informants and based on this, the velocity is updated.
The informants are other particles - the choice of how many particles serve as informants
varies between different implementations of the PSO [1I]. Specifically, it is necessary to
find a balance here between the propagation speed and the diversity. A small number of
informants leads to a large diversity, as the single particles are less dependent on each
other. However, as less information is exchanged, the particles take more iterations to
find maxima. On the other hand, a large number of informants leads to less diversity, as
many particles are moving uniformly since they have the same information. However, as

more information is exchanged, the particles need less iterations to find maxima. [IJ.

1.6 First order efficiency

The grating efficiency, or, as we will call in the following sections, first order efficiency

1 is defined here as n = Pscilm’ where P, is the integrated intensity in the far field of
the first order intensity peak with the highest intensity E] and Pyouree 18 the power of the
source. In a grating where the unit cell is radially symmetric, all first order intensity
peaks have the same intensity. However, in the opposite case, such as in a blazed grating,
the first order peaks do not have the same intensity in general. In this case, the peak with
higher intensity is determined and used for calculating the efficiency. A more elaborate
discussion can be found further below. The integrated intensity is determined using the
built-in grating projection functions provided by Lumerical. Specifically, the function
grating returns the fraction of transmitted power into each grating order as a fraction of
the source power. In the following sections, we use the terms “grating efficiency” and “first
order efficiency” interchangeably. This choice stems from the parameter regime under
consideration, where higher orders beyond the first order are significantly suppressed. As

a result, the overall efficiency of the grating is primarily determined by the first order

efficiency.

ITo avoid confusion, it is important to note that the far field functions were not used in any calculation.
Only the grating functions were used, which calculate the far field for a grating. More information on
the differences between these two cases can be found in section

11

1.7 Far field

The far field is defined as the field at a distance from the grating much larger than the
size of the grating. In Lumerical, there exist built-in functions to gain information on the
far field - here, the distance to the grating is 1 m [§]. However, it is important to mention
that when using the far field functions in Lumerical, only the reflection off a single unit
cell is considered. One can choose to simulate a number of periods that are considered,
however, the developers are advising to use the built-in grating projections functions [10].
For this project, only grating projection functions were used for calculations. Far field
projection functions were found to give slightly different results compared to the grating
projection functions, if no periodicity was chosen. With increasing number of periods in

the far field projection, the peaks become sharper and equal to the grating projection.

2 Methods

The goal of the simulation is to find the optimal design of a grating MOT. This problem
was approached by choosing different geometries and varying their parameters. The
parameters that can be adjusted in this setting are: the period, the radius of the hole
(cylindrical grating) or the width of the hole (linear grating), [J| the depth of the hole,
the thickness of the coating and the material of the coating. Figure [6] shows the different
geometries that were used for the grating. There is a large space of possible combinations
of the parameters, and it is important to understand how varying each parameter affects
the diffraction pattern of the grating. Therefore, several simulations were performed,
for which the results will be shown in the following chapters. To make the code easily
adaptable for different geometries and future adaptations, it is built in a modular way.
This means that the different parts of the simulation are written in separate scripts, which

are then executed one after another by a meta-script. The separation is as follows:
1. Set up the model: define all physical components of the grating
2. Set up light sources and monitors

3. Set up analysis of monitor results

2A distinction between the hole width and the hole radius is only relevant (and only makes sense) in
3d simulations. In 2d simulations, both terms can be used interchangeably

12

4. Define the parameter sweep or parameter optimization

Therefore, different geometries can be simulated in the exact same way while minimizing

the risk of errors caused by transferring code between different scripts.

2.1 Code implementation details

In the following, a detailed overview over each code section is given. More details can be

found in the code (see appendix).

2.1.1 Metascript

The metascript calls every code block that is needed for the specific simulation. The
variables for determining the specific geometry of the grating are stored in the model as
user properties. This makes sure that a parameter sweep or an optimization sweep can
change these properties. All code blocks are called in the setup script of the model which
itself is executed in the metascript - except for the parameter sweep or optimize sweep,
which are called directly in the metascript. Therefore, while performing a sweep, the user
properties can be updated and since the setup script of the model is executed in every
step of the sweep, the geometry is updated as well. At the end of the script, a file name

and storage location is specified.

2.1.2 Set up the grating geometry

The implementation of the grating geometry is straightforward: The rectangular silicon
base and the other elements of the grating are implemented as components in a structure
group. The entire structure is implemented in 3d and rotated so that a 2d simulation
is performed in the x-y plane and a 3d simulation is possible by extending the simula-
tion region along the z-axis. This is necessary due to the way the simulation region is

configured in Lumerical.

2.1.3 Set up light sources and monitors

All light sources and monitors are implemented in 3d and extend over a range wider
than the simulation region. Two light sources are implemented as plane waves with a

relative polarisation angle of 90° and a relative phase of 90°. The resulting light wave

13

is a circularly polarised plane wave. The monitors record the field at the top end of the

simulation region.

2.1.4 Analysis of monitor results

The goal of the analysis is to determine the intensity peaks in the far field and to check
whether the first order intensity peak is emitted close to an angle of 45°. The code uses
built-in grating functions and polarization analysis provided by Lumerical and determines
all necessary information, such as the transmission of the source power into the far field,
the emission angle and transmission of the first order intensity peaks as well as the

polarization ellipses of all grating orders.

2.1.5 Define the parameter sweep or parameter optimization

As a final step, the parameter sweep or parameter optimization is defined. For each case,
there exists a separate script where the sweep parameters and the parameter ranges are
defined. A more elaborate discussion of the parameter sweeps and optimization can be

found further below.

2.2 Grating geometries
2.2.1 Linear (blazed) grating

A common type of grating is the blazed grating, which resembles the shape of a sawtooth.
In this context, we will not restrict ourselves to the conventional blazed grating. Instead,
we will adopt a geometry similar to the one illustrated in figure [6¢] It is important to
note that by choosing the period to be equal to the hole width, a sawtooth geometry can
be implemented. Therefore, the set of sawtooth geometries is contained within the set
that we examine. The blazed grating is not radially symmetric, from which follows that
the diffraction pattern is not symmetric either. The ideal diffraction pattern consists of
a suppressed zeroth order peak as well as three suppressed first order peaks, while one
first order peak (in our case (n,m) = (1,0)) is maximal in intensity. An example of such
a diffraction spectrum can be found in section [3] The grating needs then to be assembled
similarly to the linear grating in figure [5| so that the high intensity first order peaks are
directed towards the center of the trap. Simulating the grating in a 2d FDTD simulation

14

(e)

Figure 6: a - e show several unit cells of the grating for different grating geometries. a and
b depict the circular grating that was used in the simulations. a shows the grating from the
top-view, b shows a cross-section. ¢ and d show the cylindrical grating with a sidewall angle.
e shows the blazed grating, 6 is the blaze angle. Here it can be seen that for a blaze angle
of 90°, the grating is simply linear, without a blazing. Note that the sidewall angle in c is
defined analogously to the blaze angle in e. The wafer consists of silicon, while the top layer is
composed of a coating material.

15

proved to be equivalent to simulating it in a 3d FDTD simulation. This can be explained
by the fact that the structure in 3d is an infinite extension of the 2d structure along the
third axis. It is important to note that the 2d simulation accurately models both s- and p-
polarized light, and thus also circularly polarized light. However, the built-in polarization

analysis functions provided by Lumerical can only be applied in a 3d simulation.

2.2.2 Cylindrical grating (with sidewall angle)

Nshii et al. have found that the highest grating efficiency in a grating MOT is achieved
with a cylindrical grating [7], as depicted on the right side of figure |5l Four unit cells
of the grating and a cross-section are shown in figure [l The cylindrical grating can be
adjusted by adding a sidewall angle, analogously to the linear blazed grating. An example
is depicted in figure [6dl The sidewall angle © is defined analogously to the blaze angle
in the linear blazed grating. No 2d FDTD simulation was found to be equivalent to a 3d
simulation of the structure. Therefore, it is necessary to use the 3d FDTD simulation.
In the case of a grating with no sidewall angle, the optimal hole depth is A/4 [12], where
A is the wavelength. This can be explained by the fact that a wave that is reflected at
the bottom of the hole, has a phase shifted by A\/2 compared to a wave that is reflected

outside the hole - leading to destructive interference.

2.3 Simulations
2.3.1 Parameter sweeps

In Lumerical, parameter sweeps can be performed, where one chooses the range of a
parameter and the number of steps k. Lumerical allows for a parameter sweep of any
number of parameters. It needs to be noted, however, that the number of simulations per
n-parameter sweep is k", where k is the number of steps per sweep (the same number of
steps per sweep is chosen for all simulations). Therefore, we limit ourselves to varying one
or two parameters. For the 2d FDTD method, a 3-parameter sweep is feasible, however,
for the 3d FDTD method, this would take too long. There exists a set of parameters
where the diameter of the hole is greater than the grating period. In this regime, the
structure is simply a flat surface of silicon that is coated. There are two ways for setting

the period of the grating. First, the period can be set as an absolute number. Second,

16

it can be set as a multiple of the radius - by choosing the factor to be greater than 2,
the regime can be avoided in which the diameter is greater than the period. Both ways
are implemented in the code, and they can be chosen depending on whether a sweep
or an optimization sweep is performed. When performing a sweep, the period is set as
an absolute number for visual reasons (this makes the figures easier to read). When
performing an optimization sweep, the period is set as a multiple of the diameter, since

here no visualization of the optimization process is made. E|

To find optimal parameters, first the hole depth is set to 105.75nm and the coating
thickness is set to 150 nm. The selection of the coating thickness is based on the suitability
for fabrication, ensuring the resulting gratings meet the necessary fabrication criteria.
The hole depth is chosen to be A/4, as it is described above, where \ is the wavelength.
These values are flexible and can be adjusted as needed based on specific fabrication
requirements. For the cylindrical grating, a parameter sweep over the radius of the hole
and the period of the grating is performed. From this sweep, the optimal radius and
period are determined. These are then used in a parameter sweep over the hole depth
and the coating thickness. Finally, a sweep over the sidewall angle is performed. This

determines all necessary parameters.

2.3.2 Parameter optimization

A particle swarm optimization method is provided by Lumerical. Since the coating
thickness is irrelevant, as discussed in section [3] this parameter will not be included as an
optimization parameter - instead a common thickness of 150 nm is chosen. The hole depth
EL hole width /radius and period are set as optimization parameters, i.e. the parameters
that are variable throughout the search. Additionally, for the linear and cylindrical blazed
grating, the blaze or sidewall angle is set as an optimization parameter. For the PSO, it
is necessary to choose a particle number as well as a maximum step number. The particle

number corresponds to the number of simulations that are performed in each iteration

3 Alternatively, one can create a list of all possible combinations of the period and the radius, which
lie outside the regime where the hole diameter is larger than the period. This list is then used for setting
up the sweep over the period and the radius. This method was implemented together with a separate
analysis script to post-process the results and create figures. Details as well as the code are available
upon request.

4Below we discuss that for the silver and aluminum coating, the hole depth does not need to be
included as a variational parameter. However, we are still including it. The PSO was found to converge
to an optimal solution, no matter if the hole depth is included as variational parameter or not

17

step, while the maximum step number corresponds to the maximum number of iterations.
As recommended by M. Clerc [I], a particle number of 20 is chosen for all optimizations.
The maximum step number is set to 100. The value to be maximized by the PSO is the
efficiency of the first order. There exists an additional condition that the emission angle
of the first order intensity maximum ¢ is within the range 42° < ¢ < 48°. To include
this constraint, the grating efficiency is set to zero for a solution that does not fulfill this
condition. We have not found a way to perform the PSO on the Euler cluster of ETH
and due to the high computational complexity of the 3d simulation, the PSO could be

only performed for 2d simulation. The parameter ranges are shown in table [1]

’ Parameter \ Range ‘
Hole width | 50 nm — 400 nm
Py 2—5
Hole depth | 10nm — 1 pum
0 0-1

Table 1: The parameter ranges for the PSO sweep. The period P is given by P = Py - R, where
R is the radius and the blaze angle 6 is given by 6 = 0p * 0,,4:, where 6,4, is the angle for
which the blazing forms a sawtooth shape.

3 Results

The observations mentioned here were found to be valid for all grating geometries. De-
tails are discussed in the respective subsections. While the diffraction off the grating is
dependent on the hole depth, the hole width (or radius), the period and the blaze (or
sidewall) angle, it does not depend on the coating thickness. This was found by per-
forming parameter sweeps over all mentioned parameters. Parameter sweeps over the
hole depth and the coating thickness for three different coating materials can be found
in figure 9l Here, the sweep is for the cylindrical geometry, however, this behavior was
found for all gratings and coatings. This reduces the parameter space significantly, and
the coating thickness was set to 150 nm, which is a common thickness in fabrication.
An exception is the gold coating, where the first order efficiency is highest for a small
coating thickness. This could be due to a reflection off the silicon for a small gold coating
thickness. A further analysis was not performed, since the gold coating performs poorly
at the wavelength of our setup. For all coating materials, a periodicity of the first order

efficiency with respect to the hole depth was found. However, the following observation

18

arose: by initially optimizing hole width and period with arbitrary hole depth, followed
by subsequent variations in hole depth, the peak first-order efficiency consistently coin-
cided with the originally chosen hole depth. From this, we can conclude that the hole
depth can be chosen arbitrarily. By varying the hole depth, the transmission of source
power into the far field is periodic, too. However, the maxima of the first order efficiency
and of the transmission generally do not overlap, which is why the values of the maxima

of first order efficiency vary at each period.

3.1 Linear (blazed) grating

To find optimal parameters for the linear grating, a particle swarm optimization sweep

(PSO) is performed with the parameter ranges, as shown in table .

Coating material | Hole width | Period | Hole depth | Coat. Thick. | 6; | fom
Gold 315.49nm | 632.16 nm | 186.18 nm 150 nm 0.94 | 0.31
Silver 281.17nm | 632.04nm | 166.58 nm 150 nm 0.94 | 0.66

Aluminum 178.383nm | 616.67nm | 298.75nm 150 nm 0.62 | 0.74

Table 2: The optimal parameters for the linear grating found with the PSO sweep for different

coating materials. Coat. Thick. stands for coating thickness. 6y denotes the fraction 6y = 5-"—

where 6 denotes the blaze angle and 6,,,, is the angle for which the grating is given by a

sawtooth shape. The coating thickness was fixed to 150 nm, since the diffraction is independent

of the coating thickness. The figure of merit (fom) is the transmission of source power to the

(n,m)=(1,0) mode. Since for the linear geometry, the maximum transmission is through this

mode, this value is chosen as the figure of merit for the optimization algorithm.

Y

The diffraction and the polarization ellipses of the first order of the best solutions that
were found are shown in figure[7] We see here that aluminum gives the highest first order
efficiency and that any order than (n,m) = (1,0) is strongly suppressed. Also, a ratio
of the major to the minor axis of the polarization ellipse of 1.33 is acceptable. We have

therefore found a good solution to our problem.

The source light is circularly polarized. In figure [7| we see that the diffracted light is not
circularly polarized anymore, which is expected and can not be avoided entirely. However,
as we will show further below, the effect on the polarization is slightly larger compared

to the cylindrical grating.

In the simulations, it was found that the regions of highest grating efficiency are located
in a regime where the ratio is < 2. To reduce the ratio and therefore get closer to a

circular polarization of the diffracted light, we would need to find a balance between the

19

pol ellipse (N,M)=(1,0) (theta, phi)=(42.0) ratio = 1.16166 major angle (deg) = 44.6027

SR ==
, g
) \
% .
m ,//
R o 1 0.0985 2a. /'/ |
|
wl L/ |
IO 0821 N / |
2o i /
0.0656 I /’
: /
. 0.0492 : \ /
4. \\ //’
0.0328 N
y
aa. \ e
0.0164 \ -
1.86e-05 L
(a) First order efficiency, gold coating (b) Polarization ellipse, gold coating
pol ellipse (N,M)=(1,0) (theta, phi)=(42,0) ratio = 1.65595 major angle (deg) = 41.4439
° e AN
, \
/ \
e \\
m /
0.661 .) /
I // /
o / /
0.551 -
Fo / va
a1 ’/ /’/
0.441
/’ /
aa. !/ //
c 0.331 /!
%
022 o /
011 o AN P
1.6e-30 9.
a:] 4o 4] s Pf)
(c) First order efficiency, silver coating (d) Polarization ellipse, silver coating
N pol ellipse (N,M)=(1,0) (theta,phi)=(44,0) ratio = 1.32573 major angle (deg) = 30.9592
o e l i “\\
. - NS
o e N\
T \
Y
. 1 \
. 0 . 0.74 RV |
I 0.516 g / /
@ ’/ //
0.493 1
c 0.37 wl | J
A //
0.247 “T\ Ve
I 0.123 wl N
176-18 o7, \\\\\] ////"

(e) First order efficiency, aluminum coat-
ing (f) Polarization ellipse, aluminum coating

Figure 7: The efficiencies of the diffraction orders of the best solutions that were found with the
PSO algorithm for different coating materials, as well as the corresponding polarization ellipses.
We find that the ratio for the gold coating is the smallest, therefore the gold coating affects the
polarization the least. In the case of the aluminum coating, we find a ratio of » = 1.33, which
is acceptable.

20

ratio and the grating efficiency. Since we have set the priority to the grating efficiency, we
will not do this. However, all the tools are given in the code and one could for example do
an optimization sweep with the figure of merit ﬂ set to 7, where 1 is the grating efficiency
and r is the ratio of the major to the minor axis in the polarization ellipse. Since the
polarization ratio makes only sense in a 3d simulation, it is necessary to perform the PSO

with 3d FDTD simulations, which was not feasible given our computational resources.

3.2 Cylindrical grating (with sidewall angle)

Since the PSO sweep could not be implemented for the ETH High-Performance-Cluster
Euler, no PSO was performed for this geometry. Instead, at first, a parameter sweep
over the period and the hole radius was performed (see figure , followed by a sweep
over the coating thickness and the hole depth (see figure @7 using the optimal solution
from the previous sweep. From these two sweeps, the aluminum coating proved to be
performing the best. For the grating with aluminum coating, a sweep over the sidewall
angle was performed, again using the optimal solution of the previous sweep. Here, an
optimal solution was found, maximizing the efficiency of the first order and minimizing
the ratio of the polarization ellipse. When examining figure [§, two striking observations
emerge. Firstly, there exist two discontinuities at a period of ca. 400nm and at 600 nm.
This could be due to plasmonic effects or due to simulation effects. The specific reason
for these two discontinuities was not found. Our optimal solutions are located close to
but not directly at the discontinuities. Secondly, there are areas of maxima and minima
in the first order efficiency [f} It is important to mention that the azimuthal emission
angle of the first order only depends on the period. It is independent of the hole radius
(see fig. , hole depth and the coating thickness.

In figures and it is visible that there are regions of higher and lower ratio of the
polarization ellipse. These figures would provide important information if we optimized

for the ratio. However, since we are optimizing for a high first order efficiency, we do

5The figure of merit is the value that the PSO algorithm will maximize

SInterestingly, in all three coating materials there exists the (more or less) same parameter regime
for the hole radius and the period where the first order efficiency is globally maximal. In the case of
the aluminum coating, there exists one further regime with slightly smaller radius and equal peak first
order intensity, which is discontinuous. For a solution in the latter regime, however, the ratio of the
polarization ellipse is 1.6 and therefore higher than the ratio for a solution in the former regime, where
the ratio is r = 1.1

21

not analyze these figures further. More important for our purpose is figure where
in a final step we see that by varying the sidewall angle in order to optimize the first
order efficiency, we also minimize the ratio of the polarization ellipse. This results in a
solution with high first order efficiency and low ratio of the polarization ellipse of 1.10.

The diffraction and the polarization ellipse of this grating are shown in figure [12]

Hole radius Period Hole depth | Coating thickness
Gold coating 242.86nm | 574.50nm | 105.75nm 10 nm
Silver coating 250.00nm | 587.76 nm | 105.75nm 150 nm
Aluminum coating | 242.86nm | 614.28 nm | 105.75nm 150 nm

Table 3: The optimal parameters for the cylindrical grating for different coating materials. The
coating thickness was chosen to be 150 nm, since the diffraction is independent of the coating
thickness, except in the case of the gold coating. The reasons for this are not known and were
not further investigated, since the gold coating performs poorly due to the low reflectivity at
a wavelength of 423 nm. It is striking that the values are very similar for all coating material.
From this follows that the coating material has an influence on the grating, yet the influence is
limited. Furthermore, the hole depth is the same for all coating materials. This value was chosen
randomly for the period-radius sweep and by optimizing the first order efficiency by varying the
hole radius and the period, we already found an optimal solution. The azimuthal angles of the
first order are 42.6°,44° and 42.6° for the gold, silver and aluminum coating, respectively.

The source light is, as mentioned above, circularly polarized, and we see that the grating
affects the ratio of the polarization ellipse. In figure and [IID], one can see that there
exist regions of higher and lower ratio. This was the case for all coatings. However,
except for the sidewall angle, all parameters were chosen to maximize the first grating
order efficiency, ignoring the ratio. As it is visible in figure [I1d, the sidewall angle can be
chosen such that the first order is still maximal, and the ratio is low. This leads to an
optimal solution, with a polarization ellipse and the efficiencies of the grating as shown in
figure Note that the emission angle of the first order was observed to be independent

of the sidewall angle.

22

500 0.0727

700 0.0606
600 0.0484
£
E s00
T 00363
2
2 w0
0.0242
200
00121
200
100 150 200 250 300 350 400 0
hole radius (nm)
(a) First order efficiency, gold coating
0175
0146
0117
E
g
7 0.0876
8
%
[¢}

0.0584
I00292
100 150 200 250 300 350 400 0

hole radius (nm)

(c) First order efficiency, silver coating

0.215
500
0.179
0.143
£
=
o 0.108
kel
@
o
0.0717
I00359
100 150 200 250 300 360 400 0

hole radius (nm)

(e) First order efficiency, aluminum coat-
ing

0.401

0.334

0.267

0.2

period (nm)

0.134

0.0668

200 250 300 8.65e-06

hole radius (nm)

(b) Far field transmission, gold coating

0.892
0.743
0.595

0.445

period (nm)

0.297

0.149

200 250 200 0.000347

hole radius (nm)

(d) Far field transmission, silver coating

0.825
800

0.775

0.625

a0 0.475

period (nm)

0.325

0.175

200 250 300 400 0.0252

hole radius (nm)

(f) Far field transmission, aluminum coat-
ing

Figure 8: The first order efficiencies and the transmission into the far field for different coating
materials. The varied parameters are the period and the radius, and the grating is cylindrical

without a sidewall angle.

23

a0 0.0997

groove depth (nm)
(a) First order efficiency, gold coating
0172

500

0.144
0.115

0.0868

silver coating thickness (nmy)

groove depth (nm)

(c) First order efficiency, silver coating

0.206

050

0.172

0.138

0.103

0.0692

aluminum coating thickness (nm)

0.035

100 200 300 400 500 600 700 BOO 900 1000 0.000795

groove depth (nm)

(e) First order efficiency, aluminum coat-

ing

0.0833
E 40
=
g 0.067
5 a0
]
£ 0.0506
o
£
5 200
3 0.0342
e}
[}
D 100

0.0178

100 200 300 400 500 600 700 800 900 1000 0.00139

0.0583
IOOZQB
100 200 300 400 500 600 700 80O 900 1000 0.00128

gold coating thickness (nm)

silver coating thickness (nm)

aluminum coating thickness (nm)

0.519
500
0.458
400
0.396
007
0.334
200
0.272
100

0.211

100 200 300 400 500 600 700 800 900 1000

groove depth (nm) 0.149

(b) Far field transmission, gold coating

0.866
500 '
0.758
400
I 0.65
200 =
0.541

)
=1
o

[T

=)
o

0.433
I 0325
100 200 300 400 500 600 700 80O 900 1000 0.216

groove depth (nm)

(d) Far field transmission, silver coating

500 0.924
0.842

400
0.76

200
0.679

200
0.597

100
0,515
100 200 300 400 500 600 700 80O 900 1000 0.434

groove depth (nm)

(f) Far field transmission, aluminum coat-
ing

Figure 9: The first order efficiencies and the transmission into the far field for different coating
materials. The varied parameters are the coating thickness and the hole depth, and the grating
is cylindrical without a sidewall angle. The radius and period of the grating that resulted in
maxima at the radius-period parameter sweep were utilized.

24

58.1

800
48.4
700
a 600 38.7
<
()
~ 500
> 29
2 a0
8
0 19.4
200 9.6/8
100 150 200 250 300 350 400
radius (x10A-9) 0

Figure 10: The azimuthal emission angle of the (n,m) = (1,0) order as a function of the hole
radius and the grating period. The grating is cylindrical, and the coating is made of aluminum.
It can be observed that the azimuthal emission angle only depends on the period and not on
the radius.

4 Conclusion

Aluminum proved to be the most suitable coating material. We found optimal param-
eters for both grating geometries that we considered: one linear blazed grating and one
cylindrical grating with a sidewall angle. The ratio of the major to the minor axis of the
polarization ellipse in the cylindrical grating (r = 1.10) was slightly lower than in the
linear grating (r = 1.3). However, one could find a solution of lower grating efficiency
and lower ratio of the polarization ellipse. The tools for this are provided by the code
in the appendix. This could for example be done by using as figure of merit 2, where
7 is the first order efficiency and r is the ratio. Using several parameter sweeps, we got
an understanding of how each parameter affects the diffraction, and we found the opti-
mal parameters, which are given in table |3| and [2l The code that was developed for the

simulations is provided in the appendix and may be freely used and adapted.

25

period (x10A-9)
aluminum coating thickness (nm)

500
162

00
58.5
211

200
7.65
2.77

1

100 150 200 250 300 350 400 1

100 200 300 400 500 600 700 80O 900 1000

radius (x 10A-9) groove depth (nm)

(a) (b)

1.7+ -0.22

L0186
+0.14

F0.12

—a—ratio Loos
—first order efficiency normalized

11 T T T T T 0.06
o 0.1 02 0.3 0.4 05 0.6 0.7 08 09 1
blaze_angle_fraction

(c)

Figure 11: The ratio of the major to the minor axis of the polarization ellipse in the a radius-
period sweep, b groove depth - coating thickness sweep and the c blaze angle fraction sweep. All
three results are with the aluminum coating and cylindrical grating. In c, the left axis denotes
the efficiency of the first order and the right axis denotes the ratio. The blazing here is in the
form of a sidewall and the sidewall angle corresponds to the blazing angle in a blazed grating.
A sidewall angle ratio of 1 corresponds to a geometry where the sidewall angle is such that the
sidewall extends to the center point of the cylinder. In a-b, the color scale is logarithmic.

26

pol ellipse (N,M)=(1,0) (theta,phi)=(44,0) ratio = 1.10059 major angle (deg) = -63.3409

a N -1 0 1 0.206
/ \\\

0.172
0.137
0.103
0.069

0.0347

0.000451

(a) (b)
Figure 12: The polarization ellipse and the grating efficiency for different orders for the optimal
solution of the cylindrical aluminum grating with sidewall angle.

Acknowledgements

I am incredibly grateful to my supervisor, Gillen, whose mentorship has been truly in-
valuable. Gillen not only introduced me to a wide range of simulation tools but also

shared an immense amount of knowledge about photonics, shaping my understanding

and skills in this field.

I would like to extend my sincere thanks to Prof. Jonathan Home for making this project

a reality and making the TIQI group a place where I felt welcome from day one.

To everyone in the group, I want to express my heartfelt appreciation. The positive and
collaborative atmosphere that you all have created has made working together a great

experience.

27

References

1]
2]

[10]

[11]

Maurice Clerc. Particle swarm optimization. ISTE, 2010.

Hans Dehmelt. A single atomic particle forever floating at rest in free space: New

value for electron radius. Physica Scripta, 1988.

Stephen D. Gedney. Introduction to the Finite-Difference Time-Domain (FDTD)
Method for Electromagnetics. Morgan & Claypool, San Rafael, California, 2011.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of
ICNN’95 - International Conference on Neural Networks, volume 4, pages 1942—
1948 vol.4, 1995.

R. S. Longhurst. Geometrical and Physical Optics 2nd edition. Longman, 1967.

Harold J Metcalf and Peter Van Der Straten. Laser Cooling and Trapping. Springer,
New York, NY, 1999.

C. C. Nshii, M. Vangeleyn, J. Cotter, et al. A surface-patterned chip as a strong
source of ultracold atoms for quantum technologies. Nature Nanotech 8, page

321-324, 2013.

ANSYS Optics. Far field projections in fdtd
overview. https://optics.ansys.com/hc/en-us/articles/

360034914713-Far-field-projections-in-FDTD-overview, Accessed 2023.

ANSYS Optics. Finite difference time domain (fdtd) solver in-
troduction. https://optics.ansys.com/hc/en-us/articles/
360034914633-Finite-Difference-Time-Domain-FDTD-solver—-introduction,
Accessed 2023.

ANSYS Optics. Grating projections in fdtd overview. https://optics.ansys.com/
hc/en-us/articles/360034394354, Accessed 2023.

ANSYS Optics. Periodic boundary conditions in fdtd
and mode. https://optics.ansys.com/hc/en-us/articles/
360034382734-Periodic-boundary-conditions-in-FDTD-and-MODE, Accessed
2023.

28

https://optics.ansys.com/hc/en-us/articles/360034914713-Far-field-projections-in-FDTD-overview
https://optics.ansys.com/hc/en-us/articles/360034914713-Far-field-projections-in-FDTD-overview
https://optics.ansys.com/hc/en-us/articles/360034914633-Finite-Difference-Time-Domain-FDTD-solver-introduction
https://optics.ansys.com/hc/en-us/articles/360034914633-Finite-Difference-Time-Domain-FDTD-solver-introduction
https://optics.ansys.com/hc/en-us/articles/360034394354
https://optics.ansys.com/hc/en-us/articles/360034394354
https://optics.ansys.com/hc/en-us/articles/360034382734-Periodic-boundary-conditions-in-FDTD-and-MODE
https://optics.ansys.com/hc/en-us/articles/360034382734-Periodic-boundary-conditions-in-FDTD-and-MODE

[12]

[13]

[14]

[15]

[16]

[17]

[18]

O’Shea, Donald and Suleski, Thomas and Kathman, Alan and Prather, Dennis.
Diffractive Optics: Design, Fabrication, and Test. SPIE Press, 2003.

Christopher Palmer. Diffraction Grating Handbook, 8th edition. MKS Instruments,
Inc., 2020.

B.E.A. Saleh and M.C. Teich. Fundamentals of photonics, 2nd edition. John Wiley
& Sons, Hoboken, New Jersey, 2007.

John B. Schneider. Understanding the finite-difference time-domain method. www.

eecs.wsu.edu/~schneidj/ufdtd, 2010.

Y. Shi and R. Eberhart. A modified particle swarm optimizer. In 1998 IEEE
International Conference on FEvolutionary Computation Proceedings. IEEE World

Congress on Computational Intelligence (Cat. No.98TH8360), pages 69-73, 1998.

Oregon State University. Single slit diffraction. https://sites.science.
oregonstate.edu/~hadlekat/COURSES/ph212/waveOptics/single-slit.html|
Accessed 2023.

Kane Yee. Numerical solution of initial boundary value problems involving maxwell’s
equations in isotropic media. [FFEE Transactions on Antennas and Propagation,

14(3):302-307, 1966.

29

www.eecs.wsu.edu/~schneidj/ufdtd
www.eecs.wsu.edu/~schneidj/ufdtd
https://sites.science.oregonstate.edu/~hadlekat/COURSES/ph212/waveOptics/single-slit.html
https://sites.science.oregonstate.edu/~hadlekat/COURSES/ph212/waveOptics/single-slit.html

S Ut e W NN =

©

10
11
12

13

14
15
16

17

18
19

20
21
22
23

24
25
26
27
28

Appendix: Code

Meta script

newproject ;
deleteall;
clear;

switchtolayout ;

The gold and the aluminium coating material is taken from the following
material database. The database is available upon request.
importmaterialdb (”/scratch/Gillen_.ChipDesign/MaterialData/

LumericalMaterialData .mdf”) ;

#H#H### define variables for simulation HHHHHHHHH

Input properties:

grating_geometry: This defines the geometry.

The options are: linear_one (linear blazed grating), linear_two (
linear grating with symmetrical blazed grating)

cylindrical_zero (cylindrical grating), cylindrical_two (

cylindrical grating with side wall angle)

#

simulationdim : The dimension of the simulation — 2 for 2d and 3 for 3d

true_period : "True”, if in a sweep the period itself is a
parameter ,

?False”, if in a sweep the period_radiusfraction is
a parameter

coating_material: The material of the coating

folder_path: The absolute path of the folder in which all scripts are

located

HU

T T T eIy

folder_path = ”/scratch/SemesterProjects/gratingMOT/SimulationsJohannes/
scripts/modular scripts V27

grating_geometry = ”linear_one”;

simulationdim = 2;

true_period = ”False”;

coating_material = "Ag (Silver) — Palik (0—2um)”;
#coating_material = 7Au (Gold) — Palik”;

30

29 #coating_material = Al (Aluminium) — Palik”;

30 sweep = "two_d_sweep”;
31 sweep = "optimize_sweep”;
32

33 adduserprop(” folder_path”, 1, folder_path);

b2

34 adduserprop(” coating_material”, 1, coating_material);

(

(

35 adduserprop (”lambda_um”, 2, 0.423e—6); # the wavelength of the source

36 adduserprop(” coating_thickness”, 2, 0.15e—6); # the coating thickness

37 adduserprop (” groove_depth”, 2, 98.55e—9);

38 adduserprop(” hole_radius”, 2, 206.54e—9);

39 adduserprop(” period_radius_fraction”, 0, 656.11/206.54);
(
(
(
(

R

40 adduserprop(” blaze_angle _fraction”, 0, 0.77);

b2

41 adduserprop(” grating_geometry”, 1, grating_geometry);

b2

42 adduserprop (” simulationdim”, 0, simulationdim);

7

43 adduserprop (” true_period”, 1, true_period);

44

46

47 clearpath;

48 addpath(folder_path);

49 geometry_universal; # inserts the code of the script geometry_universal
which cotains the function geometry (...)

50 sources_and_monitors_universal; # inserts the code of the script
sources_and_monitors_universal which contains the function
sources_monitors (...)

51 geometry (” True”, grating_geometry, coating_material); # build the grating

52 sources_monitors(” True”, simulationdim , true_period); #set up all sources
and monitors

53

54 select (7 ::model”);

55 # This script will be called every time the model is set up — for example
in a parameter or optimization sweep

)

56 set(” Setup script”,

57 addpath (folder_path);

58 geometry_universal;

59 sources_and_monitors_universal;

60

61 geometry (” False”, grating_geometry , coating material);
62 sources_monitors (” False”, simulationdim , true_period);

31

63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78

© 0 N O Ut e W NN =

[N R o e e e e e e e
_ O © 0 N O Ot R W N = O

R

runsetup;

analysis_grating;

if (sweep =— "two_d_sweep”) {
two_d_sweep;

}

else if (sweep = "optimize_sweep”) {

optimize_sweep;

save the simulation file
basename = " test”;
f_save_name = folder_path+”/’+basename;

save (f_save_name) ;

Geometry setup

function geometry(firstsetup , grating_geometry, coating_material) {

LU J g g) g g g) g g) g) f g g)) g) g g g g)) g)) g)) f) g)) g g) g)) g))) ()))]

T T T T T iz

input:
firstsetup: boolean
— true if this function is used to
new simulation
— false if this function is called
grating_geometry: char string—determines the

The options are: linear_one (linear blazed

F o3 I HF FH I O F FHF W FE FH

set up the geometry in a

to update parameters

geometry of the grating;

grating) ,

linear _two (linear with symmetrical blazing)
cylindrical_zero (cylindrical grating),
cylindrical_two (cylindrical with side wall angle)

This function can easily be extended by other geometries!

coating_material: char string — specifies the material of the coating

output: nothing — this function builds the grating or updates all

necessary parameters

L L) g gy g gy) gy gy g)) g g) g g gy g gy g g gy gy) g g g g g g)) g))) g g) g))))) g g)))))]

T T T i iri

select (7 ::model”);

32

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
93
54
95
o6
LY
58
99
60

hole_radius = get(” hole_radius”);
coating _thickness = get(” coating_thickness”);
groove_depth = get(” groove_depth”);

blaze_angle_fraction = get(” blaze_angle_fraction”);

Substrate and coating layer are the same in every geometry
if(firstsetup = ”True”) {

addstructuregroup;
adduserprop (” coating_material”, 1, coating_material);

adduserprop (” hole_radius” ,2, hole_radius);

b2

adduserprop (” coating_thickness” ,2, coating_thickness);

7

(

(
adduserprop (” groove_depth” ,2, groove_depth);

(

(

adduserprop (” blaze_angle_fraction” ,0, blaze_angle_fraction);
adduserprop (” firstsetup”,1, firstsetup);

set ("name” , ”structure group”);

set (" x” ;

else {
select (”::model:: structure group”);
set (” hole_radius”, hole_radius);

set (" coating_thickness”, coating_thickness);
set (” groove_depth”, groove_depth);
(

set (” blaze_angle_fraction”, blaze_angle_fraction);

script =’
deleteall;
if (firstsetup = "True”) {
addrect ;
set ("name” , ”Substrate”);
set (?material”, ”Si (Silicon) — Palik”);
set ("x”7, 0);

set ("x span”, 100e—6);

33

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93
94
95
96
97
98

I’ .

)

else

script = script +

%)
@
—+
o,
)
—+
o
—-
—
e
w

S~—"

addrect ;

set ("name” , ”coating layer”);

set (" material”, coating_material);
set ("x”7, 0);

set (”x span”, 100e—6);

set ("y”, 0);

set ("y span”, 100e—6);

set ("z min”, 0);

set ("z max”, coating_thickness);
set ("render type”, 1);

set (” detail”, 0.3);

set ("alpha”, 0.3);

set ("override mesh order from material database”, 1);
set ("mesh order”, 3);

select (" structure group::coating layer”);
set (”z min”, 0);

set (”z max”, coating_thickness);

End of first part of script, Now, the script is extended,

on the geometry

if (grating_geometry = " cylindrical_zero”) {

)

if (firstsetup = ”"True”) {
addcircle;
set ("name” , ”coating circle”);

34

depending

99 set (” material”, coating_material);

100 set ("render type”, 1);

101 set (”detail”, 0.3);

102 set (7 alpha”, 0.3);

103 set (" override mesh order from material database”, 1);

104 set ("mesh order”, 3);

105 set ("radius”, hole_radius + coating_thickness);

106 set (?z max”, 0);

107 set (”z min”, —lxgroove_depth);

108

109 addcircle;

110 set ("name” , "Vacuum circle”);

111 set (" material”, ”etch”);

112 set ("render type”, 1);

113 set (?detail”, 0.3);

114 set ("alpha”, 0.3);

115 set (" override mesh order from material database”, 1);

116 set ("mesh order”, 1);

117 set (?radius”, hole_radius);

118 set (”z max”, coating_thickness);

119 set ("z min”, coating_thickness — groove_depth); # —(
groove_depth — coating_thickness)

120 }

121 else {

122 select (" structure group::coating circle”);

123 set (?radius”, hole_radius + coating_thickness);

124 set (”z min”, —lxgroove_depth);

125

126 select (" structure group::Vacuum circle”);

127 set ("radius”, hole_radius);

128 set ("z max”, coating_thickness);

129 set ("z min”, coating_thickness — groove_depth); # —(
groove_depth — coating_thickness);

130 }

131 .

132 }

133

134 else if(grating_geometry = ”linear_one”) {

135 script = script + ’

35

136 if (firstsetup == "True”){

137 addpoly ;

138 set ("name” , ”coating poly”);

139 set (" material”, coating_material);

140 set ("render type”, 1);

141 set (”detail”, 0.3);

142 set ("alpha”, 0.3);

143 set (”override mesh order from material database”, 1);
144 set ("mesh order”, 3);

145 x = hole_radius + coating_thickness;

146 set (? vertices”, [x,2e—6;—x,2e—6;—x,—2e—6;x,—2e—6]);
147 set ("z max”, 0);

148 set ("z min”, —lxgroove_depth);

149

150 addpoly;

151 set ("name” ; ”Vacuum poly”);

152 set (" material”, ”etch”);

153 set ("render type”, 1);

154 set (?detail”, 0.3);

155 set ("alpha”, 0.3);

156 set (" override mesh order from material database”, 1);
157 set ("mesh order”, 2);

158 x = hole_radius;

159 set (" vertices”, [x,2e—6;—x,2e—6;—x,—2e—6;x,—2e—06]);
160 set (”z max”, coating_thickness);

161 set (?z min”, coating_thickness — groove_depth); # —(

groove_depth — coating_thickness)

162

163 # add a blaze structure

164 min_angle = atan(groove_depth / (2xhole_radius));

165 blaze_angle = 0.5%xpi — blaze_angle_fraction * (0.5%pi —
min_angle);

166 x = groove_depth/tan(blaze_angle);

167

168 addtriangle;

169 set ("name” , ”blaze”);

170 set (" material”, coating_material);

171 set ("render type”, 1);

172 set (” detail”, 0.3);

36

173 set (”alpha”, 0.3);

174 set ("override mesh order from material database”, 1);

175 set ("mesh order”, 1);

176 set (" first axis”,2);

177 set ("rotation 17 ,90);

178 set (" vertices”, [0,0;x,0;0,groove_depth]);

179 set (”z max”, hole_radius);

180 set (”z min”, —hole_radius); # —(groove_depth —
coating _thickness)

181 set (7z”, 0);

182 set (7z span”, 4e—6);

183 set ("z” ,coating _thickness—groove_depth);

184 set (”x”,—hole_radius);

185 set ("y”,0);

186 }

187 else{

188 select (" structure group::coating poly”);

189 x = hole_radius + coating_thickness;

190 set (” vertices”, [x,2e—6;—x,2e—6;—x,—2e—6;x,—2e—6]);

191 set ("z min”, —lxgroove_depth);

192

193 select (" structure group ::Vacuum poly”);

194 x = hole_radius;

195 set (" vertices”, [x,2e—6;—x,2e—6;—x,—2e—6;x,—2e—06]);

196 set (”z max”, coating_thickness);

197 set (”z min”, coating_thickness — groove_depth); # —(

groove_depth — coating_thickness)

198

199 select (" structure group::blaze”);

200 set (” vertices”, [0,0;x,0;0,groove_depth]);

201 set (”z max”, hole_radius);

202 set ("z min”, —hole_radius); # —(groove_depth —
coating_thickness);

203 set ("z” ,coating _thickness—groove_depth);

204 set (”x”,—hole_radius);

205 }

206 T

207 }

208

37

209

210 else if(grating_geometry = ”linear_two”) {

211 script = script + ’

212 if (firstsetup = ”"True”){

213 addpoly ;

214 set ("name” , ”coating poly”);

215 set (" material”, coating_material);

216 x = hole_radius + coating_thickness;
217 set (” vertices”, [X,X;—X,X;—X,—X;X,—X]);
218 set (”z max”, 0);

219 set (?z min”, —lxgroove_depth);

220 set ("render type”, 1);

221 set (” detail”, 0.3);

222 set (”alpha”, 0.3);

223 set (”override mesh order from material database”, 1);
224 set ("mesh order”, 3);

225

226 addpoly;

227 set (?name” , ”Vacuum poly”);

228 set (" material”, ”etch”);

229 x = hole_radius;

230 set (?vertices”, [X,X;—X,X;—X,—X;X,—X]);
231 set ("z max”, coating_thickness);

232 set ("z min”, coating_thickness — groove_depth); # —(

groove_depth — coating_thickness);

233 set (”render type”, 1);

234 set (" detail”, 0.3);

235 set ("alpha”, 0.3);

236 set (" override mesh order from material database”, 1);

237 set ("mesh order”, 2);

238

239 # add a blaze structure

240 min_angle = atan(groove_depth / hole_radius);

241 blaze_angle = 0.5xpi — blaze_angle_fraction * (0.5%pi —
min_angle) ;

242 x = groove_depth/tan(blaze_angle);

243

244 addtriangle;

245 set ("name”, ”blaze”);

38

246
247
248
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

else

set (” material”, coating_material);

set (" vertices”, [0,0;x,0;0,groove_depth]);

set ("z max”, hole_radius);

set (”z min”, —hole_radius); # —(groove_depth —

coating,thickness)

”

z” ,coating_thickness—groove_depth);

b2

x”,~hole_radius);

’7y)

R

set ("render type”, 1);

(
(
(
(
set (" detail”, 0.3) ;
set (”alpha”, 0.3);
(
(
(
(

R

set (" override mesh order from material database”

”

set ("mesh order”, 1);

b

set (" first axis”,2);

set (?rotation 17,90);

add a second blaze structure

addtriangle;

set (”name”, ”second blaze”);

set (" material”, coating_material);

set (" vertices”, [-x,0;0,0;0,groove_depth]);

set (?z max”, hole_radius);

set ("z min” , —hole_radius); # —(groove_depth —

coating,thickness)

b2

z” ,coating_thickness—groove_depth);

”x” 'hole_radius);

R R .
OF

b

render type”, 1);

7alpha”, 0.3);

”

override mesh order from material database”

b2

set ("mesh order”, 1);

”

first axis”,2);

(
(
("y
(

set (?detail”, 0.3);
(
(
(
set (
(

set ("rotation 1”7 ,90);

{
select (" structure group::coating poly”);
x = hole_radius + coating_thickness;

set (? vertices”, [x,X;—X,X;—X,—X;X,—X]);

39

, 1)

;1)

283
284
285
286
287
288
289

290
291
292

293
294
295
296
297
298

299
300
301
302
303
304
305

306
307
308
309
310
311
312
313
314
315
316
317

set (aa 7z min” , —1*gI‘OOVefdepth) ;

select (" structure group::Vacuum poly”);

x = hole_radius;
set (” vertices”, [X,X;—X,X;—X,—X;X,—X]);
set ("z max”, coating_thickness);

set ("z min”, coating_thickness — groove_depth); # —(

groove_depth — coating_thickness);

min_angle = atan(groove._depth / hole_radius);
blaze_angle = 0.5%xpi — blaze_angle_fraction * (0.5%pi —
min_angle);

x = groove_depth/tan(blaze_angle);

select (" structure group::blaze”);

set (” vertices”, [0,0;x,0;0,groove_depth]);
set ("z max”, hole_radius);
set (”z min”, —hole_radius); # —(groove_depth —

coating _thickness)
set ("z” ,coating _thickness—groove_depth);

set ("x”,—hole_radius);

select (" structure group::second blaze”);

set (" vertices”, [-x,0;0,0;0,groove_depth]);
set ("z max”, hole_radius);
set (”z min”, —hole_radius); # —(groove_depth —

coating _thickness)
set ("z” ,coating_thickness—groove_depth);

set (?x” ,hole_radius);

else if(grating_geometry = ”cylindrical_two”) {
= script + ’
if (firstsetup = ”"True”){
addcircle;
set ("name” , ”coating circle”);
set (" material”, coating_material);

40

318 set (?radius”, hole_radius + coating_thickness);

319 set ("z max”, 0);

320 set ("z min”, —lxgroove_depth);

321 set (”render type”, 1);

322 set (" detail”, 0.3);

323 set (”alpha”, 0.3)

324 set (" override mesh order from material database”, 1);
325 set ("mesh order”, 3);

326

327 addcircle;

328 set ("name” , "Vacuum circle”);

329 set (" material”, ”etch”);

330 set (”radius”, hole_radius);

331 set (”z max”, coating_thickness);

332 set (?z min”, coating_thickness — groove_depth); # —(

groove_depth — coating_thickness);

333 set ("render type”, 1);

334 set (?detail”, 0.3);

335 set (”alpha”, 0.3);

336 set (" override mesh order from material database”, 1);
337 set ("mesh order”, 2);

338

339 # add polygon toroid

340 theta_start = 0;

341 theta_stop = 360;

342 material = coating_material;

343 resolution = 1000;

344 radius = hole_radius;

345

346 AR AR AR AR AR AR AR

347 # General polygon toroid

348 # This object created a 3D structure by revolving an

arbitrary outline ,

349 # as defined by a set of polygon vertices, around the Z
axis with a radius R.

350 # The vertices of the polygon shape can be defined
following the

351 # instructions at http://docs.lumerical.com/en/fdtd/

user_guide_set_polygon_vertices.html

41

352
353
354
355
356

357
358
359
360
361
362
363
364
365
366

367
368
369

370
371
372
373
374
375
376
377
378
379

380
381
382
383

384

#

Input properties

theta start: starting angle of toroid

theta stop: stopping angle of toroid

radius: distance from the center of the toroid to

the center of

the each slice that makes up the toroid

material: material of object

resolution: number of slices that make up overall shape
#

Tags: toroid ring general custom polygon

#

Copyright 2010 Lumerical Solutions Inc

LU

T i i i i i i i i i1 it

USER specifies polygon vertices here. The 3D structure
will be created by revolving this shape around Z axis,
with a radius R.

Note: It is OK, but not necessary to close the polygon

min_angle = atan(groove_depth / hole_radius);

blaze_angle = 0.5%xpi — blaze_angle_fraction * (0.5%pi —
min_angle) ;

x = groove_depth/tan(blaze_angle);

V(1,1:2) = [—=x,0];
V(2,1:2) = [0, groove._depth];
V(3,1:2) = [0, 0];
V(4,1:2) = [—=x,0];

#plot (pinch (V,2,1)*1e6, pinch(V,2,2)*1e6,”x (um)”,”y (um)”,”
Polygon outline”); # plot vertices (for debugging)

calculate slice thickness
th = 4xpixradius/resolution; # divide circumference by
resolution

th = th « 1.1; # scale up thickess slighly. Required

42

385
386
387

388
389
390

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

when polygon vertices extend beyond zero, which

increases the maximum radius.

if partial revolution, use only a fraction of slices

resolution=round (resolutionxabs(theta_start —theta_stop)

/360) ;

Calculate revolution angle vector

theta = linspace (theta_start+pi/180,theta_stopxpi/180,

resolution);

for (i=1:resolution) {

addpoly;
set ("name”, ”coating blazing”);
set (" vertices” V) ;
set (” first axis”,”x”);
set ("rotation 17,90);
set ("second axis”,”z7);
set ("rotation 27 ,theta(i)x180/pi);
set ("x” ,radiusxcos(theta(i)));
(

set (Py” ,radiusxsin (theta(i)));

set ("z min”,—th/2 + coating_thickness — groove_depth);
set ("z max” ;th/2 + coating_thickness — groove_depth);
set (" material” ,material);

set (” override mesh order from material database”, 1);
set ("mesh order”, 1);

}

}

else {
select (" structure group::coating circle”);
set ("radius”, hole_.radius 4+ coating_-thickness);
set (?z max”, 0);

set (”z min”, —lxgroove_depth);

select (" structure group::Vacuum circle”);

set (?radius”, hole_radius);
set ("z max”, coating_thickness);
set (”z min”, coating_thickness — groove_depth);

43

—(

420
421
422
423
424

425
426
427
428
429
430
431

432

433

434

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449)

groove_depth — coating_thickness);

select (" structure group::coating blazing”);

#perform same calculations as above

min_angle = atan(groove_depth / hole_radius);

blaze_angle = 0.5%xpi — blaze_angle_fraction * (0.5%pi —
min_angle) ;

x = groove_depth/tan(blaze_angle);

V=matrix (4,2) ;

1,1:2) =

2,1:2) =

3,1:2) =

4,1:2) =

I
, groove_depth];
; T

5

th = 4*pi*radius/resolution; # divide circumference by

Vi([-
Vi([0
Vi([0
Vi([-

resolution
th = th = 1.1; # scale up thickess slighly. Required
when polygon vertices extend beyond zero, which
increases the maximum radius.
resolution=round(resolution*abs(theta_start —theta_stop)
/360) ;
theta = linspace(theta_start+pi/180,theta_stopx*pi/180,
resolution);
vertices” V) ;
180/ pi);
7x” radiusxcos (theta(i)));
)

(
(
(

set (Py” ,radius*sin (theta(i)));
(”z min”,—th/2 + coating_thickness — groove_depth);
(

z max” ;th/2 + coating_thickness — groove_depth);

select (”7::model:: structure group”);
set (” first axis”, 2); # first axis is x axis
set ("rotation 1”7, 270);

set(” script”, script);

44

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Sources and monitors setup

function sources_monitors(firstsetup , dimension, trueperiod) {

input:

firstsetup: boolean — true if this function is used to set up
the geometry in a new simulation

— false if this function is called to

update parameters

dimension: integer — the dimension of the FDID simulation region
The options are: 2 (2D) or 3 (3D)

trueperiod: char string — specifies whether the

period_radius_fraction is used for

determining the period or whether the
period is set as an absolute number.
This information is necessary for

updating the FDID simulation region
in parameter sweeps

— 7true” if the period is set an an absolute number
— 7false” if set by the period_radius_fraction

#

output: nothing — this function sets up the monitors or updates
all necessary parameters

This function can easily be extended by other monitors!

select (7 ::model”);

lambda_.um = get (”lambda_um”);

coating _thickness = get(” coating_thickness”);
groove_depth = get(” groove_depth”);

hole_radius = get(” hole_radius”);
period_radius_fraction = get(” period_radius_fraction”);
blaze_angle_fraction = get(” blaze_angle_fraction”);

lambda_.um = get (”lambda_um”) ;

period = period_radius_fraction % hole_radius;

if(firstsetup = 7True”) {
#add a plane wave source

addplane;

45

39
40
41
42
43
44
45
46
47
48
49
50
51
92
53
54
95
56
57
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7

R »”

set v

direction” ”backward”);
”X)

”x span”, 100e—6);

”Z)

(
(7
(
(
(
(727, 0);
set(”z span”, 100e—6);
(
(
(
(
(

injection axis”

”

set
set
set
set

set

7

set (" wavelength start”, lambda_um);

7

set (” wavelength stop”, lambda_um) ;

b2

set (” polarization angle”, 90);

set (” phase”, 90);

R

set ("y”, coating_thickness + le—6);

#add a secomd plane wave source

addplane;
set (” injection axis”, "y”);
set (” direction”, ”backward”);

set ("x”, 0);

set (”x span”, 100e—6);

(7

(

(

set(”z”, 0);

set(”z span”, 100e—6);
(
(
(

R

set (” wavelength start”, lambda_um);

b2

set (” wavelength stop”, lambda_um) ;

b2

set(”y”, coating_thickness + le—6);

#add a power monitor

addpower ;
set ("name”, "3dpowermonitor”);
if (dimension==3){
set (” monitor type”, 8); # 3d

set (”y span”, 0);

}
else

set (” monitor type”, 6); # 2d y normal
}

46

78 set ("x”, 0);

79 set (”x span”, 100e—6);

80 set(”y”, coating_thickness + 1.2e—6);
81 set(7z”, 0);

82 set (”z span”, 100e—6);

83 set (" override global monitor settings”, 1);
84 set (" use source limits”, 0);

85 set (" frequency points”, 1);

86 set (” wavelength center”, lambda_um);
87 set (” wavelength span”, 0);

88

89

90

91 #add a side view power monitor

92 addpower;

93 set ("name” , 7sideview”);

94 set (” monitor type”, 7); # 2d z normal
95 set ("x”, 0);

96 set ("x span”, 10e—6);

97 set("y”, 0);

98 set ("y span”, 10e—6);

99 set (”z”, 0);

100 set (" override global monitor settings”, 1);
101 set (" use source limits”, 0);

102 set (” frequency points”, 1);

103 set (" wavelength center”, lambda_um);
104 set (” wavelength span”, 0);

105

106

107

108

109 # add the simulation region

110 addfdtd;

111 set (” dimension” , dimension—1); # 1 = 2D, 2 = 3D
112 set (”x”, 0);

113 set(”z 0);

114 set (”x min bc”, "Periodic”);

115 set (”y min bc”, "PML");

116 set ("y max bc”, "PML”);

47

117 if (dimension = 3) {

118 set (”z max bc”, ”Periodic”);

119 set (”"z min bc”, ”Periodic”);

120 }

121 set (”x span”, period);

122 set ("y min”, —1.0 x* (groove_depth + 0.5e¢—6));
123 set (”y max”, coating_thickness + 1.3e—6);
124 set (”z span”, period);

125 set ("mesh accuracy”, 4);

126 }

127 else {

128 select ("3dpowermonitor”) ;

129 set(”y”, coating_thickness + 1.2e—6);

130

131 select ("FDID”) ;

132 if (trueperiod = ”False”) {

133 set (”x span”, period);

134 set(”z span”, period);

135 }

136 set ("y min”, —1.0 x (groove_depth + 0.5e¢—6));
137 set (”y max”, coating_thickness + 1.3e—6);
138

139 select (" source”);

140 set(”y”, coating_thickness + le—6);

141

142 select (" source_17);

143 set (7y”, coating_thickness + le—6);

144 }

145 }

48

N O Ot e W N

oo

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Analysis scripts

mname = ”::model::3 dpowermonitor”;

select (7 ::model : :FDID”) ;

dimension = get(” dimension”);

select (7 ::model”);

lambda_um = get (”lambda_um”) ;

JL))))) g g g)) g) g g g) g g g) g) g g))))))))))) g))))) g g))))))))))

T T T T T e

F o3k F I I I I FH O F FHF FHF FHR oFHF oI oI oI I I o I FHE FH OFH OFH FH I OFH*

all analysis scripts are set up in this script:
1. Grating Transmission (Lumerical built—in plus own code)

2. Polarization Ellipse (Lumerical built—in)

Results:
Grating Transmission:
T: total transmitted power vs frequency. Will be negative for
power flowing in negative direction
T_grating: (3D) fraction of source power transmitted to each
grating order, S & P polarization components, direction
cosine vectors, and theta, phi angles
T_grating: (2D) fraction of source power transmitted to each
grating order, S & P polarization components,
and theta angle
num_orders: the number or orders that were detected
first_order_efficiency: fraction of far field power transmitted to
the (n,m)=(1,0) mode
for 2D: Can be set to 0 outside a range of
angles that are desired; The code for this
can be commented/uncommented further below!
first_order_theta: emission angle of the (n,m) = (1,0) mode
first _order_efficiency_normalized: fraction of source power
transmitted to the

(n,m)=(1,0) mode

Polarization ellipse:
Gs_plot, Gp_plot: returns polarization in S and P direction for all
orders as a function of lambda
num_orders: returns the number of valid grating order vs lambda

(may also include orders due to numberical error, e.g

49

39
40
41
42
43
44
45
46

48
49
50
o1
52
53
o4
55
56
o7
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

G=10"—-30)

pol: contains the fraction transmitted power (G), phase differece
in s and p polarization (phase_diff), polarization handedness
(pol_-handed), angle of major axis (major_angle) and ratio of
major /minor axis (ratio) for all grating orders and

wavelengths.

ratio_.1_0: returns the ratio of the major to the minor axis for
the (n,m) = (1,0) mode

addanalysisgroup;

set ("name”, ” Grating Transmission”);

set ("x”, ;

0)
set ("y”, 0);
set(”z”, 0)

b2

adduserprop ("normal”, 1, "y”);

;

(

adduserprop (”x span”,2,5e—6);
adduserprop ("y span” ,2,0);
adduserprop (”z span” ,2,5e—6);
addanalysisprop ("make plots”, 0, 0);
addanalysisprop (”n target”, 0, 1);
addanalysisprop ("m target”, 0, 0);
addanalysisprop (”lambda target”, 2, lambda_um);
addanalysisresult ("T7);
addanalysisresult (” T _grating”);

»

addanalysisresult (" num_orders”) ;

»

first_order_efficiency”);

addanalysisresult (” first_order_theta”);

»

(
(
addanalysisresult (
(
(

addanalysisresult (” first _order_efficiency _normalized”);

)

analysis_script=

mname = ”::model::3 dpowermonitor”;

Grating transmission

20

7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

This object calculates the fraction of source power transmitted to
each grating order (total, S and P polarization) at all frequency
points recorded by the monitor. It also calculates the number of
propagating grating orders
#
Input properties
make plots: 1 to make plots, 0 otherwise
n,m target: grating order to plot. These parameters only affect
the plots. They do not affect the output results.
lambda target: wavelength to plot. These parameters only affect
the plots. They do not affect the output results.
Output properties
T(f): total transmitted power vs frequency. Will be negative for
power flowing in negative direction
T_grating (n,m,f): (3D) fraction of source power transmitted to
each grating order ,S&P polarization components,
direction cosine vectors, and theta ,phi angles
T_grating (n,f): (2D) fraction of source power transmitted to each
grating order, S & P polarization components,
and theta angle

num_orders(f): number of supported grating orders

Notes
— grating_ S, grating P are normalized so that |grating_S|"2 gives
the fraction of the source power to each grating order that is
S polarized. |grating_S|"24|grating.P|"2 = T_grating.
— Interpretation of results for various monitor orientations for
3D simulations:
XY plane: n, Ul correspond to X axis. m, U2 correspond to Y axis

X7 plane: n, Ul correspond to X axis. m, U2 correspond to Z axis

F o3 F F OFH I I FHE FH O FHE FHE I FHFHE I HE O FE FE KK

YZ plane: n, Ul correspond to Y axis. m, U2 correspond to Z axis

#

Tags: far field grating order transmission

Copyright 2016 Lumerical Solutions Inc

simplify input variable names by removing spaces

51

116 make_plots = %make plots%;

117 n_target = %m target%;

118 m_target = %m target %;

119 lambda_target = %lambda target %;

120

121 # specify monitor name

122 mname="::model ::3 dpowermonitor”;

123

124 # get frequency vector

125 f=getdata (mname,” £7);

126 size_f=length (f);

127

128 # get total net power transmitted through monitor

129 T=transmission (mname) ;

130

131 if (getdata (mname,” dimension”) = 3) { # 3D simulation
132

133

134 # find the maximum possible number of grating orders
135 # this occurs at the maximum frequency

136 n=gratingn (mname, size_f);

137 m=gratingm (mname, size_f);

138 size_n=length (n);

139 size_m=length (m) ;

140

141 # initialize matrices

142 T _grating = matrix (size_n ,size_m ,size_f); # grating order

strength vs f

143 grating_S = matrix (size_n ,size_m ,size_f); # |grating.S| "2 gives
the fraction of the source power to each grating order that is S
polarized

144 grating_P = matrix (size_n ,size_m ,size_f); # |grating.P|"2 gives
the fraction of the source power to each grating order that is P
polarized

145 Ul = matrix (size_n ,size_m ,size_f); # first direction
cosine (if monitor is in XY plane, this corresponds to Ux)

146 U2 = matrix (size_n ,size_m ,size_f); # second direction
cosine (if monitor is in XY plane, this corresponds to Uy)

147

52

148

149 # loop over each frequency point

150 for (i=l:size_f) {

151

152 # get the grating numbers at this frequency

153 n_tmp = gratingn (mname,i);

154 m_tmp = gratingm (mname, i) ;

155

156 # calculate indices for inserting these results into final
matrix

157 nl = find (n,n_tmp (1)) ;

158 n2 = find (n,n_tmp(length (n_tmp)));

159 ml = find (m,m_tmp (1)) ;

160 m2 = find (m,m_tmp(length (m_tmp)));

161

162 # calculate grating order angles (direction cosine units)

163 # and save into Ul, U2 matrix.

164 # set unused orders to —1 or +1

165 ul = matrix (size_n);

166 u2 = matrix (size_m);

167 ul (1:nl) =—1;

168 u2 (1:ml) =1

169 ul (n2:size_n) = 1;

170 u2(m2:size.m) = 1;

171 ul (nl:n2) = gratingul (mname, i) ;

172 gratingu2 (mname, i) ;

173 u2(ml:m2) = gratingu?2 (mname,i);

174 Ul(1l:size_n ,l:size_m ,i) = meshgridx(ul,u2);

175 U2(1:size_n ,1:size_m ,i) = meshgridy (ul,u2);

176

177

178 # calculate grating orders and save into T_grating matrix

179 grating _temp = gratingpolar (mname,i);

180 grating_temp = grating_temp * sqrt(abs(T(i))); #
normalize result such that sum of all grating orders of |
Etheta| 24 |Ephi|"2 equals

181 # the fraction of source power transmitted

through the monitor.
182 grating_S(nl:n2 ,ml:m2,i) = pinch(grating_temp ,3,3); # |

23

183

184

185
186
187
188

189
190
191
192
193
194
195

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

grating_S|"2 gives the fraction of the source power to each
grating order that is S polarized

grating_P (nl:n2 ml:m2,i) = pinch(grating_temp ,3,2); # |
grating P |2 gives the fraction of the source power to each
grating order that is P polarized

T_grating (nl:n2,ml:m2,i) = abs(pinch(grating_temp ,3,2))"2 +
abs(pinch(grating_temp ,3,3)) "2; # fraction of source power

to each grating order

calculate U3 and convert grating directions to theta ,phi. If
monitor is in XY plane, U3=Uz

U3 = sqrt (1-U1"2-U2"2);
theta = real (acos(U3)) x 180/pi;
phi = atan2(U2,U1) x 180/ pi;

Calculate the number of grating orders (theta < 90)

NOTE: this script for counting grating orders assumes a
rectangular

unit cell. The count will not be correct for triangular lattices.

num _orders_matrix = sum (sum ((real(theta) < 89.9) , 2).,1);

T _matrix=T;

T_grating_matrix=T _grating;

T = matrixdataset ("T”);
T.addparameter (”lambda” ,c/f,” {7, f);
T.addattribute ("T” ;T _matrix) ;

num-_orders = matrixdataset (" num_orders”);
num_orders.addparameter (” lambda” ,c¢/f,” {7 ,f);

num_orders. addattribute (” num_orders” ;num _orders_matrix) ;

T_grating = matrixdataset (” T_grating”);

T_grating . addparameter ("n” ,n) ;
T_grating . addparameter ("m” ,m) ;

T_grating .addparameter (”lambda” ;c/f,” £7 [f);

54

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

233

234

235
236
237
238

239
240

241
242
243
244
245
246
247

T _grating.addattribute (” T_grating”,T_grating_matrix);

R

T_grating . addattribute (" grating _S” ,grating_S);

b

T_grating . addattribute (" grating . P” ,grating_P);

T_grating . addattribute (" U2” ;U2);
”U377),
”theta” ,theta);

(7
(
(
T_grating . addattribute ("U1” ,U1);
(
T_grating . addattribute (
T_grating . addattribute (

(

T_grating . addattribute (” phi” ,phi);

if (make_plots) {

plot number of orders
plot (¢/f*le6, num_orders_matrix,

"wavelength (um)”,”” ” Number of grating orders”);

plot data for a particular grating order

T_grating_plot = pinch(pinch(T_grating_matrix ,2,find (m, m_target
)) ,1,find(n,n_target));

theta_plot = pinch (pinch(theta ,2,find (m, m_target)) 1,
find (n,n_target));

phi_plot = pinch (pinch (phi,2,find (m, m_target)) 1
find (n,n_target));

plot (¢/fx1le6, abs(T_matrix), T_grating_plot,

"wavelength (um)”,” Transmission”,” Transmission”);

legend (” Total” ,”To order ("+num2str(n_target)+”,”+num2str (
m_target)+")”);

plot (c¢/fxle6, theta_plot, phi_plot,

” 77

”wavelength (um) angle (deg)”,” Propagation direction for
order ("+num2str(n_target)+”,”+num2str(m_target)+")");

legend (" Theta” ,” Phi”) ;

RN N RN N R R N RN N N R N NN NI NI RR I n I mIm I mINImInInIne e

T T T T e i ur

plot results at one frequency point
fi = find (c¢/f,lambda_target);
ul_plot = pinch (pinch (U1,3,fi),2,1);

95

248
249
250
251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271

272
273
274
275
276
277
278
279
280
281
282
283

u2_plot =

T_grating_plot =

pinch (pinch (U2,3,fi) ,1,1);

pinch (T_grating_matrix ,3, fi);

image (ul_plot ,u2_plot , T_grating_plot ,

7ul” ”u2”,” Transmission at "+num2str(c/f(fi)*1e6)4+"um”,” polar

plot”);

re—plot at higher resolution for a nicer plot

pts

ul_plot2
u2_plot2
T_grating_plot2

35;

linspace(—1,1,pts);

linspace(—1,1,pts);

matrix (pts, pts);

for (i=1l:size_n) {

for (j=1:size.m) {

uli = find (ul_plot2 ,ul_plot(i));
u2j = find (u2_plot2 ,u2_plot(j));

T_grating_plot2(uli,u2j)

= T_grating_plot (i,]);

image (ul_plot2 ,u2_plot2,T_grating_plot2,

“ul” ”u2”,” Transmission at "+num2str(c/f(fi)*1le6)+"um”,” polar

plot”);

image (ul_plot2 ,u2_plot2 ,logl0(abs(T_grating_plot2)+le—5),

"ul” ,”u2”,” LoglO (| Transmission |)

» N

} else { # 2D simulation

,” polar plot”);

at "+num2str(c/f(fi)*le6)+"um

find the maximum possible number of grating orders

this occurs at the maximum frequency

n=gratingn (mname, size_f);

size_n=length (n);

initialize matrices

T_grating = matrix(size_n ,size_f); # grating order strength vs f

26

284
285

286

287
288
289
290
291
292
293
294
295

296
297
298
299
300
301
302
303
304
305
306
307

308

309

310

theta = matrix (size_n ,size_f); # angle matrix

grating_S = matrix (size_n ,size_f); # |grating_S| 2 gives the
fraction of the source power to each grating order that is S
polarized

grating_P = matrix (size_n ,size_f); # |grating.P| 2 gives the
fraction of the source power to each grating order that is P

polarized

loop over each frequency point

for (i=l:size_f) {

get the grating numbers at this frequency

n_tmp = gratingn (mname,i);

calculate indices for inserting these results into final

matrix
nl = find (n,n_tmp (1));
n2 = find (n,n_tmp(length (n_tmp)));

calculate grating order angles
set unused orders to —90 or 490
theta (1l:nl,i) = —90;
theta(n2:size_n ,i) = 90;

theta(nl:n2,1) = gratingangle (mname, i) ;

calculate grating orders and save into T_grating matrix

grating _temp = gratingpolar (mname, i) ;

grating _temp = grating_temp * sqrt(abs(T(i))); #
normalize result such that sum of all grating orders of |
Etheta|"2+|Ephi|~2

equals the fraction of source power
transmitted through the monitor.

grating_S(nl:n2,i) = pinch(grating_temp ,2,3); # |
grating_S|"2 gives the fraction of the source power to each
grating order that is S polarized

grating P (nl:n2,i) = pinch(grating_temp ,2,2); # |
grating P |"2 gives the fraction of the source power to each

grating order that is P polarized

o7

311 T_grating (nl:n2,i) = abs(pinch(grating_temp ,2,2))"2 + abs(
pinch (grating_temp ,2,3)) "2; # fraction of source power to

each grating order

312 }

313

314

315 # Calculate the number of grating orders (theta < 90)
316 num_orders_matrix = sum((abs(theta) < 89.9) ,1);
317

318

319 T _matrix=T;

320 T_grating_matrix=T _grating;

321

322 T = matrixdataset ("T”);

323 T.addparameter (”lambda” ,c/f,” {7 f);

324 T.addattribute ("T” , T_matrix) ;

325

326 num_orders = matrixdataset (" num_orders”);

327 num_orders.addparameter (” lambda” ,c¢/f,” £7 ,f);

328 num_orders. addattribute (” num_orders” ,num_orders_matrix) ;
329

330 T_grating = matrixdataset (” T_grating”);

331 T_grating . addparameter ("n” ,n) ;

332 T _grating . addparameter (" lambda” ;c/f,” £7 [{);

333 T_grating.addattribute (" T_grating” ,T_grating_matrix);
334 T _grating.addattribute (” grating_S” ,grating_S);

335 T_grating . addattribute (" grating P” ,grating P);

336 T_grating .addattribute (" theta” ,theta);

337

338

339

340 if (make_plots) {

341

342 # plot number of orders

343 plot (c/fx1e9, num_orders_matrix,

344 "wavelength (nm)” ,”” ” Number of grating orders”);
345

346 # plot data for a particular grating order

347 T_grating_-plot = pinch(T_grating-matrix,1,find(n,n_target));

28

348
349
350
351
352
353
354

355
356
357
358
359
360
361
362

363
364
365
366

theta_plot = pinch(theta ,1,find (n,n_target));

plot(c/fx1e9, abs(T.-matrix), T_grating_plot ,
”"wavelength (nm)”,” Transmission”,” Transmission”);
legend (” Total” ,”To order ("+num2str(n_target)+")”);
plot (c/fx1e9, theta_plot ,

"wavelength (nm)”,” angle (deg)”,” Propagation angle for order

(?+num2str(n_target)+")”);

plot results at one frequency point

fi = find (¢/f,lambda_target);

theta_plot = pinch (theta ,2,fi);

T_grating_plot = pinch(T_grating_matrix ,2,fi);

plot (theta_plot , T_grating_plot ,

"theta (deg)”,” Transmission”,” Transmission at "+num2str(round (¢

/f(fi)*1e9))+"nm”,” plot points”);

).
i

: : IR
367 #%#Ef#&#:ﬁ%#my own lmplementatlon starts here T i i it

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

if (dimension = 73D”) { # 3D simulation
analysis_script = analysis_script + ’

orders = gratingordercount (mname) ;

ul = gratingul (mname) ;

u2 = gratingu2 (mname) ;

uz = sqrt (1 — ulxul — u2xu2);

theta = acos(u2) x 180 / pi; # azimuth angle

phi = atan(u2/ul) = 180 / pi; # polar angle

T = transmission (mname) ;

grating_efficiencies = grating (mname) ;

grating_.n = gratingn (mname) ;

grating_ m = gratingm (mname) ;

29

385
386

387

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

408
409
410
411
412
413
414
415

416
417
418
419

Depending on the number of orders, the first order can be found with

a different index

The case of 3 orders was observed in a blazed grating. In a radially

symmetric grating , the number of orders is 1, 5 or 9

if (orders = 1) {

else

else

else

firstordern = 1;
firstorderm = 1;
first _order_efficiency = 0;
firstorderu2 = 1;

first_order_theta = acos(firstorderu2) * 180/ pi;

if (orders = 3) {

firstordern = 1;

firstorderm = 0;

first_order_efficiency = grating_efficiencies (3);

firstorderu2 = ul(3);
first_order_theta = acos(firstorderu2) = 180/ pi;

if (orders = 5) {

firstordern = 2;

firstorderm = 3;

first.order_efficiency = grating_efficiencies (firstordern ,

firstorderm) ;
firstorderu2 = u2(3);
first_order_theta = acos(firstorderu2) x 180/ pi;

if (orders = 9) {

firstordern = 2;

firstorderm = 3;

first_order_efficiency = grating_efficiencies (firstordern ,

firstorderm) ;
firstorderu2 = u2(3);
first_order_theta = acos(firstorderu2) * 180/ pi;

60

420

421
422
423
424
425

426
427
428
429
430
431
432
433
434
435
436

437

438
439
440
441
442
443
444
445
446
447
448
449

450
451
452
453

automatically .
else {

print (” Universal

firstordern =

firstorderm =

algorithm?”);

Here a more experimental algorithm that finds the first order

It was not thoroughly tested and needs to be adapted

find (gratingn (mname) , 0);

find (gratingm (mname) , 1);

first_.order_efficiency = grating_efficiencies (firstordern ,

firstorderm) ;

zerou2 = find (u2, 0);

if (zerou2 =

1) A

firstorderu2 = 1;

}

else {

firstorderu2 = u2(zerou2 + 1);

}

first_order_theta = acos(firstorderu2) x 180/ pi;

}

grating (mname) gives only the power relative to the farfield

power.

To get the power relative to the source power, we need to

multiply with T (farfield power / source power)

first_order_efficiency_normalized =T % first_order_efficiency;
}
else if (dimension = ”2D”) { # 2D simulation
analysis_script = analysis_script +

orders = gratingordercount (mname) ;

theta = theta;

first_order_efficiencies = T_grating.T_grating;

T = transmission (mname) ;

if (orders = 3) {

first _order_efficiency_normalized

)

first_order_theta = theta (3);

}

else {

first_order_efficiency_normalized

61

first _order_efficiencies (3)

0;

454 first_order_theta = 90;

455 }

456

457 first_order_efficiency = first_order_efficiency_-normalized / T;

458 first _order_.n = 1;

459 first_order_m = 0;

460

461 # for the optimization algorithm we can set the
first _order_efficiency_normalized to 0 if the emission angle of
the first order is not within the

462 # range [42 degrees, 48 degrees|. Comment/uncomment as needed

463 if ((first_order_theta <=42) or (first_order_theta >= 48)){

464 first _order_efficiency = 0;

465 first_order_efficiency_normalized = 0;

466 }

467

468 [

469 }

470

471 set(” analysis script”, analysis_script);

472

473

474 # add a polarization analysis

475 addanalysisgroup;

476 set("name”, ”polarization ellipse”);
477 set ("x”, 0);

478 set("y”, 1.35e¢—6);

479 set("z”, 0)

7

480 adduserprop ("normal”, 1, "y”);

R

x span” ,2,5e—6);

b2

(
481 adduserprop (
482 adduserprop(”y span” ,2,0);

483 adduserprop(”z span”,2,5e—6);

484 addanalysisprop ("make plots”, 0, 0);

485 addanalysisprop(”n target”, 0, 1);

486 addanalysisprop("m target”, 0, 0);

487 addanalysisprop(”lambda target”, 2, lambda_um);
488 addanalysisprop(” ellipse res”, 0, 1000);

489 addanalysisresult (” Gp_plot”);

490 addanalysisresult (” Gs_plot”);

62

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

addanalysisresult (" pol”);

addanalysisresult (" num_orders”) ;

addanalysisresult ("ratio_1.07");

analysis_script =

)

J) L gy g g gy g gy g g gy gy g g g gy g g g g g g g g f) g g g g g) g) g g g g g g g gy) g)))) g g g))))

T T T T T i i

#
i
#
i
#

FHF ¥ FHF F O FHFOF I FH FH I OFH FH O OFH OFHF O OHFHF H K FH KK FH K

Polarization ellipse

This script calculates the polarization of all grating orders.
The results of all orders (n,m) are returned to the Gs_plot and
Gp_plot datasets

The results of a user—specified grating order and frequency

point can be plotted in terms of the polarization ellipse

Input parameters:

make plots: 1 to make plots, 0 otherwise

n_target , m_target: grating order of interest (n,m).

These parameters only affect the ellipse plot. They do not
affect the output results.

lambda_target: wavelength of interest. This parameter only
affects the ellipse plot. It does not affect the output results.
ellipse_res: resolution of the polarization ellipse.

This parameter affects the ellipse plot, it may also affect the

output results.

Output results:

Gs_plot, Gp_plot: returns polarization in S and P direction for
all orders as a function of lambda

num_orders: returns the number of valid grating order vs lambda
(may also include orders due to numberical error ,e.g.,G=10"—30)
pol: contains the fraction transmitted power (G), phase differece
in s and p polarization (phase_diff), polarization handedness
(pol_-handed), angle of major axis (major_angle) and ratio of

major/minor axis (ratio) for all grating orders and wavelengths.

Note — Since the size of the pol dataset is a function of the
number of grating orders
Therefore, a larger dataset is created and then stitch

data into the whole matrix

63

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

561

562
563
564
565
566

The ratio of major/minor axis can be a ”not a number”
(NAM)

For some invalid grating orders, the major and minor

axis can be both zero that causes NAM

The visualizer may not be able to properly display

these entries

Users can use the View Data function in the visualizer
+# to see the exact numbers

#

— The polarization handedness is defined from the point
of view of the receiver

#

Plot:

ellipse: plots a polarization ellipse based on the s,

+# p polarization components of a user—specified n,

m and lambda. Numbers in the plot title are rounded
to integer

#

Tags: far field polarization ellipse grating

#

Copyright 2014 Lumerical Solutions Inc.

J) L)y g) g gy g gy) g gy g gy g gy g gy g g g gy g g g g gy) g gy) g g gy g) g g) g) g g g) g gy) g))) g)))))

T T T i e iririri

mname = ”::model::3 dpowermonitor”;

simplify input variable names by removing spaces

make_plots = %make plots%;

n_target = %n target%; # target grating order for the ellipse plot

m_target = %m target %;

lambda_target = %lambda target%; # target frequency point for the
ellipse plot

ellipse_res = %ellipse res%; # pol ellipse resolution. This number

affects the accuracy

specify monitor name, get frequency vector

f=getdata (mname,” {7);

find the maximum possible number of grating orders, this occurs

64

567

568

569

570

071

572

573

074

575

976

o577

978

579

580

581

582

583

584

585

586

587

588
589

at the maximum frequency
n=gratingn (mname, length (f));

m=gratingm (mname, length ({));

initialize matrices

ul = matrix(length(n));

u2 = matrix(length (m));

Ul = matrix(length (n),length (m),length(f)); # first direction
cosine (if monitor is in XY plane, this corresponds to Ux)

U2 = matrix(length (n),length (m),length(f)); # second direction
cosine (if monitor is in XY plane, this corresponds to Uy)
Gs_all = matrix(ellipse_res ,length(n),length(m),length(f)); # s pol

vs res ,n,m,f
Gp-all = matrix(ellipse_res ,length(n),length (m),length(f)); # p pol
vs res ,n,m, f
kappa = linspace(0,360,ellipse_res)*pi/180; # setting kappa for
Gs and Gp
G = matrix(length(n),length(m),length(f)); # grating order
strength vs n,m,f
major_angle_all = matrix(length (n),length (m),length(f)); # major

angle vs n,m,f (this is also called the orientation or tilt

angle)
ratio_all = matrix(length(n),length (m),length(f)); # ratio vs n,m
,f (for linear pol., ratio can be very high)

phase_diff_all = matrix(length(n),length(m),length(f)); # phase vs
n,m,f (the phase difference between s and p polarization (p
minus s))

pol_handed_-all = matrix(length(n),length (m),length(f));

left or right handed polarization. 1 is right—handed, —1 is left —
handed, 0 means no entry/linear.

In other words, from phase_diff, —180<p—s<0 is left , O<p—s<180 is
right .

This is defined from the point of view of the receiver (against
the progation direction).

User can multiply —1 to this matrix if from the point of view of

the source.

loop over each frequency point

for (fi=1:length(f)) {

65

590
591
592
593
594
595

596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620

621
622
623
624
625
626

get the grating numbers at this frequency point
n_tmp = gratingn (mname, fi);

m_tmp = gratingm (mname, fi);

calculate indices for inserting these results into the final
matrix

that the final matrix is filled from nl to n2, and ml to m2

nl = find (n,n_tmp(1));

n2 = find (n,n_tmp(length (n_-tmp)));
ml = find (m,m_tmp(1));
m2 = find (m,m_tmp(length (m_tmp)));

calculate grating order angles (direction cosine units)

and save into Ul, U2 matrix. Set unused orders to —1 or +1

ul (1:nl) =—1;
(1:ml) =—1;
1(n2:length(n)) = 1;
2(m2:length (m)) = 1;
ul (nl:n2) = gratingul (mname, fi);
2 (ml:m2) = gratingu?2 (mname, fi);
Ul(1l:length(n) ,l:length(m),fi) = meshgridx(ul,u2);
U2(1:length(n) ,l:length (m),fi) = meshgridy (ul,u2);

calculate grating orders and save into G matrix

G_vec = gratingpolar (mname, fi);
Gtheta = pinch(G_vec,3,2);
Gphi = pinch(G_vec,3,3);

grating order strength (fraction of transmitted power)

stitch data into the central columns of the final result matrices

to have all data from different grating orders packaged in a
single matrix dataset

G(nl:n2,ml:m2, fi) = abs(Gtheta) 2+abs(Gphi) "2;

#loop over all grating numbers

for (ni=1l:length(n_tmp)) {

for (mi=1l:length (m_tmp)) {

66

627

628
629
630
631
632
633
634

635
636

637

638

639

640
641

642

643

644

645

646

647

648

649

650

651

652

653

convert spherical coordinates polarization into s,p polarization
and select the grating order

calculate the polarization ellipse. kappa is the resolution

Gs = Gphi(ni,mi);

Gp = Gtheta(ni,mi);

Gs = real(Gsxexp(lixkappa));

Gp = real (Gpxexp(lixkappa));

measure parameters(ratio ,major_angle) from the ellipse. normalize

Gs and Gp
diameter = sqrt((Gs) " 2+(Gp) 2);
major_axis = max(diameter); # for some grating numbers, the

major_axis can be 0

minor_axis = min(diameter); # for some grating numbers, the
minor_axis can be 0

ratio = major_axis / minor_axis; # for some grating
numbers, the ratio can be a NAM (0/0)

if (almostequal(ratio,1,0.0001,0.0001)){major_axis_i = find(Gp,

max(Gp)); # if ratio ~ 1, then it will have no major axis
}telse{ major_axis_i = find(diameter, max(diameter));}
major_angle = atan2(Gs(major_axis_-i), Gp(major_axis_i))*180/
pi;

if (major_angle < —90) { major_angle = major_angle+180; }
if (major_angle > 90) { major_angle = major_angle —180; }
Gs = Gs/major_axis;

Gp = Gp/major_axis; # normalization

measure phase difference from the s and p component

phase_diff = (angle(Gtheta(ni,mi))—angle(Gphi(ni,mi)))*180/pi; #
phase difference of s and p pol. in degree

if (Gphi(ni,mi)==04+1i%0) { phase_diff = 0; } # define linearly
pol light

if (Gtheta(ni,mi)==0+1i%0) { phase_diff = 0; } # define linearly
pol light

if (phase_diff > 180) { phase_diff = phase_diff — 180; } # —180<
phase_diff <180

if (phase_diff < —180) { phase_diff = phase_diff + 180; } # —180<
phase_diff <180

67

654 # measure polarization handedness based on phase_diff

655 pol_handed = 0; # initiallise an entry

656 if (phase_diff < 0) { pol-handed = —1; } # define left —handed

657 if (phase_diff > 0) { pol-handed = 1; } # define right—handed
658

659 # stitch data into the central columns of the final result matrices
660 # to have all data from different grating orders packaged in a

single matrix dataset (as a function of n, m, f)

661 Gs_all(1:ellipse_res ,nl4ni—1ml+mi—1,fi) = Gs;
662 Gp-all(1:ellipse_res ,nl4+ni—1ml+mi—1,fi) = Gp;
663 phase_diff_all (nl4+ni—1,ml+mi—1,fi) = phase_diff;
664 pol_handed_all (nl4ni—1,ml4mi—1,fi) = pol_handed;
665 ratio_all (nl4ni—1,ml+mi—1,fi) = ratio;

666 major_angle_all (nl4ni—1,ml4mi—1,fi)= major_angle;
667 }

668

669

670

671 # calculate U3 and convert grating directions to theta ,phi. If

monitor is in XY plane, U3=Uz

672 U3 = sqrt (1-U1"2-U2"2);

673 theta = real (acos(U3)) = 180/pi;

674 phi = atan2(U2,Ul) x 180/ pi;

675

676 # Calculate the number of grating orders (theta < 90)

677 # NOTE: this script for counting grating orders assumes a

rectangular

678 # unit cell. The count will not be correct for triangular lattices.

679 # this will count all non—zero entries, including numerical error
roders

680 num_orders_matrix = sum (sum((real(theta) < 89.9) , 2),1);

681

682 # Create datasets

633 num_orders = matrixdataset (" num_orders”) ;

684 num_orders.addparameter (” lambda” ,¢/f,” {7 ,f);

685 num_orders. addattribute (” num_orders” ,num_orders_matrix) ;

686

687 pol = matrixdataset (" polarization”);

688 pol.addparameter (”n” ,n);

68

689
690
691
692
693
694
695
696
697
698

699
700
701
702
703
704
705

706
707
708
709
710
711

712
713
714
715
716
717
718

719
720
721
722
723

m” m) ;

pol.addparameter
pol.addparameter (”lambda” ;c/f,” £7 f);
9 Gw) .

("m

(

pol.addattribute (

pol.addattribute (” phase_diff” ,phase_diff_all);
(
(
(

pol.addattribute (” pol_handed” ,pol_handed_all);

”

pol.addattribute (" major_angle” ,major_angle_all);

”

pol.addattribute (" ratio” ,ratio_all);

Gs_plot = matrixdataset (” Gs_all”);

Gs_plot.addparameter (” ellipse_point”,linspace (1,ellipse_res ,
ellipse_res));

Gs_plot.addparameter ("n” ,n);

(

Gs_plot.addparameter (”

Gs_plot.addparameter (”lambda” ,c/f,” £7 /f);
(7

Gs_all” ,Gs_all);

m,)

Gs_plot.addattribute

Gp_plot = matrixdataset(” Gp-all”);
Gp-plot.addparameter (” ellipse_point” linspace(1,ellipse_res ,
ellipse_res));

Gp_plot.addparameter ("n” ,n);

»

Gp_plot.addparameter ("m” ,m) ;
”lambda” ,c/f,” {7 f);

Gp_plot.addattribute (” Gp_all” ,Gp_all);

(
(
Gp_plot.addparameter (
(
make ellipse plot for the user—specified grating orders and

frequency point

if (make_plots) {

ni = find (n,n_target);
mi = find (m, m_target) ;

fi=find (f,c/lambda_target);

these command lines can be also used to plot Gs and Gp in
other tools, such as excel

Gp-all=Gp_plot. Gp_all;

Gs_all=Gs_plot. Gs_all;

Gp=pinch (pinch (pinch (Gp_all ,2,ni) ,2,mi),2,fi);

Gs=pinch (pinch (pinch (Gs_all ;2 ,ni) ,2,mi) ,2,fi);

69

724
725
726

727

728

729

730
731
732
733
734
735
736
737
738
739
740
741
742

}

mi

plot ellipse, and ellipse parameters
numbers are rounded to integer to save title space
plot (Gp,Gs,”P—pol” ,”S—pol”,” pol ellipse (N,M)=(" +num2str(n(ni
)47, +num2str (m(mi))+ 7)” +
7 (theta ,phi)=(" +4num2str(round (
theta(ni,mi, fi)))+",”+num2str (

round (phi(ni,mi, fi)))+")” +

(
(

ratio =7

+num?2str(ratio_all (ni
,mi, fi)) +
major angle (deg) = 7 4+num2str(

major_angle_all (ni,mi, fi)));

” 3 ”

setplot ("x min”,—1);
setplot ("x max”, 1);
setplot ("y min”,—1);
setplot ("y max”, 1);

= find (n,n_target);
= find (m, m_target);

fi=find (f,c/lambda_target) ;

ratio-1_0 = ratio_all(ni,mi, fi);

set (” analysis script”, analysis_script);

70

© 00 N O Ut e W NN =

Two-parameter sweep

A nested sweep over one or two parameters

mname = ”::model::3 dpowermonitor”;

Here, we choose the paramters to sweep over.
The sweeps that can be found below were implemented.

A sweep can be selected by uncommenting it .

The code can be easily adapted to add other parameter sweeps.

the number of sweep parameters
num_sweepparl_sweeps=50;

num_sweeppar2_sweeps=50;

HHHHAAHE period radius sweep
sweepparl_start = 0.15e—6;

sweepparl_stop = 0.8e—6;
sweeppar2_start = 0.05e—6;
sweeppar2_stop = 0.4e—6;

_» 3 ”» .
sweepparl_name = ”period”;

sweeppar2_name = ”radius”;

27
28
29
30
31
32
33
34
35
36
37
38

H#HHEHE coatingTickness grooveDepth sweep HHHHHHHHHHHHHHAHHHE
#sweepparl _start = 0.0le—6;

#sweepparl_stop = 0.5e—6;

#sweeppar2_start = 0.01e—6;

#sweeppar2_stop = le—6;

#sweepparl_name = ”coatingThickness”;

#sweeppar2_name = ”grooveDepth”;

HHA
T T T T irirT

: : M NIRRT InInIeinn
#+ period _radius_fraction sweep FHHFHHHEHHHHHFHFHHHH

#sweepparl_start = 0;
#sweepparl_stop = 1;

#sweepparl_name = ”period_radius_fraction”;

71

39
40
41

: NIRRT IR
42 FHHHHHF blaze angle fraction sweep #HHHHHHHHHEHFRHHHFHFHFH

43 #sweepparl_name = ”"blaze_angle_fraction”;
44 #sweepparl_start = 0;
45 #sweepparl_stop = 1;

46 #sweeppar2_name = "none”;

47

48

49 if (sweepparl_name =— ”coatingThickness”) {
50 select (7 ::model”);

51 paral = struct;

52 paral .Name = ”coating thickness”;

53 paral.Parameter = ”::model:: coating_thickness”;
54 paral . Type = ”"Length”;

55 paral.Start = sweepparl_start;

56 paral.Stop = sweepparl_stop;

57 paral.Units = ”microns”;

58

59 }

60 if(sweepparl_name =— ”period”){

61 select (7 ::model::FDID”) ;

62 paral = struct;

63 paral .Name = " period”;

64 paral . Parameter = ”::model::FDID::x span”;
65 paral .Type = ”"Length”;

66 paral.Start = sweepparl_start;

67 paral .Stop = sweepparl_stop;

68 paral.Units = ”microns”;

69

70 paral_2 = struct;

71 paral_2.Name = ”period”;

72 paral_2.Parameter = ”::model::FDID::z span”;
73 paral_2.Type = ”Length”;

74 paral_2.Start = sweepparl_start;

75 paral_2.Stop = sweepparl_stop;

76 paral_2.Units = "microns”;

T}

72

78 if (sweeppar2_.name = "grooveDepth”) {

79 select (”::model”);

80 para2 = struct;

81 para2.Name = ”groove depth”;

82 para2.Parameter = ”::model:: groove_depth”;
83 para2.Type = ”"Length”;

84 para2.Start = sweeppar2_start;

85 para2.Stop = sweeppar2_stop;

86 para2.Units = "microns”;

87 }

88 if (sweeppar2_.name — ”radius”) {

89 para2 = struct;

90 para2.Name = "radius”;

91 para2.Parameter = ”::model:: hole_radius”;
92 para2.Type = ”Length”;

93 para2.Start = sweeppar2_start;

94 para2.Stop = sweeppar2_stop;

95 para2.Units = "microns”;

9% }

97 if (sweepparl_name = ”period_radius_fraction”) {
98 paral = struct;

99 paral .Name = ”period_radius_fraction”;

100 paral .Parameter = ”::model:: period_radius_fraction”;
101 paral.Type = ”Number” ;

102 paral.Start = sweepparl_start;

103 paral.Stop = sweepparl_stop;

104 }

105 if (sweepparl_name = ”blaze_angle_fraction”) {
106 paral = struct;

107 paral .Name = ”"blaze_angle_fraction”;

108 paral.Parameter = ”::model:: blaze_angle_fraction”;
109 paral.Type = "Number”;

110 paral.Start = sweepparl_start;

111 paral.Stop = sweepparl_stop;

112}

113

114 3HHAAAAHA# General implementation of the nested sweep #HHHHHAHHAHAL

115

116 # child paramter sweep over width of simulation region

73

117 addsweep (0) ;

118 sweepname = sweepparl_name+” sweep”;

119 setsweep (”sweep”, "name”, sweepname) ;

120 setsweep (sweepname, “type”, "Ranges”);

121 setsweep (sweepname, ”number of points”, num_sweepparl_sweeps);
122

123

124 addsweepparameter (sweepname, paral);

125 if(sweepparl_name = 7 period”){

126 addsweepparameter (sweepname, paral_2);
127}

128

129 result = struct;

130 result .Name = "T7;

131 result.Result = ”::model:: Grating Transmission ::T”;

132 addsweepresult (sweepname, result);

133

134 result = struct;

135 result .Name = "num_orders”;

136 result.Result = ”::model:: Grating Transmission ::num_orders”;

137 addsweepresult (sweepname, result);

138

139 result = struct;

140 result .Name = ”"grating_efficiency”;

141 result.Result = ”::model:: Grating Transmission:: grating_efficiency”;
142 addsweepresult (sweepname, result);

143

144 result = struct;

145 result .Name = " first_order_efficiency”;

146 result.Result = ”::model:: Grating Transmission:: first_order_efficiency”;
147 addsweepresult (sweepname, result);

148

149 result = struct;

150 result .Name = " first_order_theta”;

151 result.Result = ”::model:: Grating Transmission :: first_order_theta”;
152 addsweepresult (sweepname, result);

153

154 result = struct;

155 result .Name = ”grating_n”;

74

156 result.Result = ”::model:: Grating Transmission:: grating_n";

157 addsweepresult (sweepname, result);

158

159 result = struct;

160 result.Name = ”grating.m?”;

161 result.Result = ”::model:: Grating Transmission :: grating.m?”;

162 addsweepresult (sweepname, result);

163

164 result = struct;

165 result.Name = ”first_order_efficiency_normalized”;

166 result.Result = ”::model:: Grating Transmission ::
first_order_efficiency_normalized”;

167 addsweepresult (sweepname, result);

168

169 result = struct;

170 result .Name = "ratio_1_0";

171 result.Result = ”::model:: polarization ellipse::ratio_-1.07;

172 addsweepresult (sweepname, result);

173

174

175 # parent sweep

176 if (sweeppar2_name != ”none”){

177 insertsweep (sweepname) ;

178 sweepname2 = sweeppar2_name+’ sweep”;
179 setsweep (" sweep”, "name”, sweepname?2);
180 setsweep (sweepname2, "type”, ”"Ranges”);
181 setsweep (sweepname?2, ”"number of points”, num_sweeppar2_sweeps) ;
182 addsweepparameter (sweepname2, para2);
183

184 result = struct;

185 result .Name = "T7;

186 result . Result = "T7;

187 addsweepresult (sweepname2, result);

188

189 result = struct;

190 result .Name = "num_orders”;

191 result.Result = "num_orders”;

192 addsweepresult (sweepname2, result);

193

75

194 result = struct;

195 result .Name = " grating_efficiency”;

196 result . Result = "grating_efficiency”;
197 addsweepresult (sweepname2, result);

198

199 result = struct;

200 result .Name = 7 first_order_efficiency”;
201 result.Result = ”"first_order_efficiency”;
202 addsweepresult (sweepname2, result);
203

204 result = struct;

205 result .Name = " first_order_theta”;

206 result.Result = ”"first_order_theta”;
207 addsweepresult (sweepname2, result);
208

209 result = struct;

210 result .Name = ”"grating.n”;

211 result.Result = 7"grating_.n”;

212 addsweepresult (sweepname2, result);
213

214 result = struct;

215 result .Name = ”grating.m?7”;

216 result . Result = ”grating_ m?”;

217 addsweepresult (sweepname2, result);
218

219 result = struct;

220 result .Name = " first _order_efficiency_normalized”;
221 result . Result = ”first_order_efficiency_normalized”;
222 addsweepresult (sweepname2, result);
223

224 result = struct;

225 result .Name = "ratio_1_.07;

226 result.Result = "ratio_1.07;

227 addsweepresult (sweepname2, result);
228 }

76

10n sweep

imizati

PSO opt

JL))))) g)) g g) g))))))) g g)))))))) g))))) g))))))))))
T T T T T T e

2 # This script

1

implements a PSO optimization sweep.

3 # Optimization parameters can be added/removed.

4

HU U
T T e arararn

:model”) ;

select (7:

7

:3dpowermonitor”;

::model:

R

8 mname =

9
10

get (”lambda_um”) ;

lambda_um

= [lambda_um];

lambdas_SI

11 ### Here, we choose the paramters to optimize and their allowed ranges #HH##

12
13
14
15
16

0.05e—6;
0.4e—6;

radius_start

radius_stop

2;

17 period_radius_fraction_start

18 period_radius_fraction_stop = 5;

19

0.01e—6;

20 groove_depth_start =

21

groove_depth_stop = le—6;

22

23 blaze_angle_fraction_start = 0;

24 blaze_angle_fraction_stop = 1;

25

30e—9;
200e —9;

26 #coating_thickness_start

27 #coating_thickness_stop

28
29

30 # set up parameters for period_radius_fraction

:model”) ;

select (7:

31

= struct;

32 paral

"period_radius_fraction”;

33 paral.Name

period_radius_fraction”;

::model ::

”

34 paral.Parameter

” Number” ;

35 paral.Type
36 paral.Min

period_radius_fraction_start;

37 paral .Max = period_radius_fraction_stop;

38

77

39 +#set up parameters for radius

40 paral_2 = struct;

41 paral_2.Name = ”"radius”;

42 paral_2.Parameter = ”::model:: hole_radius”;
43 paral_2.Type = ”Length”;

44 paral_2.Unit = "microns”;

45 paral_2.Min = radius_start;

46 paral_2.Max = radius_stop;

47

48 #set up parameters for groove depth

49 para2 = struct;

50 para2.Name = ”groove depth”;

51 para2.Parameter = ”::model:: groove_depth”;
52 para2.Type = ”Length”;

53 para2.Min = groove_depth_start;

54 para2.Max = groove_depth_stop;

55 para2.Units = ”"microns”;

56

57 #set up parameters for blaze angle

58 parad = struct;

59 para3.Name = ”blaze angle fraction”;

60 para3d.Parameter = ”::model:: blaze_angle_fraction”;
61 para3d.Type = ”Number”;

62 para3d.Min = blaze_angle_fraction_start;

63 para3.Max = blaze_angle_fraction_stop;

64

65 #set up parameters for coating thickness
66 #parad = struct;

67 #parad .Name = ”coating thickness”;

68 #parad.Parameter = ”::model:: coating_thickness”;
69 #parad.Type = ”Length”;

70 #parad.Min = coating_thickness_start;

71 #parad .Max = coating_thickness_stop;

72 #parad.Units = "microns”;

73

74

75

7

78

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

optimization over width of simulation region

addsweep (1) ;

sweepname = " period—radius sweep”;

setsweep (" optimization”, ”"name”, sweepname) ;
setsweep (sweepname, 7type” , ”Maximize”) ;

setsweep (sweepname, ” Algorithm”, ”Particle Swarm”);
setsweep (sweepname, ”"Maximum Generations”, 200);
setsweep (sweepname, ” Generation Size”, 30);

addsweepparameter (sweepname, paral); # period—radius fraction
addsweepparameter (sweepname, paral_2); # radius
addsweepparameter (sweepname, para2); # groove depth
addsweepparameter (sweepname, para3); # blaze angle

#addsweepparameter (sweepname, parad); #coating thickness

result = struct;

result .Name = "T7;

result . Result = ”7::model:: Grating Transmission::T";
result . Optimize = false;

addsweepresult (sweepname, result);

result = struct;

result .Name = "num_orders”;

result . Result = ”7::model:: Grating Transmission :: num_orders”;
result . Optimize = false;

addsweepresult (sweepname, result);

result = struct;

result .Name = 7" first_order_efficiency”;

result . Result = ”7::model:: Grating Transmission:: first_order_efficiency”;
result . Optimize = false;

addsweepresult (sweepname , result);

result = struct;
result .Name = " first _order_efficiency_normalized”;
result . Result = ”7::model:: Grating Transmission ::

first_order_efficiency_normalized”;

79

116 result.Optimize = true;

117 addsweepresult (sweepname, result);

118

119 result = struct;

120 result .Name = " first_order_theta”;

121 result.Result = ”::model:: Grating Transmission:: first_order_theta”;
122 result.Optimize = false;

123 addsweepresult (sweepname, result);

80

	Introduction
	Fraunhofer diffraction
	Polarization
	Grating MOT
	Finite Difference Time Domain method
	Particle Swarm Optimization
	First order efficiency
	Far field

	Methods
	Code implementation details
	Metascript
	Set up the grating geometry
	Set up light sources and monitors
	Analysis of monitor results
	Define the parameter sweep or parameter optimization

	Grating geometries
	Linear (blazed) grating
	Cylindrical grating (with sidewall angle)

	Simulations
	Parameter sweeps
	Parameter optimization

	Results
	Linear (blazed) grating
	Cylindrical grating (with sidewall angle)

	Conclusion
	Acknowledgements
	References
	Appendix

