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Abstract

Experiments with trapped ions require lasers which are stable in frequency, amplitude and phase.
To achieve this, one commonly uses active feedback, i.e. one measures the deviation of a quantity from
its desired value and feeds this error back to the system. To tune this feedback loop, one commonly
uses a PID (Proportional, Integral, Derivative) controller, which is also referred to as a lock box.

The aim of this QuanTech project was to develop a replacement for the digital lock box EVIL that
had been used at the Trapped Ion Quantum Information group over the past decade and which has
become deprecated since. We evaluated different options and eventually opted for a semi-custom
solution based on the commercial mixed signal Red Pitaya STEMlab 125-14 board. Special care was
taken to ensure backward compatibility with the previous solution, both hardware and software wise.

To this end, we designed a custom printed circuit board which we called Bichannel Lockbox On One
Device (BLOOD) that can be deployed in the same Eurocard racks that are used for the EVIL, i.e. has
the same form factor and power supplies. This PCB also comes with the possibility to change the gain
and offset of the analog inputs and outputs digitally. It runs custom software, for which we combined
the open-source PyRPL project, a software/firmware stack designed for controlling AMO experiments
on the Red Pitaya with Python, with DEVIL, the software currently used to control the EVILs in the
TIQI group.

During the course of this project we built a prototype of the BLOOD and we verified that the soft-
and hardware work together in the way we intended. However, to make it fully usable in the lab, some
further improvements are needed.
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1 Introduction

1.1 Control in Trapped-Ion experiments

Trapped Ions are one of the leading platforms in the endeavour to implement different forms of Quantum
Computing, from Universal QC to Quantum Simulation. The logic states are encoded in the energy-levels
of single ions, trapped alone or with a manageable number of others in an electric (or sometimes also
magnetic) field. The electronic energy levels of ions couple to the electromagnetic field surrounding the
atom, and this coupling is used to prepare, manipulate and read out the state of an ion qubit. Practically,
this means that the qubits can be controlled using laser light. Depending on the exact operation, the
frequency, intensity and phase of this laser must be very precise, and feedback control is used to ensure
any noise or drift is mitigated. Outside factors such as temperature and pressure fluctuations from sound
waves negatively affect the laser’s stability. As the linewidth of some energy levels used in trapped ion
experiments can be very narrow, frequency stability is crucial, and additional layers of control have to be
introduced to ensure this stability can be guaranteed even in a lab environment that includes temperature
drifts or researchers working and moving in the vicinity of the experiment.

1.1.1 The PDH lock

As an example, we discuss a way to stabilize the frequency of a laser making use of active feedback con-
trol. The basic idea is to measure the frequency difference between the laser and a very stable reference
frequency. A common choice for this is the resonance frequency of a high-finesse cavity, which can be
engineered to be sufficiently stable provided it is situated in a temperature controlled environment iso-
lated from sound. A laser incident onto the cavity will only experience minimal reflection if its frequency
matches a multiple of the resonance frequency. By measuring the reflection one can implement feedback
control, changing the laser frequency until it reaches resonance. As the intensity of the reflected light is
symmetric around the minimum, its phase must be used to determine the sign of the frequency error.
This can practically be extracted by creating two side bands, symmetrically around the resonance. Their
combined reflection signal will now depend on their relative phase shift, and thus also give away the
direction of the detuning, which makes feedback control possible. This technique is called, after its inven-
tors, the Pound-Drever-Hall (PDH) technique. [8] A schematic setup of an experimental implementation
can be seen in Figure 1.

Figure 1: Example schematic of a PDH lock. In this case, the frequency of the laser is modified by adjusting
the current through the laser diode or its temperature, dependent on the output of a PID controller that
takes the demodulated reflection as an input.

5



1.2 State of the Art

1.2.1 Hardware

In the Trapped Ion Quantum Information (TIQI) lab, almost all tasks related to feedback based laser stabi-
lization are performed using the "Electronically variable interactive lockbox", or "EVIL". It was designed
by Ludwig de Clercq and Vlad Negnevitsky around 2012. It consists of a custom PCB with two analog
input and output channels and the commercial Papilio One 500K FPGA board [3]. The signal processing
is done digitally within the FPGA using a firmware which was also developed specifically for this device.
The EVIL needs ±15 V and GND supplies and its enclosure is designed to fit standard 19’ racks.

A more detailed list of specifications can be found in Appendix A, together with a comparison of the
device we have designed during this project.

1.2.2 Software

The current EVIL boards are controlled via a server that runs on a Raspberry Pi which is connected via
USB to the EVIL boards. This server announces itself to a client running on a PC in the lab, from which the
experiment is then controlled. Written by David Nadlinger [13] in 2015, this client-server setup supports
a multi-client logic, that allows for multiple clients to connect to multiple servers simultaneously. Any
parameter changes done by one client are synchronized to all others in real-time.
The client is written in Python and can be used directly from source or via a very simple executable for
Windows. It comes with a simple GUI for experiment control, relying on the Python binding PyQT [18]
of the Qt framework [21].
The server on the other hand is written in C++, and uses the boost.asio library [2] for asynchronous
operations management. Communication over the network is implemented using the ZeroMQ library
[26].

1.3 Reason for upgrade

The EVIL has been successfully used for many projects since it was introduced in 2015, but has become
outdated since: The Papilio One 500K, which carries the FPGA, is no longer available. A total redesign of
the EVIL would be necessary because the whole design is tailored around this part.

This also opens up the opportunity to improve upon some shortcomings of the EVIL. The offset and
gain of the analog input stage can be adjusted by potentiometers on the PCB which are only reachable
by unmounting the EVIL from the rack. Further points of improvement are the low 10-bit resolution of
the ADC in the input stage followed by the few DSP units available on the Xilinx XC3S500E FPGA. The
EVIL also only has a USB interface. To control the EVIL remotely over the Lab-network it is connected via
USB to a Raspberry Pi which is then connected to the lab network [14]. It would be favorable to omit the
Raspberry Pi by directly running the server on the EVIL. This requires a CPU which is able to run Linux.

Xilinx’ Zynq SoC devices meet these demands, as they feature both ARM processing cores, networking
interfaces as well as a much larger programmable logic with more DSP units on one chip.

1.4 Project goals

Drawing from years of experience using the DEVIL in the TIQI lab, our supervisors Martin Stadler, Nick
Schwegler and Vlad Negnevitsky helped us to set the following goals:

• A system on chip with integrated FPGA and CPU which is capable of running Linux and the server.
This approach provides a much simpler interface between FPGA and CPU while improving latency
and throughput. This would most probably mean using a Xilinx Zynq chip as the central element
of the lock box.

• A direct Ethernet connection, so that the server can communicate directly with the lab network.

• Clocking the ADCs with an crystal oscillator clock instead of an FPGA generated clock would lead
to a better sampling and signal quality.
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• A control loop bandwidth comparable to the old EVILs, which requires a latency below 1 µs, with a
target of 400 ns

• An input voltage range from 200 mV to 6 V and an output range from 2 to 10 V.

• The new device should be rack-mountable and require the same power supplies as the EVIL.

• Digitally controlled amplifier gains and offset voltages, adjustable directly via the control software
(the client).

To match these expectations, we decided to base our solution on the readily available RedPitaya STEM-
lab 125-14 multipurpose boards [23], and design a custom carrier PCB around it to match the input/output
specifications and add the analog gain and offset control. The STEMlab features a 14-bit ADC and DAC, a
Xilinx Zynq 7010 SoC and provides most of the features we require, including Ethernet connectivity. The
custom PCB can then be designed such that all other goals are met. The solution we went for was inspired
by a lockbox designed by the ’Atoms - Photons - Quanta’ research group at TU Darmstadt [17]. Starting
from their design we modified it using multiplexers and digital potentiometers to allow for controlling
the analog gain and offset using the multi-purpose I/O pins on the extension connector of the RedPitaya.

Sticking with the current naming tradition within the TIQI group, we propose to call our device
BLOOD - Bichannel Lockbox On One Device. We also came up with a logo for the BLOOD (Fig. 2).

Having decided for the type of solution we want to propose early in the project, most of the work
will go into designing the carrier board, and writing the software and firmware necessary to provide the
required features.

Figure 2: The official logo of the BLOOD.
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2 Execution

2.1 The Printed Circuit Board

In this subsection we present the design of the printed circuit board. Firstly, the schematics will be
illustrated, then the layout and finally the soldering process.

2.1.1 Schematics

Figure 3: Main blocks of the schematics and their interconnections, adapted from the main page of the
KiCad schematics.

Our schematics are based on the open source project RedPitaya-IntStab [24] which uses KiCad, a CAD
software for drawing schematics and layouting PCBs.
In Figure 3 you can see the main blocks that compose our design:

Power supplies: The block contains the connections to the external power supply which provides ±15
V and ground. It also contains the voltage converter circuits to generate the required voltages for the
active components on the carries.

Connector with RedPitaya: On the right side of Fig. 3 there are all the pins that come from the two
extension connectors (E1 and E2) of the RedPitaya. These pins have a few different functions. First of
all, the RedPitaya can be powered by applying 5 V to pin 1 of E2. 3.3V are provided by the RedPitaya
through pin 1 and 2 of E1. The pins SCLK, MISO, MOSI, CS_In1,2 and CS_Out1,2 are used to communi-
cate with the digital potentiometers in the input and output sections. The pins SR_Data, SR_RST, SR_CLK,
SR_Store are used to control the two 8-bits shift registers in the "Shift registers & LEDs" block. Out1_SW
and Out2_SW are used to control the output switches that enable and disable the two outputs. TTL1 and
TTL2 are intended to be used as trigger inputs or outputs. Lastly on E2 LED_0-3 are used to control the
4 LEDs in the "Shift registers & LEDs" block.

Input and Output Sections: In the centre of figure 3 there are four blocks, two are input blocks and
two are output blocks. The input blocks contain the components that act on the input signals before they
enter the RedPitaya. The output blocks contain the components that condition the signals that come out
of the RedPitaya.

Shift Registers & LEDs: This last block serves two purposes:
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• Fan out 4 signals to 16 using two 8-bit shift registers inside that take as inputs the SR_Data, SR_RST,
SR_CLK, SR_Store signals from the RedPitaya and output 16 signals (all the signals on the left side
of the block in figure 3) which are used to control the 4 multiplexers, one in every input/output
block.

• Provide visual feedback in the lab using 4 LEDs which are visible from the front panel of the BLOOD
and can be turned ON and OFF through the signals LED_0-3 coming from the RedPitaya.

Power Supply section

As written above, in this section of the schematics there are the components that convert the +/-15V
provided to the PCB from the laboratory into the voltages necessary for the other components of the PCB.
Figure 4 shows a simplified version of the KiCad schematics.

Figure 4: Schematics of the power supplies, adapted from the KiCad schematics.

Starting from the top left of the figure, the two components LT3045EDD and LT3094EDD are high
performance low dropout linear regulators with ultralow noise and ultrahigh power supply rejection
ratio (PSRR) architecture. The output of these devices is set to +/-12V and they can supply up to 500mA
each [6]. These voltages are needed for supplying the OpAmps, digipots and multiplexers in the input
and output sections.
On the bottom left of figure 4, the component LT8610AB-5 is a compact and high efficiency synchronous
step-down switching regulator that has high maximum output currents of 3.5A [7]. This step down
regulator provides 5V for powering the RedPitaya through the connector E2 and the LEDs that are on the
PCB. In order to reduce the output ripple to less than 10mV we added four 47uF capacitors at the output.
The switching frequency has been set to 800KHz through the resistor R506.
On the top right of the figure, the two LT1236-10 are precision references that combine ultralow drift and
noise and high output accuracy [5]. The maximum output current that they can source and sink is up to
10mA. The low drift and noise and high output accuracy are important properties for these components
because the +/-10V they supply is used by the digital potentiometers in the input/output sections to
adjust the voltage offset. The voltage offset needs to be very stable in time for the PID controller to work
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effectively.
At the bottom right of figure 4 there is the ON-OFF switch which acts on all the power supply chips at
the same time. It turns them on by connecting the respective enable pins to the input voltage (+/-15V)
and off by connection the enable pins to GND. The last component is a metal shield which covers the 5V
switching regulator to reduce the switching noise that leaks out.
As a last remark we added 3 LEDs respectively at the +5V and +/-12V outputs which indicate whether
the respective chip is ON or OFF.

Input Section

Figure 5: Schematics of the input section, adapted from the KiCad schematics.

On the device there are two analog signal inputs. Each one of these inputs goes through one of the
two identical input sections on the PCB. In figure 5 there are the schematics which are a simplified version
of the ones from KiCad.

The main features that we implemented in the input section are:

• Variable gain

• Variable offset

• The input impedance is 1 MΩ by default and can be changed to 50 Ω with a jumper (JP201)

• The analog input signal of the RedPitaya can be monitored from J204 without disturbing it

Variable gain: This feature is achieved thanks to the precision multiplexer TMUX6208PWR [11]. This
component allows to select one of the eight different resistors (R201-R208) on the feedback path of the
operational amplifier OPA1604 (B) which is in inverting configuration. The resistor is selected through
the signals A2, A1, A0 which correspond to the binary address of the desired resistor, starting from 000
for the first one. For example to select the resistor number 3 (A2,A1,A0)=(0,1,1). The signals EN (EN
enables or disables the MUX), A2, A1, A0 come from one of the two shift registers (see 2.1.1) which are
in turn controlled by the RedPitaya.
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Rmux [kΩ] G

1 0.1
1.5 0.15

2 0.2
5.1 0.49

11.1 1
27 2.13

100 5
390 7.96

Mux off 10

Table 1: Table of all possible values that G can have, according to Eq. 2.1.

Variable offset: This feature is achieved thanks to the digital potentiometer AD5293BRUZ-20 [4]. The
resistance between the pins A and B of this component is 20 kΩ. The wiper can be adjusted in 1024
different positions between A and B. By inputting the voltage references +/-10V in A and B, the pin
W can be set to a voltage that ranges from -10V to +10V. The position of the wiper is sent to the digipot
through an SPI interface. The offset voltage coming from W (wiper) is inputted to the + pin of the OPAMP
OPA1604 (B).
In this configuration the signal coming out of this opamp (B) is:

Vout = −GVin + (G + 1)Vo f f set (2.1)

where G =
R f eedback

R211 with R f eedback equal to R209 in parallel with the resistor selected by the multiplexer.
Tab 1 shows all the possible gain values that can be selected.

We simulated the whole circuit in PSpice for TI. We had to use a SPICE simulator from TI because
a SPICE model for the OPA1602/1604 was only available from within Texas Instruments software. The
TMUX6208PWR does not come with a SPICE model, so we used the model of an almost equivalent
multiplexer, the ADG1408. The capacitor C213 was chosen such that the transfer function of the amplifier
stage has maximum bandwidth and a flat response. We also used the PSpice simulation to determine the
power consumption of the whole circuit.

Output Section

As for the inputs, on the PCB there are two identical output sections. See figure 6 for the schematics
which are an adaptation of the one from KiCad.
The working principles of the output sections are very similar to the ones of the inputs. The variable gain
and offset are obtained in the same way. Other features implemented in these sections are:

• The output can be enabled or disabled from the RedPitaya and is disabled by default. This allows
to enable the output only if the user is sure that the output voltage is in the accepted range of the
equipment that is connected to the device.

• It is possible to select the voltage range of the output as only positive or only negative through a
DIP-Switch.

Output enable and disable: this feature is provided by the use of the PhotoMOS switch AQY221N3MY
[16] in series with the output. Pin 1 of this component is controlled by the RedPitaya board and, when it
is high, it closes pins 3 and 4, enabling the output.

Voltage range and DIP-Switch: Two diodes (D401 and D402) connected between the output (J403) and
GND can be selected with a DIP-Switch, optionally limiting the output to only positive or negative
voltages. Furthermore, the DIP-Switch can also be used to bypass the PhotoMOS in case it is not working
correctly.
As a last remark the output impedance of the device is approximately 50Ω.
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Figure 6: Schematics of the output section, adapted from the KiCad schematics.

Shift registers and LEDs

Figure 7: Schematics of the shift registers and LEDs, adapted from the KiCad schematics.

In this section there are 4 LEDs and two 8-bit shift registers which are daisy chained.
The 4 LEDs are status LEDs that can be turned ON and OFF by controlling the Gate of 4 MOSFETs.
As written above the signals LED_0-3, that control the Gate, come from the extension connector of the
RedPitaya.
The function of the shift registers is to output more signals than they receive as input. This is useful
because we have a limited amount of signals coming from the RedPitaya which would not be enough to
control all the ICs on the PCB. In our case we control the four multiplexers in the input/output sections,
which require 4 signals each, with only 4 signals from the RedPitaya. See the datasheet for more details
[10]. The shift registers can be disabled by connecting their output enable pin (OE is active low) to 3.3V
with a jumper. This is useful for controlling manually the multiplexers.
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2.1.2 Layout

Figure 8: Final layout of the PCB from KiCad.

The carrier board uses the Eurocard format like the old EVIL. The PCB fits in the same casing and has
the same connector to the power supplies in the back. The only difference is the front panel which had
to be redesigned. As our manufacturer for the PCB we chose JLCPCB and as our stackup we chose the
JLC7628. It is a 1.6mm, 4 layers PCB. We organised the layers in the following way:

1. The top layer contains signal traces and the pads for soldering all the components.

2. The second layer is an uninterrupted ground plane.

3. The third layer is divided into all the different power planes that are needed by the components:
+5V, +/-12V, 3.3V. These are shaped such that the respective voltages can be reached through vias
by the components on the top layer.

4. The bottom layer contains signal traces.

A few other remarks about the layout:

• In order to obtain optimal performance for the power supply section layout we followed the sugges-
tions in the datasheet of the components.

• To improve signal integrity of important signals, e.g. analog input and output signals, we tried to
avoid crossing of power planes with different voltages.

• We connected all the decoupling capacitors with vias to the respective power plane

• We decided to mount the RedPitaya on the PCB through 4 standoffs with the heat-sink facing up, this
way it is possible to have components on the PCB also under the RedPitaya and the heat dissipated
by the SoC will not disturb the components.

2.1.3 Soldering

We ordered the PCB from JLCPCB with assembly included for all the resistors and capacitors selected
from their components database. We also ordered a stencil which did not arrive in the packaging. In
any case it was not possible to use the stencil for soldering the rest of the components because of the
capacitors and resistors which arrived already mounted. So we soldered all the components by hand
with the soldering iron, a good flux, solder, a heat gun and a lot of patience. We also used a stereo
microscope to check if the solder joints looked good and there were no shorts. Figure 9 shows how the
PCB looks fully assembled.
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Figure 9: Picture of the PCB after everything is soldered.

2.2 Software/Firmware

One of the reasons we decided to build our lockbox around the Red Pitaya STEMlab 125-14 was the
integrated CPU on the Xilinx Zynq 7010 SoC. This allows us to run a server application needed to remotely
control the lockbox from a lab PC directly on the lockbox itself.

Part of this project was to assess different approaches on how to combine existing software to control
the new hardware of the BLOOD. The choice was to use "DEVIL" [13] as the base and combine it with the
open-source software package "PyRPL" [19], which was designed by L. Neuhaus and S. Deléglise at the
Laboratoire Kastler Brossel in Paris, France, starting in 2014 and was published under the GNU General
Public License in 2017.

In the following, we describe the initial testing done on different projects available for the STEM-Lab
(2.2.1), describe our final solution (2.2.2) and then go into detail what modifications had to be done to the
bitstream (2.2.3), PyRPL (2.2.4), server & client (2.2.5) and the operating system (2.2.6).

2.2.1 Testing of PyRPL

For the Red-Pitaya STEM-Lab there are multiple open-source software projects and part of the selection
process was to differentiate between these different solutions and pick the one most suitable for our
solution. The different projects evaluated in a first step were:

• Official RedPitaya OS [22]

• PyRPL [19]

The RedPitaya OS provides an FPGA bitstream and a web-application embedded in the Ubuntu based
OS which runs on the ARM cores of the Zynq 7010 SoC. Many features are already implemented in
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the bitstream like ADC and DAC interface, oscilloscope, Arbitrary Signal Generator (ASG), Network-
Analyzer and PID functionality. These can be controlled via the web-application which is accessible from
any network capable device connected to the same LAN as the STEM-Lab.

The PyRPL project [19] is another open-source project for the STEM-Lab 14 developed specifically for
quantum optics experiments which was originally forked from the original Red Pitaya OS in 2014, but
has developed in a different way since then. Like the Red-Pitaya OS it provides an FPGA bitstream which
already implements many functional blocks like ADC and DAC interface, Scope, ASG and a custom DSP
block. It has no web interface but instead a light-weight server application written in C running on the
ARM core. The device can be controlled via the PyRPL client which is written in python but also provides
an API such that the device can be controlled by a python script. The custom DSP block provides PID
modules, IQ mixers, complex filter functions and advanced trigger options. The strength about the design
of the custom DSP block is, that the way the functional blocks are connected can be reconfigured from the
client without having to generate a new bitstream.

We did some quick initial test with both software packages to see if we can easily connect and for
example generate a signal with the Arbitrary Signal Generator (ASG), feed back the output to the input
and look at the sampled waveform from the scope module. With both solutions it was very easy to setup
this measurement and both also worked as expected. As the PyRPL project had more interesting features
and was actually designed for quantum optics experiments, we decided to preferentially go with this
project. In a next step we did some more extensive tests to evaluate the PID module in PyRPL as it is the
module used to perform locking and therefore provides the main function of the entire lockbox:

• Measure the transfer function of the PID module

• Measure the achievable data throughput with scope module

Transfer function
The transfer function measurements were done using the network-analyzer built into PyRPL. The results
showed, that the PID module works as desired, but we also concluded that there is some care to be taken
in terms of how this measurement is set up. The measurement should be performed in a closed loop
configuration to compensate the numerical drift of the integrator in the PID module due to the high sam-
pling rate of 125 MHz. Otherwise the output of the PID module saturates at the maximum or minimum
depending on the first operating point.

Data Rate
We measured the achievable data throughput over Ethernet when using the PyRPL client to see if real-
time streaming of scope data is possible. We achieved a data rate of 20 Mbit/s which we deemed high
enough for real-time plotting of the error signal in the GUI, but not enough for taking real-time traces of
14bit samples at the 125 MHz FPGA clock frequency. As a comparison, the streaming rate achieved with
the DEVIL client was 4.8 Mbit/s/channel [3]

The conclusions we found from these tests are:

• PID module works as expected. Some care has to be taken with the integrator.

• The data-rate from scope to client is high enough for real-time plotting of error signal

• The PyRPL PI-control module does not have a working derivative term which is fine at the high
sampling rates of 125 Msps. Also the EVIL did not have one either.

• Using PyRPLs python API to control the STEM-Lab is very easy to use and quite powerful. It would
be nice to eventually provide such an API to control the BLOOD.

• Measuring the transfer function we found some numerical glitches which were solved later by fixing
the timing constraint violation in the PyRPL bitstream (see sec. 2.2.3)
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Figure 11: These are the two possible solutions we were considering to interface the bitstream. Blue shows
software written in C/C++, yellow shows software written in python. On the left is the approach using a
C/python interface, while the solution on the right is the one that we chose ultimately.

2.2.2 Software-Firmware Stack

The tests in section 2.2.1 assured us that we want to use the PyRPL bitstream as the base for the BLOOD
firmware. In a next step we needed to find a solution how the BLOOD can be controlled from a lab PC.
Our main design goal was:

• Keep the user experience similar to the EVIL

The reasoning behind this is that the EVIL has worked quite reliably and is being used quite extensively
throughout the TIQI group. By keeping the UI the same we believe that we can maximize the chances of
people actually using the BLOOD at some point. From this decision it follows, that we:

• Keep the DEVIL GUI

• Keep multi-client access

Natively PyRPL does not support concurrent multi-client access and we deemed it too difficult for us to
integrate such a feature directly into PyRPL. Therefore, we chose the existing DEVIL client and server as
our base onto which we add the necessary changes to being able to control and monitor the BLOOD.

The next design decision we had to tackle was how we can interface the DEVIL client and server with
the PyRPL bitstream. This was the step where we struggled quite a bit. In the end there were two main
approaches that we could follow (see fig 11)

1. DEVIL server has a PyRPL object in its memory and calls the PyRPL API to communicate changes
to the FPGA

2. DEVIL client holds a PyRPL object in its memory from where it gets the addresses of registers. It
then sends value+address to server. Server then reads and writes to FPGA and makes sure that the
values of the registers stay synchronized between the connected clients.

The first approach requires that we are able to call python code from C++ code, which is possible
with libraries like pybind11 or the python/C API but ultimately makes the entire system more complex
and slower. In addition to that we were not able to run pyhton on our own buildroot OS. Therefore we
decided to implement the 2nd approach, where we don’t have to run the PyRPL client on the RedPitaya
but instead include the PyRPL client into the DEVIL client.

The final software/firmware stack can be seen in Fig. 10.

2.2.3 Adaptation of the PyRPL Firmware

To appropriately control the digital ICs on the carrier we added a custom Verilog module to the PyRPL
firmware. In this section, we explain how this was interfaced with the rest of the PyRPL RTL code. While
making these changes, we realized that the RTL design of PyRPL, as of the latest version from November
2021,[12] did not meet the timing constraints. Towards the end of this section, we will explain which
architectural changes we performed to solve this problem.
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The top level RTL file of PyRPL connects several modules to the same "system bus", which is essen-
tially a simplified version of an AXI light bus, omitting some of the control signals and making it easier
to write a slave. Within the module red_pitaya_ps , the system bus signals are converted to AXI and
connected to the Zynq7 processing system block. The address range of the system bus is divided into
8 regions of about 1 MB each. Three of these regions were unused in the original PyRPL version. We
connected our own module blood_settings to one of those regions.

Control of ICs on BLOOD PCB
The digital potentiometer (AD5293) for offset control has an SPI interface (CPOL = 0, CPHA = 1) with
a word length of 16 bits. We decided to use spi_master.v from the TIQI HDL Library [25], because it
is well tested and supports several different SPI modes and word lengths. The SPI clock frequency is 1
MHz. During the course of testing, we found that spi_master.v needed some slight modifications, see
Appendix D.

The multiplexers (TMUX6208) are controlled by four digital inputs (EN, A0, A1, A2), see Sec. 2.1.1,
which can be set by writing to two daisy chained shift registers. We wrote our own module shifter.sv

which is derived from spi_master.v and also supports variable clk frequency and word length. Here, the
word length was also given by 16 bits (four multiplexers with four bits (EN, A0, A1, A2) each). A Verilog
testbench was written and used to compare the timing diagram to the datasheet of the shift registers.

The blood_settings module also contains registers to control the status of the front panel LEDs con-
trolled by analog outputs on the extension connector of the RedPitaya as well as the PhotoMOS switches
for enabling/disabling the analog signal outputs (see Sec. 2.1.1). In Appendix D, we show a detailed list
of all registers with their values and addresses, as well as some details on how the module works.

Timing Constraints & Utilization
Running synthesis & implementation in Vivado with the original PyRPL RTL code leads to a severe tim-
ing violation. The hold time requirement is violated for about one third of all endpoints and the worst
negative slack (WNS) is on the order of 4 ns. Most violations where found for paths belonging to the
main clock signal ( pll_adc_clk in Vivado, 125 MHz / 8 ns) which also clocks the ADC. Under these cir-
cumstances, the correct behavior of the design could not be guaranteed, especially for the IQ modulator
blocks, where most timing violations were found. In addition, the utilization of some FPGA resources
was beyond 95 %, making it particularly difficult and time intensive for the Synthesis tool to properly
account for timing constraints.

The measures taken to mitigate these problems were the following:

1. Remove some of the hardware modules that were not needed for our applications. In the original
PyRPL project, there were three PID modules and three IQ modules. Removing one each, we could
bring down the utilization of LUTs to about 70 %

2. Add pipelining stages at several places in the datapath. For a detailed description of the modi-
fications, please refer to Appendix E. For the PID module, these modifications result in 16 ns of
increased latency, which is acceptable when compared to the 200 ns of latency of the STEMlab with
the original PyRPL bitstream.

With these changes the violation of timing constraints could be solved.

2.2.4 Modified pyrpl_tiqi

In order to control the BLOOD with a version of PyRPL we created a fork of the original GitHub repository
on the TIQI GitLab [20] called pyrpl . In this version of PyRPL, we added an additional hardware module
which wraps the control of the custom module we added to the PyRPL bitstream to control the shift
registers, digi-pots, LEDs and output switches. This module is called BS , short for Blood Settings. In this
repository there is also a folder called scripts that contains some example scripts which show how the
pyrpl_tiqi client can be used to control the Blood. There are some things to consider when using this
client:
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• To properly initialize the digipots, the first command that has to be sent over SPI is ’0x1802’. This
enables updates of the wiper position and only has to be done once after power up.

• The BS module has no GUI element, so its settings can only be changed in a python script or the
python console (A page in the PyRPL GUI could be added in the future)

With the pyrpl_tiqi client the full functionality that PyRPL provides is available, including the python
scripting API.

2.2.5 Adaptation of the DEVIL server & client

The situation the DEVIL client and server have to face in this new setup is fundamentally different to the
one of the DEVIL. The server is now running on a CPU having high speed interfaces to the FPGA, which
completely removes the USB connection and the interface the server used to communicate with the FPGA
on the EVIL. Also, the firmware on the FPGA, now provided by PyRPL, is structured differently from the
old EVIL firmware, which means client and server have to address and match this change.

Software functionality
The main purpose of the BLOOD lockbox is to perform real-time PID control, especially when thinking
about a PDH-locking scenario. The primary goal of its software is therefore to allow the user to set control
parameters conveniently from a lab PC and to stream the error signal to this lab pc, such that the user has
detailed information about the state of the lock. Particular in the case of a PDH lock, the user also has
to be able to generate a sawtooth ramp that allows them to identify the right initial output voltage for a
successful attempt to lock onto a certain resonance.

The already existing DEVIL software implements exactly that, and additionally has a very nice multi-
client logic, and a simple GUI people working in the lab had already gotten used to (see Figure 13). All
of this was intended to remain the same, so the old client and server were used as a basis for the BLOOD
software, and modifications were made such that they could be adapted in the new scenario. Figure 12
shows a schematic overview of the client-server-firmware relationship and sketches the structure of the
data flow. A brief description of the most important changes can be found below. For more detail, please
refer to the code on the TIQI GitLab [20].

Communication with Firmware:
The new server now communicates with the firmware by directly writing into the memory of the FPGA,
which is mapped into the memory of the operating system. This means it can be completely agnostic of
both what values it writes to the FPGA as well as what the addresses of the different blocks are, both is
simply passed down by the client.
In order to match the expectations of the firmware, the client therefore incorporates now a big part of the
PyRPL client, which is also written in python.

Streaming:
The original DEVIL server supported live streaming of the error signal and the PID controller output
from the FPGA to the client, which was needed for a good calibration of the PDH locking parameters.
As PyRPL does not directly support this the way the old firmware did, streaming now works slightly
differently. The server continuously reads out the value of a special register from an address hard-coded
in the server, using the PyRPL sampler module, that reflects the current value of the FPGA’s out- or
input. Although these values are still sent to the client as a packet, they are now acquired one by one
asynchronously, making the time gaps between two acquired points of the same trace more evenly spaced.
A technically even better solution is using the PyRPL scope module, but as PyRPL comes with only a
two-channel oscilloscope, this would have caused trouble when extending the functionality to a second
channel.

Initialisation:
As the PyRPL firmware is designed to be more general than the BLOOD, many of the registers need to be
initialised to given values as soon as the device is started. While the very essential parts will be handled
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Figure 12: Overview of the workflow of the new BLOOD software. The client passes all settings to the
firmware via the server. The server forwards everything to the firmware and saves the settings, such that
when the client requests them again it replies from its own cache, never having to read settings from the
FPGA.
Meanwhile, the server reads the streaming data as individual equally spaced samples from the FPGA,
and groups them together into packages of modifiable size before sending them to the client.

by the server, most registers will be set by the first client that connects to a running server.

Compatibility:
It is very likely that in a period of transition older EVILs and some BLOODs will be used side by side
simultaneously. To make this transition easier, the new client was intended to still be able to control old
EVILs, but there are a few ad-hoc code changes which break this compatibility. These are listed in the
Appendix I but should be easy to fix.

Sliders
The deadline at the end of the project meant that there was no time left to optimize the usability of the
GUI, and so some of the changes we implemented result in buggy sliders. While not a fundamental limit,
this has to be fixed before the device can be effectively put to use, and should be addressed first. Other
improvements that could not be implemented due to time constraints can be found in appendix H.

2.2.6 Operating System on STEMlab

RedPitaya already provides its STEMlab boards with their own operating system, firmware and software
that comes preinstalled on the SD-cards, and maintains documentation which covers many applications..
While being crucial for the straightforward use of the software controlling the STEMlab, this operating
system is based on Ubuntu 16.04, which does not support the newest versions of certain C++ libraries,
such as boost or azmq. The Devil server that has been used to control the old EVIL devices however has
been kept up-to-date, and requires newer versions of these libraries that are not compatible with the old
OS. In order to ensure forward compatibility and avoid a rapid deprecation of the new server software, a
custom operating system would be used on the STEMlab, allowing us to use the newest DEVIL-version
as a basis for the new BLOOD-server.
This operating system was created using buildroot, a tool specifically designed to generate Linux environ-
ment for embedded systems. Luckily, a template for the STEMlab was found on Github [9], that creates
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Figure 13: Picture of the GUI displaying a PDH signal. The structure has been kept the same, the only
thing that changed visually is the left side with the sliders.

an operating system with a modern interface to the FPGA using the Xilinx FPGA manager. It cross-
compiles on any machine (e.g. the group high-performance server tiqiblitz ), while the OS itself targets
ARM-architecture. Many software components can be freely chosen like the init system, where we chose
systemd.

As part of its philosophy, buildroot does not support the use of C-compilers on the target system, so
not only all dependencies, but also the devil and later the Blood-server itself were integrated as packages
into the OS. While this was cumbersome at first, it means that once a complete image has been created,
it can be flashed onto all devices that use the server, without the need for any further compilation and
installation. Concrete advice on how updating and distributing the BLOOD-Server can be done is located
in appendix F, and the necessary buildroot files are located on the J-drive under J:00020210files .
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3 Results

3.1 Assembly

Figure 14: Picture of the final version of the BLOOD almost fully assembled. The internal SMA cables are
missing here.

In order to put all the components together we fixed the RedPitaya on the PCB through M2 16mm
long standoffs, washers and screws that we purchased in the D-PHYS shop. We connected the RedPitaya
to the PCB with two custom made ribbon cables and we used short semi-rigid SMA cables to connect
the analog signal inputs and output of the carrier and the RedPitaya. We then assembled our hardware
in the updated version of the casing which was used for the EVIL and that fits in the 19” racks used in
the laboratory (the casing is sold by "nVent SCHROFF"). Because our PCB had different positions for the
inputs and outputs than the EVIL we designed our own front panel which was then manufactured by the
company "Beta LAYOUT" (it is possible to find the files of the front panel on the QuanTech folder on the
group drive under J:\Projects\QuanTec\HS2021 ). We connected the upper rows of SMA connectors on the
front panel to the PCB with semi-rigid SMA cables. In fig. 14 you can see how the BLOOD looks like
once put all together.

3.2 PCB Tests

In order to test the functionality of the carrier PCB we used several different pieces of measurement equip-
ment: A FieldFox RF and Microwave analyzer, a 5 GS/s digital oscilloscope and an Analog Discovery 2
(AS2) from Digilent. The latter has two output channels that can be used to generate signals and two
input channels. The WaveForms software provides a user-friendly graphical interface. This device also has
16 digital I/O that we used to set the gain of the various input/output sections by connecting them to the
address pins of the multiplexers and to change the offset of the input/output sections by communicating
through SPI with the digital potentiometers. Afterwards, we connected the RedPitaya to the PCB and we
checked that the communication between the two worked as expected.
For every input and output section we performed the following tests:
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• Gain test (with the AS2): A sinusoidal function was sent as the input of an input or output section
and the gain of that section was changed by sending the address to the multiplexer through the
header pins on the PCB (in this case the shift registers must be disabled). We checked that the
output signal changed accordingly to the gain that was selected.

• Offset test (with the AS2): we verified that the digital potentiometers were able to change the offset
correctly by sending commands through the SPI interface. To do this we set the input signal to 0V
DC and we set the gain to 1/10 (lowest setting). This way Vout = ( 1

10 + 1)Vo f f set (see eq. 2.1).

• Bandwidth test (with the AS2): We measured the bandwidth of each input/output section as the
frequency at which the amplitude of the signal decreases by 3dB from its maximum using the AS2.

• Noise test (with the FieldFox): We measured the noise spectrum of each input/output section.

3.2.1 Input & Output Sections

Here we present some of the results of the tests. The result of the measurements are very similar for the
various input and output sections so we show only the one for input section 1.

Gain and Offset tests: for every section it was possible to change the gain and the offset correctly.

Bandwidth test: the measured bandwidth "B" was the following:

• For a gain G = 0.1 and a probing signal of 3V: B > 5 MHz. In this case the measurement is limited
by the bandwidth the Analog Discovery 2.

• For a gain G = 1 and a probing signal of 1V: B = 1.93 ± 0.1 MHz. See fig. 15.

• For a gain G = 7.96 and a probing signal of 0.2V: B = 137 ± 10 kHz.

The uncertainties in the bandwidth are given by how well we could read off the numerical value in
the GUI of the AS2.

Figure 15: Measurement of the bandwidth of the input section 1 with G = 1, measured for a signal of
amplitude of 1V, taken with the Analog Discovery 2. The bandwidth was measured as the frequency at
which the amplitude of the signal decreases of ∆ = 3 dB from its maximum. Here it is equal to 1.93 ± 0.1
MHz.

We tried to remove the capacitor "C213" on the feedback path of the OPAMP "OPA1604 (B)" (refer to
fig. 5) to see if we could increase the bandwidth this way, however the improvement was negligible. We
think this could be due to the parasitic capacitance on the PCB that cannot be removed.
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Noise test: for this measurement we used the N9912A FieldFox RF Analyzer which has a higher
resolution and lower noise floor than the AD2. In fig. 16 you can see the spectrum. The most prominent
peak can be seen at 800 kHz and can be identified with the noise of the 5V switching regulator. The spurs
at 1.6 and 2.4 MHz are likely to be higher harmonics thereof. All of these spurs are more prominent for
higher amplifications which is expected from noise that couples into an amplifier circuit. At G = 0.1 the
most prominent peaks are at 1 and 3 MHz and they do not scale with the gain of the circuit. This suggests
that these noise sources are inherent to the FieldFox. There are also some spurs whose origin could not
be determined such as the one at 1.75 or 2.5 MHz. We conclude that the worst case spurious free dynamic
range (SFDR) is 72 dB with respect to a 0 dBm or 0.6 V rms signal.

(a) Noise measurement for G=0.1. (b) Noise measurement for G=1.

(c) Noise measurement for G=10.

Figure 16: Noise measurement taken with the N9912A FieldFox RF Analyzer for input section 1 for three
different gain settings. The units of the measurement are dBm and the resolution bandwidth is 30Hz.

3.2.2 Communication between RedPitaya and ICs on the PCB

After making sure that it was possible to control all the ICs on the PCB through the Analog Discovery 2,
we repeated the same tests and measurements with the RedPitaya controlling the PCB. We verified that
also in this case it was possible to change gain and offset for all the sections, that we could address the
four controllable LEDs on the PCB and that it was possible to enable and disable the outputs by acting
on the PhotoMos switches. Everything worked as expected and the results of the measurements were the
same as the ones shown above.

3.3 Open-loop transfer function

As a next step, we measured the delay of a signal propagating through the whole system, i.e. through
our custom PCB and the Red Pitaya. We did this by injecting a step signal using the Analog Discovery Kit
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and measuring the response with a fast oscilloscope. We defined the delay as the time between the points
where the step signal and the response have risen to 50 % of its peak value (see 2).

Configuration Latency [ns]

Red Pitaya 218 ± 5
Input/Output Section 74 ± 5
Total 402 ± 5

Table 2: Results of the latency measurement. We injected a step signal and measured the response with
an oscilloscope. We defined the latency to be the time between the points where the signals have risen
to 50 % of their peak amplitude. The uncertainty is limited by how precisely we could read off the time
difference from the oscilloscope display.

Finally, we measured the open-loop transfer function of the PID module (see Fig. 17). In order
to prevent integrator saturation, the accumulator was reset periodically during the measurement. The
measurement points are overlayed with the theoretical transfer function, which consists of the ideal PI
transfer function Gideal(s) = kP + k I/s and the delay of the BLOOD Gdelay(s) = e−sT, where T is the delay
of the RedPitaya alone (i.e. ADC/DAC and digital delay) from Tab. 2.

Figure 17: Open loop transfer function of the BLOOD. The PID module was set to kP = 0.01 and k I = 5
(D is not usable at the moment). For the theoretical curve, the delay of 200 ns through the Red Pitaya has
been taken into account. While measuring this curve with the Analog Discovery Kit, the accumulator had
to be reset periodically to prevent saturation.

3.4 PDH lock of laser to a cavity

Although the BLOOD can be used for multiple purposes in the field of feedback control, it is specifically
designed to work in the context of frequency stabilisation using a PDH lock, and so performing such
a lock was one of the major project goals. This was ultimately performed in the lab of the TIQI group,
working on the setup of the molecules experiment, using an already set up PDH lock, that so far had been
using the old EVILs. Here, a cavity with a non-linear crystal is used to frequency double a red 626 nm
laser into a ultraviolet 313 nm beam. In this case, instead of locking the frequency of a laser to a cavity, the

25



opposite was done, and the cavity resonance frequency was locked to the laser. This was implemented
using a piezo driver, that was controlled via the output voltage of the BLOOD. Thus, the piezo moved
according to the BLOOD output voltage, adjusting the cavity resonance frequency. The PDH-principle
applies just the same, as the error signal just depends on detuning and direction of the laser and resonance
frequency. A schematic overview can be seen in Figure 18.

Figure 18: Setup of the PDH lock performed using the BLOOD.

Using the BLOOD as a controller implementing PI-control (the D-gain was actually never used), it
was possible to perform the lock and stabilize the cavity frequency to the laser. Evidence of this can be
seen in the comparison in Figure 19. However, this only worked on our first attempt. When some time
later we wanted to lock the system, we were unable to do so, and due to this being at the very end of our
project time frame, we were not able to repeat the locking and collect quantitative data to analyse the lock
quality.

We conjecture, that this lack of repeatability is caused by a still incomplete connection of the GUI
settings to the FPGA. Locking needs a decent starting point, that is usually achieved by outputting a
ramp and then observing how the streamed PDH signal changes under changes to the output ramp. It also
needs PID parameters that are set to reasonable values to allow locking. At this point, the GUI however
had buggy sliders, that made it very difficult to make sure all parameters in the FPGA corresponded to
what was shown in the GUI. Additionally, some of the GUI settings, such as the "reset PID" button did
not work at all, meaning every time we wanted to reset the integrator we had to re-load the bitstream into
the FPGA. Also, being convinced we would be able to lock again at a later point in time, we did not note
down the exact parameters of the first locking, and might just have been unable to get the parameters just
right the second time.

A straightforward approach to testing whether the failure to lock a second time was indeed caused by
the remaining software issues of the BLOOD would be to try to fix them, and then attempt to lock again.
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Figure 19: Screenshots of a video showing the locking process. While on the left the cavity is not on
resonance with the laser, on the right the cavity freq. has been locked to the laser. The laser is now
resonant in the cavity, which can be seen from the red radiation being scattered by the air, and the violet
spot on the paper indicating that UV light is being emitted.

3.5 Outlook

3.5.1 Open issues

It has been already mentioned, that due to the time constraints of the project, especially on the software
side, there have been some issues that could not be resolved and some features that could not be imple-
mented. In a follow-up project these can be improved upon, such that the BLOOD can fully operate the
way it was intended to. To this end, a list of changes to the current code we deem necessary can be found
in Appendix H. Still, we want to briefly mention the two most crucial aspects that limit the usability of
the BLOOD at the moment:

While the BLOOD server was developed so far that it could be used for experiments and was success-
fully tested, the changes made to the GUI are incomplete to the point where it works and can be used,
but can also be a frustrating experience, as many sliders are glitching, and some buttons do not have any
effects.

The current software only supports one of the two channels that are physically present on the BLOOD.
If the second channel has to be used, (and the cost advantage over the older EVILs is leveraged), the
software must be modified to also address the second channel just like the first one. As mentioned, for
all further proposed changes and improvements to the software, please refer to Appendix H

3.5.2 Conclusion

We managed to design and build a controller for laser stabilisation specifically dedicated to the needs of
the TIQI research group, that has been demonstrated to work to the degree where it can perform a PDH
lock. It is still incomplete, but with some improvements the BLOOD can live up to the tasks posed by the
lab routine in research with trapped ions, and will take its place as a functional and affordable successor
of the EVIL.
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A Specification Table

The following table compares the key specifications of the EVIL (current solution at TIQI) with our newly
designed BLOOD device.

Table 3: Comparison between EVIL and BLOOD

EVIL BLOOD

Processor – Dual-Core ARM Cortex-A9

FPGA Xilinx Spartan 3 XC3S500E Xilinx Zynq 7010

Connectivity USB 2.0 Ethernet

RF Inputs

Channels 2 2

Sample rate 96 MSPS 125 MSPS

ADC resolution 10 Bit 14 Bit

Full scale voltage range ±10V ±10V

Input impedance 50 Ω 1 MΩ or 50 Ω
(user selectable with jumper)

Adjustable gain Yes (potentiometer on PCB) Yes (digitally)

Adjustable offset Yes (potentiometer on PCB) Yes (digitally)

RF Outputs

Channels 1 fast, 1 slow 2

Sample rate 96 MSPS, 10 MSPS 125 MSPS

DAC resolution 14 Bit, 12 Bit 14 Bit

Full scale voltage range ±10V ±10V

Load Impedance 50 Ω 50 Ω

Adjustable gain Yes (potentiometer on PCB) Yes (digitally)

Adjustable offset No Yes (digitally)

Control loop characteristics

Latency 250 ns (fast path) 400 ns

Bandwidth 500 kHz (fast), 80 kHz (slow)
from [3] To be measured*

*The loop bandwidth is not limited by the latency of the system. Assuming a latency of 400 ns and
a desired phase margin of 45°, the maximum achievable loop bandwidth is about 1.5 MHz. The other
limiting factor is the bandwidth of the analog input and output sections, which depends heavily on the
gain setting used, as explained in Sec. 3.2.1.
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B Cost-Calculation

In this section, we show how the price for one BLOOD unit is composed. In general, we bought com-
ponents for the full assembly of five boards (Except for the RedPitaya where we only bought 4). For
the non-trivial components we bough six, in order to have a spare one if something goes wrong during
soldering. The number of PCBs and front panels ordered was also five.

Table 4: Cost-Calculation for the Project

Position Price per BLOOD unit

Red-Pitaya STEMlab 125-14 CHF 310.13

Schroff Aluminium Casette for 19’ racks CHF 45.08
Non-trivial components for BLOOD PCB
(OpAmps, LDOs, Multiplexers, DigiPots, etc.) CHF 108.80

Remaining components for BLOOD PCB CHF 126.85

PCB Manufacturing and SMD Assembly CHF 23.17

Front panel CHF 18.48

Total CHF 632.51

Per channel, the total cost for the BLOOD is CHF 316.25. Comparing this to the cost for the EVIL per
channel ( ≈ CHF 500), we have lowered the costs by about 35 %.

All the invoices/confirmation files for the orders made during this project can be found in the Quan-
Tech folder on the TIQI J: drive.

C Repositories

Here you find a list of all the repositories and the respective branch we worked on:

pyrpl (pyrpl_tiqi)

• branch: tiqi/blood/master

• URL: https://gitlab.phys.ethz.ch/tiqi-projects/pyrpl

devil

• branch: blood_devil , blood_devil_dev

• URL: gitlab.phys.ethz.ch/tiqi-projects/devil/-/tree/blood_devil_dev

devil_server

• branch: Blood−devil−server

• URL: gitlab.phys.ethz.ch/tiqi-projects/devil_server/-/tree/Blood-devil-server

BloodPCB

• branch: main

• URL: gitlab.phys.ethz.ch/tiqi-projects/quantech/blood-pcb
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D Verilog module for gain & offset control

This section contains details about the implementation of blood_settings . The base address for all user
accessible registers is 0x4050_0000. Table 5 shows a list of registers including their address offset, bit offset
and number of bits.

Register Address offset Bit offset # of bits
gain_in1 0x00 0 4
gain_in2 0x04 0 4
gain_out1 0x08 0 4
gain_out2 0x0C 0 4

offset_in1 0x10 0 16
offset_in2 0x14 0 16
offset_out1 0x18 0 16
offset_out2 0x1C 0 16

output_switch[0] 0x20 0 1
output_switch[1] 0x20 1 1

deactivate_module 0x24 0 1

spi_received (read only) 0x28 0 16

leds_o[0] 0x2C 0 1
leds_o[1] 0x2C 1 1
leds_o[2] 0x2C 2 1
leds_o[3] 0x2C 3 1

Table 5: List of user accessible registers in blood_settings . All register except spi_received are read-
/write.

Gain settings: For the four gain registers the bit assignment is the following: [0] EN, [1] A0, [2] A1,
[3] A2, where EN, A0, A1, A2 are the control pins on one TMUX6208 multiplexer. As explained in Sec.
2.1.1, two daisy-chained 8-bit shift registers are used to supply the multiplexers with the gain settings.
Within blood_settings , the module shifter implements the communication with the shift registers. The
module is parametrized and the user can choose the transfer length and clock frequency. A transfer is
triggered when start_gain is asserted, which is the case when any of the four gain registers changes
its value. The message is then given by the concatenation of the current values of all gain registers:
{gain_out2, gain_out1, gain_in2, gain_in1} . Note that also the values of those registers which did not

change are transferred again. This is necessary because the two shift registers are connected in series.
Figure 20 shows a waveform of the RTL simulation. Important to note here is the pulse on sr_store

which comes after all bits has been shifted in. This is necessary because the SN74HC595D has two layers
of registers, see Figure 21. sr_store is connected to latches between the actual shift registers (flip-flops)
and the outputs. The single pulse on sr_store makes sure that the outputs only change once all of the
data has been shifted in.

Offset: The offset registers contain the whole SPI command that will be sent to the digital potentiometer.
The bit assignment is the following: [9:0] value of RDAC register (proportional to the voltage ouput of the
digipot), [13:10] control bits, [15:14] unused (set to zero). The two most important SPI commands shall be
explained in the following, for further information please refer to the data sheet of the AD5293. [4] After
power up, one needs to enable writing to the RDAC register by sending the command 0x1802. This is
currently automatically done by the BLOOD software once it boots up. Then, one can change the RDAC
value by putting the bits [13:10] to 0b0001 and [9:0] to the desired value. The RDAC value is represented
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Figure 20: Behavioral simulation of shifter.sv in Vivado. The signal clk simulates the main clock signal
of 125 MHz. The frequency of sr_clk is adjustable by the user (in our design 1 MHz). The data sent in
this example is 0b1010_1010_1010_1010 .

Figure 21: Schematics from the data sheet of the 74HC595 shift register from Nexperia [15], which is
identical to the SN74HC595D from TI we used. Here, STCP corresponds to sr_store as mentioned in the
main text. SHCP is the main clock that controls the transfer (1 MHz in our design).

as an unsigned number, so to set the wiper to the middle position (corresponding to an output voltage of
0 V), one has to use the value 0b1000_0000 for [9:0], which corresponds to half the full range.

For implementing the SPI communication we used spi_master.v from the TIQI HDL library. The
following modifications had to made to spi_master.v to make it work with the AD5293:

1. There is an increased time of SCLK_BEGIN_END_CYCLES half cycles between the negative edge of CS and
the first sclk pulse. The same extra time was introduced between the last sclk pulse and the positive
edge of CS. While not strictly required by the SPI protocol, we found that the AD5293 would not
communicate via spi_master.v unless these changes were implemented. We became aware of this
because the Analog Discovery Kit’s SPI module, for which CS is high long before the first and last
sclk edge, worked right away with the AD5293.

2. sclk does not go high anymore after the last negative transition.

Fig. 22 shows these changes by comparing the simulated wave forms of spi_master.v for one SPI
transfer.

Other functionality The PhotoMOS switch for enabling/disabling the analog ouput channels (see Sec.
3) of the BLOOD are directly controlled by the bit written to output_switch[0] or output_switch[1] . The
default value after power up is 0 (i.e. output disabled). Same goes for controlling the LEDs on the front
panel through led_o[i] , i = 0,1,2,3.

The 1-bit signal deactivate_module is required because blood_settings needs to share access to the
signals on the expansion connector of the STEMlab with another module from the original PyRPL project.
By writing 1 to deactivate_module , blood_settings is disconnected from the expansion connector and the
original functionality of PyRPL is regained.
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Figure 22: Comparison of the changes made to spi_master.v . (a) The behavior of the original version of
the module. (b) Adapted version needed to make it work with the AD5293. In both cases, the data sent is
0b1010_1010_1010_1010 .

E Pipelining of PyRPL RTL code

In the following section, we want to describe the changes made to the PyRPL RTL code in an attempt
to mitigate the timing errors. We will describe for each modified Verilog module what were the exact
changes and what parts of the design are affected by them.

1. In red_pitaya_product_sat , one pipelining stage was added (between the sum and the product). In-
stances of this module were present in several places in the design: in the red_pitaya_iq_modulator_block

and in the red_pitaya_iir_block . The first one was straightforward to deal with because
red_pitaya_product_sat was never used within the feedback path of a filter. The red_pitaya_iir_block ,

however, did contain loops and required experience with digital filter design to solve it. Martin
Stadler helped us out here. The overall latency increase here was two clock cycles.

2. There was another pipelining stage added to red_pitaya_iq_modulator_block for the signals secondproduct1

and secondproduct2 . In total, the latency of red_pitaya_iq_modulator_block was increased by two.

3. The red_pitaya_lpf_block module is used in almost all of PyRPL. It can dynamically be config-
ured to one out of three modes: "low-pass", "high-pass" or "filter disabled" (i.e. signal passes right
through). In the latter case, there was no register in the signal path. Often, several instances of these
filter blocks were used in series. Together with the fact that all DSP modules are interconnected
via a multiplexer (i.e. zero latency interconnection), this lead to long combinatorial paths, which
did not fulfill timing. This was resolved by introducing one pipeline register on the "filter disabled"
path. As a consequence, the PID module, amongst others, now has an increased latency of two clock
cycles when the filter stages are turned off.

On the J: drive in the QuanTech project folder, you can find a PDF which graphically shows where the
pipelining stages were added.

F Handling the BLOOD Server

Start the Server Before the BLOOD-server can run succesfully, its bitstream must be loaded into the
FPGA. At the moment, this still has to be done manually. The first time a device is used, or whenever the
bitstream has been updated, it has to be transferred manually to the BLOOD device in question, e.g. via
scp or sftp. It then has to be loaded into the FPGA using the Xilinx FPGA manager, by executing four
commands in the terminal:

1. echo 0x10 > /sys/class/fpga_manager/fpga0/flags

( 0x10 is the compressed bitstream flag)
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2. mkdir −p /lib/firmware

3. cp ./foo_bitsteam.bin /lib/firmware

4. echo foo_bitstream.bin > /sys/class/fpga_manager/fpga0/firmware

This has to be performed after every powercycle, and it is therefore recommended to use simple scripts
to simplify or automate this. Note here, that the first command sets the flag for a compressed bitstream,
as this is what PyRPL will give us.

Once the bitstream is loaded, the devil server can be started by simply calling devild in the terminal.

Update the Server: The building of the OS image will already have preinstalled the BLOOD server on
the image. This has the advantage that it does not have to be built or installed for every single device,
but already preinstalled it when the OS is flashed onto the SD-card. However, it makes implementing
changes more difficult. If a new version of the server is to be installed onto a device, a new buildroot OS
must be created, which includes the BLOOD server as a package. The easiest way to do so, is to use a
buildroot copy already set up to create Linux environments for the BLOOD, e.g. the one in the project’s
folder on the J-drive. In such a case, just copy the new source code as a tar.gz file into ./dl/devil-server.
Note that it must have the same name as the file already existing there, which in this case would be
devil_server−boost_1_71_0.tar.gz . Going back to the main folder the new OS can now be built using the
make command. As only the Blood-server part is actually rebuilt, this does not take so much time.

Once this is done, the image in ./output/images/sdcard.img can be flashed onto a sdcard and used. In
most cases it would also suffice to just copy the shared object file from ./output/target/usr/lib/libdevil.so

to /usr/lib of the OS running on the STEMlab, which in many cases is more practical.
If a new Buildroot folder is set up to create operating systems for the BLOOD, not based on an already

existing one, some care should be taken so that is has similar features and settings as the ones used so far.
There exists a template for an image for the RedPitaya on gitlab [9], to which modifications have to be
made such that it can support the devil server. The most important (and only essential) ones are adding

• systemd

• boost

• azmq

libraries and making sure

• dhcpd

• ssh

are activated to be able to connect to the device. Note that when using systemd in buildroot, one has
to first change the standard C library to glibc . To speed up this process, a new gitlab repository for
the buildroot OS could be made, which already includes both the Blood server and the right RedPitaya
template as a submodule. This would speed up the deployment process of new BLOOD server versions.

G Documentation for BLOOD-Devil client

G.1 Integration of PyRPL client into Devil client

Both PyRPL and Devil client have python register objects which represent a register on the PyRPL FPGA.
But the objects themselves are quite different. While PyRPL uses a large inheritance tree to differentiate
many different types of registers (see PyRPL documentation) ultimately based on the BaseRegister class,
the Devil only has one register type, the Register class. We chose to write a BloodRegister class that
wraps a PyRPL register and makes it available to the Devil client. As there are many different PyRPL reg-
isters, there are also several BloodRegisters. The Devil Client has to be able to deal with the new registers
and also adapt to the changes in the devil server, therefore a BloodChannel class, that inherits from the
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Channel was written, that does most of the work. The original Devil client was written in such a way, that
it can deal with general resources which get announced by the devil server over the custom protocol called
fliquer (using port 8474). The blood server was changed to announce a tiqi.blood−devil.channel . One
of the main design principles we followed was to keep the blood client compatible with old devil servers
announcing tiqi.devil.channel . This principle was followed throughout the client code except for some
rushed changes towards the end of the project which are listed in the appendix I.

G.2 The BloodRegister class

The BloodRegister is the main PyRPL register wrapper class. At initialisation it expects a PyRPL hardware
module pyrpl_module , the name of the PyRPL register reg_name and a dictionary reg_cache where the
current value of the register will be stored. The BloodRegister uses the reference to a PyRPL register to
get the following information:

• register address

• bitmask

• default value

• maximum value

• minimum value

• conversion functions register.to_python() , register.from_python()

• value validation function register.validate_and_normalize()

In the original Register class the uval and sval (unsigned and signed value) of the register value are
differentiated. In the BloodRegister these are re purposed to:

register.sval register bits converted to the python value
register.uval bits of the actual FPGA register

To understand this consider the following: In the FPGA, float values are represented in fixed-point nota-
tion. To work with the actual value these can be converted to a float by using the register.sval attribute.
We do this conversion because PyRPL also does it. To avoid doing the same work twice, we reuse the
conversion functions already provided by the PyRPL register class.

Compared to the Register class the BloodRegister class has a setup_widget() method which gets
called by the BloodChannel to setup the GUI widget and connect it to this register. Register classes
inheriting from BloodRegister can redefine the setup_widget() method if they need to set up a different
type of GUI widget.

The reason that the BloodRegister requires a reg_cache (which is a dictionary provided by the
BloodChannel ) is because PyRPL defines different python registers which point to the same physical 32

bit register in the FPGA. Two examples where this is used:

• control bits of a module: For efficient use of address space several different binary control settings
are taken together in one register, where each bit represents a different true or false setting. In
PyRPL each of these bits is then represented as its own independent BoolRegister

• In the ASG module, the upper 16 bits of the register with offset 0x4 represent the output waveform
offset and the lower 16 bits represent the amplitude of the output waveform which are also separated
as different registers in PyRPL.

This mechanism complicates how a BloodChannel propagates a changed value received from the notifi-
cation socket to the actual BloodRegister object (see fig. 23) The register.bitmask defines which bits of
reg_cache[register.address] belong to the register .
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Figure 23: The Blood Client receives a notification from the Blood server. It then propagates the new_value

to all the BloodRegisters that have the address specified in the notification. Each BloodRegister then
updates its bits in the reg_cache[address]

G.3 The BloodChannel class

The BloodChannel class inherits from the Channel class and abstracts one physical channel of the BLOOD.
Currently it is written in a way that only one channel of the BLOOD is functional, but it should be
relatively easy to adapt the Channel class such that there are 2 BloodChannel objects for each BloodServer

that connects. The main differences of the BloodChannel class compared to the Channel class are:

• It can deal with BloodRegisters and interface with PyRPL to get information like register address,
conversion functions, etc.

• It implements a mechanism to initialize the FPGA registers after a power-up of the Blood. This
mechanism also checks if another client is in the process of initializing the FPGA. For details see
G.4.

• It provides a modifyRegisters RPC command to speed up the writing of the ASG waveform

• Adds _init_regs array which are the registers which should be initialized by the client after a
power-up of the BLOOD.
Note: Some of the registers are also initialized by the Blood server.

• Deals with the fact that multiple BloodRegister can reference to different bits of the same physical
FPGA register. See also the section G.2 on the BloodRegister class.

• Has additional references to its parent server and the redpitaya instance (Module from PyRPL
representing the physical state of the RedPitaya device. See the PyRPL docs for details [19])

• The client differentiates BloodRegisters by using an ID. The server on the other hand only uses the
register address to distinguish different registers.

The BloodChannel class spins up several ZeroMQ sockets which connect to the respective sockets on
the server side. You can see the details of this in section G.10.

G.4 Initialization of Server after power-up

To properly initialize the Blood after power-up, the first client that connects to it will initialize the registers
of the FPGA which need to be initialized. To prevent a second client to start the initialization process,
while the first one is still initializing, the special register SERVER_BOOTUP_REG with address 0x00 is used as
a semaphore (see Table 6). The second client then waits until the first client has finished the initialization
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G.5 The BloodServer class

This is a new class which is essentially a copy of the Channel class with less features. Its purpose is
to create and manage a pyrpl.redpitaya instance which is then passed to the BloodChannel instances
of this server. It also provides an RPC interface which can connect to the respective socket in the
Server::managementInterface_ . Right now the server does not implement any of the RPC calls which

are already present in the client version. This could be used at a later point to, for example, control regis-
ters which are common to both hardware channels of the Blood. In this project we only implemented the
control of one hardware channel due to lack of time towards the end of the project.

G.6 Channel Detection process

The Channel detection process uses the custom fliquer protocol which was developed for the original
Devil. It is a simple network protocol where different nodes of the network have local resources that
they can announce to the other nodes in the network. Once the server node has broadcasted its resources
over fliquer to the client node, the client then creates BloodChannels for each tiqi.blood−devil.channel

resource that has been returned by fliquer (can also be multiple if there are multiple servers in the same
network). Then the initialisation process of the channel starts, which can be seen in fig. 24 .

G.7 Changes in the GUI

The only part of the GUI that we modified for the blood is the register area with the sliders and buttons
on the left in fig. 13. To still be compatible with the old Evils, we created a new bloodregisterarea.ui file
which holds the sliders and buttons to control the Blood. To address the fact, that many of the registers
in PyRPL are actually represented as a double, we chose different QtWidgets and also created new ones.
For values where the type is double, we use a QDoubleSpinBox, for a discrete set of selectable values like
the analog output and input gain we use a QComboBox. We wanted to keep the sliders, but Qt doesn’t
provide sliders which return a double value, so we created a wrapper class of the QSlider class which
we called the QDoubleSlider and returns double values. For the analog input and output section we also
added a modified QDoubleSpinBox which converts the offset settings of the digipots to the actual offset
voltage. The new widgets can be found in the file customwidgets.py

G.8 transferfunctionplot.py

We also implemented a function which lets the user plot the open loop transfer function of the PID
module with the current kP, k I , kD values. This uses the built-in function in PyRPL to compute the transfer-
function.

G.9 Server only registers used between client and server

These are registers which are not mapped to the FPGA but are used to synchronize the state between
server and client.

Server bootup register: 0x0
This is the register used to implement the semaphore which is used in the initialization process of the
BLOOD after power-up. Each connecting client checks the state of this register before any other registers
are read or changed. See also sec. G.4 and table 6

SERVER_BOOTUP_REG value State description

0 Server is uninitialized
1 Server setup is in progress
2 Server setup completed

Table 6: States of the SERVER_BOOTUP_REG
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Figure 24: This graph shows in the first part (green frame) how the discovery of resources over fliquer
happens. In the second part it shows the RpcCalls from the client that initialize the BloodChannel (blue
frame)

39



Control register: 0x4
This is the register used to control the state of the channel. For example one of the bits is used to tell the
server weather to lock or to scan the cavity.

SERVER_CONTROL_REG bit name setting

0 RAMP_EN Enables the ramping from ASG
1 PID_EN PID output routed to Output
2 PID_RST Signals to other clients that PID is being reset
3 OUT_EN Enables the output of the channel

Table 7: States of the SERVER_CONTROL_REG

This implementation is chosen to keep the signaling of PID reset between clients independent of the
actual register writes that have to be done to reset the PID module. Currently this is done by setting the
ival register of the PID module to 0.

Status register: 0x8
This register is used to send status bits back from the server to the client. Currently it is not used, but we
left it as a placeholder. Conditions that would be worth to write to this register:

• A bit that signals when the integrator of the PID is saturated at maximum or minimum value.

• A bit that signals when the ADC input is saturated at maximum or minimum value.

• A bit that signals when the DAC output is saturated at maximum or minimum value.

The client could then read these bits and provide visual feedback through the GUI. Exactly such a mech-
anism is implemented for the Evil.

G.10 Communication between server DummyChannel and client BloodChannel

The communication between server and client uses the ZeroMQ library [26] to spin up multiple sockets.
These are:

• RPC socket

• notification socket

• streaming sockets

Each channel object spins up 1 RPC socket, 1 notification socket and 3 streaming sockets. See also fig. 25

RPC socket
The RPC socket is the socket through which the client sends commands to the server. The server then
sends a response message. Available commands are:

ping Used to implement a Heartbeat
readRegister Request to read a register
modifyRegister Request to modify a register
modifyRegisters Request to modify an array of registers
notificationPort Requests the port of the notification socket
streamPorts Requests the ports of available stream sockets
streamAcquisitionConfig Requests the current stream acquisition config
setStreamAcquisitionConfig Request to modify stream acquisition config

server client
ZeroMQ REP socket ZeroMQ REQ socket
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Figure 25: Shows how the different sockets between the client and the server are connected. The RPC
interface uses the request and reply scheme REQ, REP from ZeroMQ. The notification and streaming
sockets use the publish and subscribe scheme PUB, SUB

notification socket
The server uses this socket to communicate changes in registers and stream acquisition configuration to
all the connected clients. It is therefore responsible for keeping all the clients synchronized.

server client
ZeroMQ PUB socket ZeroMQ SUB socket

streaming socket
For each available stream the server spins up a streaming socket to which the clients can connect to receive
real-time data from the ADC output or the PID output. This data is used to produce the streaming plots
in the GUI. Available streams:

1. ADC (error signal)

2. PID/ramp output

3. ASG output

server client
ZeroMQ PUB socket ZeroMQ SUB socket
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H Detailed list of proposed code changes and missing features

H.1 General Features

H.1.1 Entire System

• Use the LEDs on the front pannel of the Blood to display useful system information like if the devil
server has successfully booted up or the integrator is saturated or the Blood is out of lock.

• Implement the second hardware channel in the server and client.

• Reactivate the DeviceObserver in the BloodServer such that an EVIL could be connected to the
available USB port of the RedPitaya.

• Implement a stepped sine in-loop system characterization which can help the user to optimize the
controller performance in terms of stability and noise. This is a rather difficult task and will require
changes in both the server and the GUI. The PyRPL bitstream already provides the basic elements
which are required to perform this. These are the scope and IQ module. This measurement can be
performed with PyRPL when using the software module network analyzer . Some good resources
are:

– Abramovitch [1], Built-in stepped-sine measurements for digital control systems

– User Guide from HP on how to correctly perform Closed Loop Sensitivity and Responsivity
measurements

– Blog on how to implement the fine details of a PID controller

• Add the capability that the name of the channel can be changed from GUI and doesn’t have to be
changed by connection to the RedPitaya using an SSH shell and modifying the devild.json file.

• Implement automatic relocking. Requires more than a simple PID controller for PDH locks. An
implementation using a low-pass filter to detect when a temporary, large disturbance comes in has
already been tried with the Evil but didn’t work sufficiently well.

• Somehow make a similar API like the PyRPL API available so that easily python scripts can be
written to control the Blood.

H.1.2 Server

• Add ability to store and recover the current state of the Blood using the SD card. This way, at bootup
the Blood doesn’t have to wait for a Client to connect to initialize itself but can rather use the data
from the SD card.

• Implement a better sampling by using the scope instead of the sampler module in the FPGA. Then
trigger the scope on the trigger signal from the ASG.

H.1.3 Client

• The PID module in the PyRPL bitstream has input filter coefficients. These are not yet available to
the user in the Blood-Devil GUI. Make these available for further design options of the control loop.
These could be added to the transfer function plot window.

H.2 Fixes for the Client

The development of the blood-devil client happened under time pressure. Some changes should be
refactored and there are some features which should be implemented. Here we try to give an extensive
list of code improvements:
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H.2.1 main.py

• If the server announces the tiqi.blood−devil.channel before the tiqi.blood−devil.server is an-
nounced, the find_server() method fails to find the parent server and the client might crash.

• Improve the mapping of channels to the parent server: Right now the parent server is determined
based on the host-address. A channel is associated with the server with the same host address. This
is probably not safe if network address translation (NAT) happens because then multiple servers
could be hidden behind the same IP and thus the channel could be assigned to the wrong server.
Two possible solutions are:

1. Adapt the Fliquer protocol that each fliquer node receives a unique ID, then compare the fliquer
ID’s to retrieve the parent server

2. Make it such that each connected blood-server automatically creates two channel instances and
change server code such that it doesn’t announce channels.

3. Make sure that both the parent server and the channel resource get announced in the same
fliqer message by the server. Then give the received message an id and pass it down to the
_new_resource() function as a parameter. Store this message id in the created server and client

resource. So then in the _new_resource function when creating a channel resource, find the
server resource that has the matching message ID.

H.2.2 bloodserver.py

• Refactor the BloodServer class together with the Channel and BloodChannel classes depending on
whether the given object has an RpcInterface or also a notification and streaming sockets.

• Think about the necessary RPC commands that should be implemented in the BloodServer between
the server and client RPC sockets.

H.2.3 bloodchannel.py

• Put all the register classes in a separate file BloodRegisters.py to make two smaller files out of
the huge bloodchannel.py file. You could also think about including the Register class from the
channel.py file and then call the new file Registers.py

• Remove the empty BloodBuffer class.

• Remove all the print statements once the GUI works a little more reliable to make the code more
readable

• Look at the evil2channel.py code and understand how the _sweep_timings should be adjusted to
work for the Blood. If this is done correctly, then the extraplot item in streamingview.py

_add_extra_items_from_dict() at line period = items.get(’period’) should work again. This then
shows the output ramp plotted on top of the received ADC signal.

• Reconsider the Gain and CornerFrequency sliders. The issue here is that the PID module from
PyRPL allows for negative P and I gains, so this separation into Gain and CornerFrequency is no
longer unique. Either take into account the polarity of the P and I sliders or remove them.

• Think of which registers really need to be initialized by the client and double check with with
the current initialization process in the server. Currently switching between ramping/sweeping,
resetting the PID, enabling the output, streaming synchronization is handled by the server. Remove
the ones which are not really needed (also the comments)
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H.2.4 customwidgets.py

• For the QDoubleSlider class add different scaling types as the sliders are not usefull right now.
For example the Frequency slider has linear scaling. This is a problem, as we would like to have
a lot of selection points for low frequencies and only a few ones for high frequencies. Here an
exponential/logarithmic scaling would be perfect. For the P and I gain sliders, there’s a problem
as well. The max and min value of the sliders is extracted from PyRPL. But also here the linear
scaling only gives us a very small amount of points around 0, while it gives us a lot of selection
points for I, P > 1 which is useless. Here a different scaling based for example on a P = sinh(xslider)
function would make sense. Giving a lot of selection points around 0 and much fewer towards the
boundaries going to Pmax, Pmin If the scaling is fixed, the sliders will start to become much more
useful.

• Implement some way that the slider does not send too many updates of the value to the client when
it is dragged with the mouse. Currently dragging the sliders too fast can lead to a crash of the client.

• Debug why the valueFromText function of the AnalogOffsetSpinBox never gets called. This should
make it possible to change the analog offset voltage by setting a value in the Offset spinbox.

• Check if there should be different conversion functions for the input and output offset voltage. The
relevant conversions here are:

– input: digipot value to input offset voltage at device input as a function of input gain
– output: digipot value to output offset voltage at device output as a function of output gain.

Right now the conversion function for analog input offset and analog output offset are the same.

H.3 Server

H.3.1 DummyChannel.cpp

• Rename all classes and files in a reasonable way, changing the devil -based nomenclature to blood .

• Change the const auto clockInterval = 1s / 96e6 to const auto clockInteral = 1s / 125e6 as the
RedPitaya has a FPGA clock frequency of 125 MHz. The old value is still from the Evil.

H.4 Bitstream

• Connect the TTL lines to the pause signal of the integrator in the PID module. Then add a setting
to the BS.py module of pyrpl_tiqi which allows one to enable and disable the pausing of the
integrator via a TTL signal. Also make this setting available in the Devil GUI. This could be used to
stabilize systems without a continuous error signal.

H.5 pyrpl_tiqi

• Add a poetry configuration to install pyrpl_tiqi

• Add a statement to pyrpl_tiqi that automatically writes the first command needed to initialize the
digipots.

• Create a GUI window for the BS.py module in the PyRPL GUI such that the full PyRPL GUI can
be used to control a Blood.

• In transfer function computation of (PID, IIR, IQ) take into account the extra delay introduced to fix
the timing constraints of the FPGA design. In particular when the filter value is set to 0 then instead
of having 0 delay the filter block has a delay of 1 clock cycle. Also add the exra delay introduced by
the Blood analog input and output stages.

• Pyrpl fails to load proper default values for Registers.
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I Modifications that make the BloodClient incompatible with the EVIL

These modifications should be straightforward to implement such that backward compatibility with
EVILs is restored.

• Modification of StreamPacket class in channel.py which changed how the stream packet values are
converted. Revert the code changes back to the original Devil and instead create a BloodStreamPacket

class in bloodchannel.py .

• Put back the -1 sign in ’offset’ extra plot item in streamingiew.py . Instead multiply the ’offset’ value
by -1 in the BloodChannel class.
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