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Abstract

In this report, we investigate the implementation of a tunable beam splitter for a two-qubit gate
between Gottesman-Kitaev-Preskill (GKP) encoded qubits. Emphasis is placed on achieving a
decoupled setting at interion distances below 20 µm. Using numerical simulations with a model of
the used trap, theoretical modal participation rates below 6% were found to be achievable. How-
ever, only experimental decoupling factors ∆ω/2ΩB of at most 2.05 were achieved, corresponding
to a theoretical 50% reduction in energy exchange between the two ions in the uncoupled set-
ting. Consequently, we did not achieve sufficiently strong decoupling for the required switchable
beamsplitter interaction. Future strategies could include working with lower quadratic potentials,
exploring higher distance double wells, or manipulating interion distance in-sequence to control
the coupling rate.
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Chapter 1

Introduction

Quantum information processing proposes to solve computational problems that are to date in-
tractable for classical computer, such as prime number factorization [19] or the elucidation of
specific molecular reaction mechanism [16]. To achieve devices that can handle quantum infor-
mation processing, the DiVincenzo’s criteria [5] needs to be fulfilled. However, achieving long
decoherence times, one of the criteria, has proven to be a significant issue. To remedy this task,
quantum error correction (QEC) is necessary [14]. By encoding the quantum information in a
redundant space, QEC protects the logical information against errors [12]. Given the overheads
needed to do QEC with two-level systems, continous-variable systems have been considered as they
provide inherent redundancy.

These, so-called “bosonic quantum encodings”, can be implemented with trapped ions leveraging
their motional states [9]. One such encoding, the Gottesman-Kitaev-Preskill (GKP) code [8], offers
several advantages, notably is its potential for error correction as demonstrated by its “break-even”
experiment [20, 1, 13]. Single qubit gates as well as error-correction for GKP states have been
realized in trapped ions [7, 4]. However, to date, the implementation of two-qubit gates using
GKP encodings remains a significant challenge.

One proposal of a realization of a two-qubit gate has been given by I. Rojkov [18], it can be de-
composed into two single mode squeezing operations and one application of the beamsplitter. In a
typical ion trap system, the beamsplitter interaction is naturally mediated through the Coulomb
interaction. However, this also means that modes are constantly interacting, which is not desirable
for a discrete two qubit gate. In this report, we address that issue and propose approaches to
implement a tunable beamsplitter. Importantly, our approach focuses on developing a tunable
beamsplitter that does not rely on moving the ions further apart to decouple them. This focus is
due to the complexity of GKP encodings and the potential issues that could arise from the ions’
movement.

Chapter 2 provides the theoretical groundwork necessary for understanding the beamsplitter im-
plementation in our system. As the equilibrium positions of ions and the Coulomb interaction come
into play, the problem becomes non-trivial to solve analytically, necessitating numerical methods.
Hence, Chapter 3 delves into the numerical optimizations conducted to determine the optimal
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Chapter 1. Introduction 3

voltage parameters for our experimental setup. The chapter outlines two approaches: a naive
optimization over electrode voltages, and a more flexible approach using a lower-dimensional space
to describe the resulting potential. We reached theoretical modal participation rates of 94% at
interion distances below 20 µm. Finally, in Chapter 4, we present the results of our experimental
efforts to reach an uncoupled system using our proposed methodologies. The chapter details our
experimental setups and results for two ions trapped at an equilibrium position of approximately
12 micrometers, our attempts, and challenges in implementing a double well setup, and lastly a
modified approach using a shallower quadratic to achieve higher ion distances. The highest decou-
pling factor ∆ω/2ΩB we reached experimentally is 2.05 at 12 µm interion distance, thus, we did
not achieve a strong enough decoupling for the needed switchable beamsplitter interaction.



Chapter 2

Theory

2.1 The calcium ion 40Ca+

Quantum computation utilizing ions necessitates the most optimal control possible over the chosen
qubit, consequently the use of the calcium ion (40Ca+) is widely spread as it possesses specific
properties that are very useful for that task. The calcium ion is a monovalent cation of Calcium,
an alkaline earth metal. Its electronic configuration in the ground state is [Ar]4s1, corresponding
to a closed shell system with a single electron in the 4s orbital. This configuration, as seen in
Figure 2.1, lends itself to a simple level diagram, facilitating ease of manipulation for quantum
computing applications.

Figure 2.1: The energy level structure of 40Ca+ is as follows. Typically, the S1/2 state is chosen
as the logical state |0⟩, while the D5/2 state is used as the logical state |1⟩. The S1/2 ↔ P1/2

transition has a wide linewidth and thus the P1/2 state is employed for readout. The P3/2 and
D3/2 levels need to be accounted for during the manipulation by possible repumping lasers. Taken
from [9].

Two critical energy states in the electronic structure of 40Ca+ are the S1/2 (ground state) and D5/2

(metastable excited state), known as the S-manifold and D-manifold, respectively. The qubit in a
quantum computing system is typically encoded in these two states, with |0⟩ state defined in the
S-manifold and |1⟩ state in the D-manifold.

4



Chapter 2. Theory 5

The controlled transitions between these energy states in the 40Ca+ ion are fundamental to the
functioning of quantum operations. It is these transitions that form the basis for tasks such as
state preparation, readout of the qubit state, and a universal set of gates.

One of the most notable transitions is the 397 nm dipole transition between the S1/2 ground state
and the P1/2 excited state. This transition, driven by laser light, has a significant role in several
vital operations in the quantum information processing domain.

• Doppler Cooling: This technique is used to reduce the motional energy of ions by employing
momentum exchange between ions and laser photons. During this process, ions continuously
absorb and emit laser photons, resulting in an overall reduction in their motional energy.
The 397 nm dipole transition is ideally suited for Doppler cooling due to its relatively fast
decay rate and thus fast cooling.

• Electromagnetically Induced Transparency (EIT) Cooling: EIT cooling is another technique
to cool ions to temperatures below the Doppler limit. During EIT cooling, a quantum inter-
ference effect occurs, rendering the ions transparent to a particular wavelength of light. The
397 nm dipole transition is used in EIT cooling to couple the S1/2 and P1/2 states. See also
[10].

• After computation, the 397 nm dipole transition plays a significant role in the measurement
process. State-dependent fluorescence is used to determine the state of the ion, which is
either in the “bright” state |0⟩ if photons are scattered, or in the “dark” state |1⟩ if after a
certain time no photons are scattered.

Another important transition in the 40Ca+ ion involves the D5/2 state. This state is a metastable
state with a relatively long lifetime of approximately 1s, making it suitable for storing quantum
information. Transitions between the S1/2 and D5/2 states can be driven by laser light with a
wavelength of approximately 729 nm, providing a basis for qubit manipulation and gate operations
in quantum computation.

It’s these well-controlled transitions that enable the use of 40Ca+ ions for quantum information
processing. They provide the basis for critical operations like state preparation, qubit manipula-
tion, and state readout, further reinforcing the importance of understanding these transitions for
advancing the field of quantum computing.

For more comprehensive insights into trapped-ion physics and the role of 40Ca+ transitions, refer
to the detailed lecture notes by D. Kienzler [9].
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2.2 The GKP Setup trap

Results of this work have been achieved using a monolithic segmented 3D trap. It was fabricated
using femtosecond lasers out of fused silica, coated with Ti/Au [15]. A model of the trap is depicted
in Figure 2.2. The electrodes have sizes from 0.98 mm to 0.23 mm. Single addressing of the ions
with the 729 nm laser is possible by two crossed AODs. Measuring the population of the D5/2

state while scanning the frequencies of these AODs also allow to determine the positions of the
ions [2, 21]. The reference publication is to come.

Figure 2.2: Illustration of the used monolithic segmented 3D trap. The electrodes have sizes of
0.98 mm, 0.48 mm, 0.23 mm and 0.625 mm for the central electrode.

2.3 Gottesman-Kitaev-Preskill encoding

An alternative to using internal electronic states to encode quantum information are bosonic en-
codings. Here, states of an harmonic oscillator are used. In trapped ions this is possible by using
the harmonic motion of the ion in the trap.

An early proposal for such a bosonic encoding was the GKP code, named after Gottesman, Kitaev
and Preskill [8]. The rise of interest for the GKP encoding is due to its ability to do fault-tolerant
universal computation [8] and its potential for error correction, as shown by [1, 13]. Single qubit
gates as well as error-correction for GKP states have been realized in trapped ions [7, 4]. Recently,
“break-even” has been demonstrated in superconducting cavities, further highlighting the promise
of GKP encodings [20].

These theoretical and experimental advantages come at the price of a relatively complex code space.
Ideal GKP states consist of an infinite superposition of infinitely squeezed states. In particular,
it can also be described with the stabilizer formalism, with operations given by commuting phase
space displacements D̂(α). Such displacements follow specific commutation relations given by their
geometric phase:

[D̂(α), D̂(β)] = 2ieiΦ sin(Φ)D̂(α)D̂(β), where: Φ = Im (βα∗) (2.1)

Thus, displacements with Φ = kπ, k ∈ Z commute and displacements with Φ = (2k + 1)π2 , k ∈ Z
anti-commute. Consequently, we can define our code space with following stabilizers and logical
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operators:
D̂(l/2) = X̂L ≈ X̂†

L = D̂(l/2)† = D̂(−l/2)

D̂(iπ/l) = ẐL ≈ Ẑ†
L = D̂(iπ/l)† = D̂(−iπ/l)

D̂(−l/2− iπ/l) = ŶL ≈ Ŷ †
L = D̂(l/2 + iπ/l)

ŜX = D̂(l) ≈ 1L

ŜZ = D̂(2iπ/l) ≈ 1L.

(2.2)

We can visualize the operations in a grid-like structure as shown in Figure 2.3.

Figure 2.3: Phase space displacements for the two stabilizer operators ŜX , ŜZ and the logical
Pauli operators X̂L, ŶL, ẐL shown is also the relevant phase space area Φ. The Hadamard operation
is given by a π/2 rotation of phase space together with a rescaling of the phase space axis. Taken
from [6]

Consequently, the code space, given by the intersection of the +1 eigenspace of the stabilizers, has
ideal logical states:

|0⟩L,id =

∞∑
k=−∞

D̂(kl)|q = 0⟩

|1⟩L,id = X̂L|0⟩L,id =

∞∑
k=−∞

D̂(kl + l/2)|q = 0⟩
(2.3)

where |q = 0⟩ is the position 0 eigenstate.

As can be directly seen by their form, the ideal code words are unphysical because they represent
states of infinite energy and cannot be normalized. However, one can approximate such states
using finite superpositions of displaced finitely squeezed states [8]:

|0⟩L =

±|kmax|∑
k∈Z

ckD̂(kl)Ŝ(r)|q = 0⟩ |1⟩L = X̂L|0⟩L (2.4)

with Ŝ(r) the position squeezing operator and ck real weights following some distribution, where
the ideal states are reached in the limit of r, kmax → ∞. Using such approximate states will
lead to logical errors, however those errors are quantifiable and thus can be accounted for in the
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overall error budget [8]. The Wigner functions of such approximate states for two different sets of
parameters can be seen in Figure 2.4.

Figure 2.4: Two examples of approximate |0⟩L states. (a) r = 0.9, kmax = 1, c0/2 = c1 = c1.
(b) r = 1.5, kmax = 3, c0 = 4c±1/3 = 10c±2/3 = 20c±3. The dashed ellipses help as a guide to
the eye and show the r.m.s extent of the squeezed components used to built up the states. The
interference between these components leads to the build up of the 2D grid in phase space. For more
components and higher amounts of squeezing (b) the grid becomes larger while simultaneously the
individual features become narrower. The limit of ideal code states is given by an infinite grid of
delta peaks. Taken from [6]

2.4 Two qubit gates for finite energy GKP states

As previously discussed, the increase in interest for GKP encodings is due to its universal gate-set
that can be implemented fault-tolerantly1, such universal gate-set typically consists of a set of
universal single-qubit rotations and one complementary two-qubit gate such as a CNOT or a CZ.
The former has been shown to be implementable [7], however, to date, the implementation of a
two-qubit gate on GKP-encoded qubits has not been shown.

There are multiple possible approaches to tackle this task, one of them is presented in the theoretical
considerations of I. Rojkov et al. [18], where a technique was proposed that specifically considered
finite energy GKP states which are obtained by applying an “envelope operator” Ê∆ = e−∆2n̂ on
the initial ideal state according to |ψ⟩△ ∝ Ê∆|ψ⟩id, where n̂ = 1

2

(
q̂2 + p̂2

)
is the number operator

and ∆ parameterizes the size of the envelope in phase space. There it was shown that a CZ gate,
which is the missing element to get a full universal gate-set starting from what has already been
implemented experimentally in the past, can be decomposed into two squeezing operations and
one application of the beamsplitter:

CZ(θ, r) = Ŝ⊗2(r)B̂A(θ)Ŝ
⊗2(−r) (2.5)

with Ŝ⊗2(r) = Ŝ(r)⊗ Ŝ(r) and Ŝ(r) = ei
1
2 r(q̂j p̂j+p̂j q̂j) the squeezing operation on mode j, and with

B̂A(θ) = eiθ(q̂1q̂2+p̂1p̂2) the anti-symmetric beamsplitter transformation [18].

1Under certain assumptions on the ancilla.
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Figure 2.5: Finite-energy effects in two GKP qubit operations can be described as follows: (a)
The momentum marginal distribution P (p) for both oscillators, which are initially in the state
|0⟩∆, undergoes a transformation due to the CZ gate. Before the operation, the state exhibits a
specific distribution (depicted on the left) which is altered post-operation (shown on the right).
The output distributions experience broadening because the operation corresponds to a continuous
set of displacements. This broadening disperses each oscillator’s wave function, conditioned on the
position of the other oscillator. (b) The Wigner quasiprobability distribution illustrates broadening
solely in the p quadrature. (c) The width of the peaks as a function of the input width clearly
portrays a linear relationship. (d) The physical and logical infidelity between the input and output
states as a function of the energy parameter, denoted by ∆, is also presented. The infidelity
measures the discrepancy between the initial and final states, which is directly influenced by the
energy parameter. Taken from [18]

However, this gate is intended to work on ideal GKP states, consequently, if applied on finite
energy GKP states, so called “finite-energy effects” would occur, as shown in Figure 2.5.
Two circumvent these effects, two methods were proposed:

• Locally correct for small shifts in the phase-space and for deformations of the energy envelope
using quantum error correction procedures before and after the CZ gate.

• Use a modified version of the CZ gate, called finite-energy version, which is obtained by
conjugating the gate with the envelope operator Û∆ = Ê∆ÛIÊ

−1
∆ .

Consequently, we now have at our disposition a method to implement a two-qubit gate while
accounting for the experimental limitation of only having access to some finite energy states.
Furthermore, this method only needs squeezing operations and a beamsplitter operation. The
theory and implementation of the later will be the main focus of this paper.

2.5 Coupled harmonic oscillators and the beamsplitter inter-

action

2.5.1 Coulomb interaction

For trapped ions, the coulomb interaction between the ions can be utilized to implement the
beamsplitter interaction. In fact, considering only two ions for now, if we approximate the coulomb
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potential for small displacements relative to the equilibrium position distance, we get:

U (r̂1, r̂2) =
q1q2
4πϵ0

1

|r̂1 − r̂2|
=
q1q2
4πϵ0

1

|x̂1 − x̂2 − s0|

≈ q1q2
4πϵ0

(
1

s0
+ cos(γ)

x̂1 − x̂2
s20

+
(
1− 3 cos2(γ)

) −x̂21 − x̂22 + 2x̂1x̂2
2s30

)
,

(2.6)

with r̂1 and r̂2 the position vectors of the two ions, x̂1 and x̂2 the displacements from their equilib-
rium positions, s0 is the distance vector between both equilibrium positions and |s0| = s0, |x̂1,2| =
x̂1,2. Furthermore, γ is the angle between x̂1 (here we are assuming that both ions are displaced
in parallel directions) and s0.

Each term can be interpreted in the following way:

• The first term 1
s0

is constant and just adds a potential offset which does not affect the system.

• The second term cos(γ) x̂1−x̂2

s20
is linear in the position, and so produces a constant force that

displaces both ions in opposite directions.

• The third term
(
1− 3 cos2(γ)

) −x̂2
1−x̂2

2

2s30
induces a constant change in the trap frequency of

both ions, this effect can also be counteracted by a quadratic term in the applied voltages.

• From the last term
(
1− 3 cos2(γ)

)
x̂1x̂2

s30
we get the coupling needed for our beamsplitter:

Expressing the positions operators in terms of ladder operators we get:

ĤB =
(
1− 3 cos2(γ)

) q1q2
4πϵ0

x̂1x̂2
s30

(2.7)

= −ℏΩB(γ)
(
â1 + â†1

)(
â2 + â†2

)
(2.8)

RWA
= −ℏΩB(γ)

(
â1â

†
2 + â†1â2

)
, (2.9)

where in the last step we used the rotating wave approximation and discarded fast rotating terms.
Thus, we get a term that corresponds to our needed beamsplitter interaction with a coupling rate
of:

ΩB(γ) =
(
1− 3 cos2(γ)

) q1q2
8πϵ0s30

√
m1m2

√
ω1ω2

. (2.10)

Such beamsplitter interactions have been implemented in trapped ions, where different effects
including the Hong-Ou-Mandel effect and coherent energy exchange have been shown [3, 24].

2.5.2 Classical coupled harmonic oscillators

In fact, this interaction may be understood as two coupled harmonic oscillators. The coupling
Hamiltonian is given by

ĤB =
(
1− 3 cos2(γ)

) q1q2
4πϵ0

x̂1x̂2
s30

, (2.11)
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Figure 2.6: Resonant: With ω1 = ω2 = ω0

the bare frequencies of the oscillators and
γ1 = γ2 = γ

Figure 2.7: Detuned: ω1 = 1rads−1,
ω2 = 0.989rads−1, Ω1 = 0.1radm−1 and
γ1 = γ2 = γ = 1mrads−1.

Figure 2.8: Time evolution of the total energy in two coupled harmonic oscillators. The blue
solid line is the energy in oscillator 1, the red dashed line is the energy in oscillator 2, and the
dotted black line is e−2γt. Taken from [17]

thus giving us coupled equations of motions of the form:

ẍ1 + γ1ẋ1 + ω2
1x1 − Ω2

Bx2 = 0,

ẍ2 + γ2ẋ2 + ω2
2x2 − Ω2

Bx1 = 0.
(2.12)

with some constants γ1,2 representing the damping rates, which in our model are 0, and the
coupling rate ΩB = 2 · ΩB(γ) ·

√
m1m2

√
ω1ω2 between both oscillators. Such a system can be

solved analytically and if we take a look at the energy of the individual oscillators we see a
coherent exchange of energy over time. Furthermore, the contrast and the frequency of this energy
exchange is determined by the detuning of the two oscillators, as seen in Figure 2.8. Thus, if the
bare frequency of the two oscillators are detuned, the energy is not fully exchanged and also the
frequency of the oscillation is increasing.

2.5.3 Coupled quantum harmonic oscillators

Furthermore, we can generalize that result to the quantum case. Solving the Heisenberg equations
for the evolution of the raising and lowering operators under Eq. 2.9 we get:(

ȧ†1
ȧ†2

)
= i

[
ω1 ΩB

ΩB ω2

](
a†1
a†2

)
(2.13)

which results in:

a†1(t) = eiω̄t

[
a†1(0)

(
cos Ω̃t+

∆ω

2Ω̃
sin Ω̃t

)
+ ia†2(0)

ΩB

Ω̃
sin Ω̃t

]
a†2(t) = eiω̄t

[
a†2(0)

(
cos Ω̃t− ∆ω

2Ω̃
sin Ω̃t

)
+ ia†1(0)

ΩB

Ω̃
sin Ω̃t

]
,

(2.14)
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with ω̄ = (ω1 + ω2)/2, ∆ω = |ω1 − ω2|/2 and Ω̃ = 1
2

√
4Ω2

B +∆ω2.

Similar to the classical case, we see that the raising operator for mode a transforms in a sum
containing terms with the raising operator of mode b, hence we can also see this energy exchange
for the quantum case. More specifically:

• for ∆ω = 0, thus Ω̃ = ΩB , we have a1(t = π
2ΩB

) = ia2(0), hence there is a full energy
oscillation from the first to the second quantum oscillator.

• for ∆ω ̸= 0, our oscillations do not reach full contrast, and we also have Ω̃ > ΩB thus the
energy transfer is happening on faster timescales. In fact, one can just connect these results
to resonant/detuned Rabi oscillations.

These classical and quantum mechanical considerations give the needed tools to implement a
theoretical switchable beamsplitter:

• To get an uncoupled setting, where we do not want the two oscillators to exchange energy,
we need to have the detuning much bigger than the coupling rate: ∆ω >> ΩB , thus resulting
in very low contrast energy exchange oscillations.

• To get a coupled setting, where we do want two oscillators to fully and quickly exchange
energy, we need to have the coupling rate to be much bigger than the detuning ∆ω << ΩB ,
resulting in full contrast oscillations with frequency ΩB .

2.5.4 How to experimentally verify the coupling

We now know what parameters need to be changed to achieve the tunable beamsplitter, however
we still need to be able to measure what coupling we managed to reach in the experiment. To do
so, we have two possibilities:

-Avoided crossing diagram: The eigenmodes of our system can be found by diagonalizing Eq.
2.9, resulting in “in-phase” and “out-of-phase” modes with energies

ωin/out = ω̄ ± Ω̃ = ω̄ ± 1

2

√
4Ω2

B +∆ω2. (2.15)

These modes will be the one we will see in our experiment if the timescale of our measurement are
long compared to the inverse of the coupling rate between our ions. For a fixed coupling rate, the
frequencies of the two eigenmodes of the system can be plotted as a function of the detuning of
the local modes. The resulting plot is a so called “Avoided Crossing” as can be seen in Figure 2.9.
This graph can be experimentally generated by measuring the eigenmode frequencies via a detuned
carrier absorption spectrum, while maintaining a constant coupling rate. This can be achieved by
holding the equilibrium distance s0 constant and altering the detuning of the two ion frequencies
via voltage adjustments. The minimal detuning between the two frequencies, which gives twice
the coupling rate, can then be observed. Moreover, by comparing this minimal detuning to the
maximal detuning between frequencies, we can quantify the decoupling. However, this method
is quite tedious, because, as we will see in the next chapter, to keep the distance constant the
voltage parameters have to be readjusted. Being able to infer the coupling parameters from just
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one certain voltage setting would be much more beneficial. To do so, one could measure the
two ion distance to compute the coupling rate, then measure the detuning of the two eigenmode
frequencies and calculate the detuning divided by 2 coupling rates, which also corresponds to the
ratio of the waist of the anti-crossing graph to the maximal detuning. This quantity would then
indicate how decoupled the two ions are. Furthermore, one can calculate the ratio of the energy
exchange, plugging

|∆ωin/out|
2ΩB

=
Ω̃

ΩB
(2.16)

in ia†k(0)
ΩB

Ω̃
sin Ω̃t of Eq. 2.14 giving the inverse prefactor of the energy oscillation.

Figure 2.9: Avoided crossing diagram for unitless variables.

-Participation rates: Another possibility to assert how uncoupled our ion system is for one
voltage setting is to measure the “participation rates” of our ions. In a perfectly uncoupled setting,
each single mode will represent the movement of only a single ion, however in a perfectly coupled
system the motional solutions are the in-phase and out-of-phase modes, where both ions move with
equal amplitudes. Consequently, to measure how uncoupled the ions are, one could envision to
measure the relative coupling strength of the side bands to the carrier for each ion, thus retrieving
the motional participation rates of each ion for a certain mode. This metric will likewise allow
quantifying the reached decoupling in the experiment.

To sum up, we have now grasped the method for implementing a beamsplitter interaction, and we
have devised theoretical approaches for establishing both coupled and uncoupled system configu-
rations. Furthermore, we have identified two verification methods for affirming the correspondence
of our theoretical constructs within the experimental setup. Nevertheless, we will mainly use the
avoided crossing approach due to its simplicity and sufficiency for our purposes at the moment.
The remaining task is to determine the optimal theoretical setup parameters, specifically, the most
suitable voltage settings that will facilitate the realization of these uncoupled/coupled configura-
tions. Trivially, the coupled configuration is just a symmetric setting where both ions are minimally
separated and feel the same potential, thus we will only consider how to achieve the uncoupled
state in the next chapters.



Chapter 3

Numerical Optimizations

After understanding the theoretical framework for implementing the beamsplitter, our next task
is to identify the optimal voltage parameters to put the theory into practice. However, the issue
becomes challenging to solve analytically due to the necessity of considering the equilibrium po-
sitions of our ions while factoring in the Coulomb interaction. Therefore, to obtain the required
theoretical parameters for the uncoupled and coupled settings, we proceed using numerical meth-
ods. This way one can also directly account for the trap model, as the simulations for the potential
of each electrode has already been done and can be used.

In the following, we will present numerical methods and approaches that can be used to orient
experimental efforts. The main idea of this chapter lies in using numerical optimizations over
different sets of parameters to optimally decouple the radial modes. The parameters that can be
changed in the setup are the 9 pairs of electrode voltages1 and in the following we propose two
approaches. On one hand, we naively optimize over those 9 parameters, however this approach does
not give us enough flexibility to interpret and thus manually correct for experimental variation in
the setup. Consequently, we also embed the problem in a lower dimensional space by describing the
resulting potential with a polynomial of up to fourth order. This affords leverage on the physical
interpretation of each parameter and allows for small corrections during the experiment. Finally,
we will also discuss the limitations of the numerically found results.

3.1 Optimization over electrode voltages

Ultimately, we seek to encode the GKP state in the radial modes because the frequency in those
modes is higher than the axial frequency, which should give, among others, advantageous lower
heating rates. Thus, the idea we will follow in this work is to find a set of electrode voltages that
result in a certain equilibrium distance and where the radial modes are as detuned as possible to
reach the uncoupled beamsplitter setting. In fact, controlling the radial frequency with an axial
potential is quite straightforward, as applying a constant DC voltage on the axial electrodes will
“squeeze” the radial potentials and change the resulting radial frequencies approximately linearly.

1In fact, as described in Chapter 2 we have 22 electrodes, however, we will disregard the 4 shim electrodes as
they are only used for micromotion compensation, and we will also set the bottom and top electrodes on the same
voltages to stay in the RF null.

14



Chapter 3. Numerical Optimizations 15

This linear dependence can be seen in Figure 3.1, where we used our trap model, added an initial
0.3MHz quadratic potential at the trap center to a constant offset of variable voltage and plotted
the radial frequencies of all 3 modes for 2 ions. We can see that the evolution of both radial mode
frequencies can be approximated as linear, where one is increasing and one is decreasing. The
effects at the lower and higher ends of offset voltages are likely numerical errors.

Figure 3.1: Mode frequencies for two calcium ions in a 0.3MHz quadratic potential and an added
constant offset voltage.

As a consequence, to achieve a detuned setting in theory one could just have a quadratic potential,
and then add a step function in the voltages such that the voltage at the axial positions of ion
1 is different from the voltage at the axial position of ion 2. This would ensure that the radial
frequencies of the two ions are very detuned and thus for a fixed distance one could arbitrarily
decouple them. However, it is important to note that from Eq. 2.6 we can see that we could
also strongly influence the coupling by changing the equilibrium distance s0. Nevertheless, this
would mean that to have a switchable beamsplitter one would need to move the two ions around,
and this would imply many complications, especially when working with very complex motional
states like GKP states. Consequently, we chose the approach to decouple the ions at the smallest
possible distance by trying to get the decoupling from the detuning of their frequencies via an
offset. However, in practice, adding such a step function is limited by the maximum allowable
voltages and also the finite electrode sizes. Without giving intensive thought to which approach is
best to obtain two equilibrium positions that have very different offsets, we begin our numerical
approach quite naively by defining a cost function that describes our coupling, and then minimize
this function numerically over the parameter space of the 9 voltages.

3.1.1 The cost function

We want the cost function to be a good metric for our coupling, thus, as described in Chapter 2
we consider two options.
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On one hand, the primary condition for an uncoupled setting can be expressed as ∆ω << ΩB . By
assuming that the ions are displaced in parallel directions, similar to the approximation used in
equation 2.6, we can diagonalize each of the 3x3 submatrices of the total Hessian2 simultaneously.
Consequently, the 3D coupled system reduces to 3 independent instances of 1D coupled systems,
where each of this instance corresponds to 1 spatial direction. For our case, those directions are the
axial and the 2 radial directions. Thus, for each direction we get an independent equation of the
form of Eq. 2.9, with 3 different Ωi

B , ω
i
1 and ωi

2 with i = axial, radial 1, radial 2. Therefore, for a
given set of voltages, we can calculate the Hessian of the field along with the Coulomb interaction,
extract the frequencies and coupling rates from the eigenvalues of the 3x3 submatrices for each
directional mode, and use ∆ωi

Ωi
B

for one specific mode i as a cost measure.

However, the previous method is susceptible to small deviations of the approximation. If the
applied voltages would produce a slightly twisted potential, then using a cost function that relies
on the approximation of having the ions displaced in the same direction will produce significantly
changed coupling rates. Another method that is not based on this approximation is based on
the participation rates discussed in Chapter 2. In fact, experimental measurability makes this
metric particularly appropriate for our purposes. To determine the participation rates, one need
only diagonalize the 3Nx3N total hessian, group the resulting modes into pairs of out-of-phase
and in-phase modes, and compare the norm of the block vectors corresponding to the motion of
each ion for each pair. In practice, we will use this method and maximize the participation rates.
Furthermore, later on, to limit motional decoherence, heating and dephasing we ideally do not
want to move the ions while switching the beamsplitter, thus, to ensure that the optimizer is not
decoupling the ions by separating them spatially, we also add a cost term that tries to minimize
the interion distance.

3.1.2 Results

One of the found voltage settings using the participation rates approach is depicted in Figure 3.2.
For this setting the equilibrium distance is 16.96 µm with a maximal participation rate of 94.62%
for the radial mode with mean frequency 2.33MHz.

We used an empirically determined weighting of each cost term, a starting point where all voltages
were at 4V except the middle electrode that was at 0V to have a confining starting potential. The
optimization was done using the scipy.optimize “Nelder-Mead” method, which is a local optimizer.
More information about the code can be found at [22]. We also observe that the optimizer found a
solution that locally looks like a third order potential to allow for maximal potential offset differ-
ence between both ions, this hints that we can describe our search space in a more sophisticated
way. We will discuss this in the next section.

2The hessian of the potential of the electrodes summed with the hessian of the coulomb interaction of the ions.
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a) b)

Figure 3.2: Illustration of the optimized voltage settings in the trap for maximal participation
rate and the resulting ion positions. Subplot a) showcases the voltage settings, which yield an
equilibrium distance of 16.96 µm and a maximal participation rate of 94.62% for the radial mode
with a mean frequency of 2.33MHz. Subplot b) provides a zoomed-in view of the potential,
indicating the positions of the ions as two red points.

3.2 Optimization over orders of the applied potential

As already hinted at by the results of the naive optimization of the previous section, it seems that
for the allowed voltage range and our electrode size, the changes of the potential on distances of
orders of tens of µm can be approximated by a polynomial of up to fourth order. This will not
only simplify the numerical optimization and allow for a better theoretical understanding but also
make the experimental implementation more adaptable. Consequently, instead of optimizing over
a search space of dimension 9 we can reduce it to a search space of dimension 5.

3.2.1 Abstract potentials

To model the system up to the fourth order, we created a class of abstract 3D potentials, where
each produces one of the orders of a polynomial

V (x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4. (3.1)

in the axial plane for y, z = 0. The rest of the potential that goes in the radial directions has either
been fully fixed by the Laplace equation

∇V (x, y, z) = 0 (3.2)

or chosen such that the resulting potential is symmetric. Thus, instead of summing the potentials
of each electrode with some weights, we now parametrize our potential with weights for each order
and then using the same cost function as before optimize for the best prefactors. Once we have
the theoretical best abstract potential, we fit it with the PyTrans [23] software, which is using
the already simulated potentials of each electrode and then optimizes each voltage to reach the
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predefined potential.

3.2.2 Results

In practice, we firstly saw that the abstract optimization mostly tended to find a double well po-
tential, which consists of a positive quartic and a negative quadratic, where one well had an offset
compared to the other. However, the resulting PyTrans fit of such a quartic potential was very
faulty, which is mainly due to the difficulty of fitting a fourth order up to a certain strength with
limited voltages. Accordingly, we focused on the optimization of abstract potentials containing
only up to a cubic term. One of the found abstract potentials can be seen in Figure 3.3, it has the
following prefactors:

axial offset [MHz] axial field [Vm−1] axial frequency [MHz] axial cubic [1012 V/m3]
0.28246685 -4.63952246 0.66582342 0.66663661.

The resulting equilibrium distance is 20.06 µm with a maximal participation rate of 93.02% for the
radial mode with mean frequency 2.28MHz.

Figure 3.3: Plot of the optimized abstract potential in the axial plane, which yields an equilibrium
distance of 20.06 µm with a maximal participation rate of 93.02% for the radial mode with mean
frequency 2.28MHz. The positions of the ions are indicated as two red points.

The PyTrans fit that we get with our electrodes can be seen in 3.4. The potential looks pretty
similar at first sight, however the numerical analysis give us an equilibrium distance of 11.25 µm
and a max. participation rate of 71.01%. This different result comes from the difficulty to fit an
arbitrary abstract potential with our finite numbered and sized electrodes. This difficulty will be
further emphasized in the next section.

An interesting approach that one could consider is to first find an optimized abstract potential, fit
it using PyTrans, and then implement a feedback loop in the experiment to run an optimization
over the voltages to “polish” the fit. If one already has a good initial guess, a local optimizer like
“Nelder-Mead” is sufficiently powerful and could potentially be fast enough to allow for a quite
reasonable fine-tuning. Tests of this approach can be found on the project repository [22].
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a) b)

Figure 3.4: Illustration of the resulting PyTrans potential fit of the optimized abstract potential
of Figure 3.3. Subplot a) showcases the voltage settings, which yield an equilibrium distance of
11.25 µm and a maximal participation rate of 71.01%. Subplot b) provides a zoomed-in view of
the potential, indicating the positions of the ions as two red points.

3.3 Limitations of numerical simulations

In this section, we will discuss aspects that limit the applicability of the proposed numerical ap-
proaches.

Regarding the first approach of naively optimizing the voltages without molding the search prob-
lem to a physical interpretation, we noted that slight variations of 0.1 volts in the applied voltages
could lead to quite significant participations rate changes of up to 30%. This is rather undesirable
for the experimental setup, as we will not exactly have the given voltages and thus the experimen-
tal coupling could be quite different from the numerical approximation. Additionally, as we do
not have a direct understanding of the action on the ion of each voltage, it is hard to counteract
experimental variations. To address that issue, it would be firstly interesting to do a noise analysis
of the solutions by introducing slight variation in the voltages and seeing how the solutions are
affected and eventually to search for solutions that are more noise-resilient. Another approach that
could be taken is similar to the proposed “polishing”, it would consist of an experimental feedback
loop to optimize over the voltages in the experiment to compensate for voltage variations.

A big limiting factor for the abstract potential approach is given by our ability to fit a generic
potential given our trap capabilities. In fact, a big factor that influences the quality of the fit
is where in the trap we locally fit. This comes naturally considering that the electrode sizes are
not identical, thus depending on the parity of the to-be-fitted potential different trap positions
are beneficial. In Figure 3.5 one can find the optimal strength bounds and positions in the trap
dependent on what potential terms need to fitted. One can see that, for a high quartic and a
high cubic, fitting around 325 µm seems to be much more adapted for quartic potentials than the
position of 593 µm that is currently being used in the experiments.

Lastly, one big limiting factor that remains is related to the trap model that we are using. The
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Figure 3.5: 3D visualization of Mean Absolute Fit Errors for different potential orders. The
subplots from a) to c) represent the quadratic, quartic, and cubic potentials respectively. The X-
axis represents the position in the trap in micrometers, the Y-axis displays the potential coefficient
in varying units, and the Z-axis depicts the Mean Absolute Error in Volts. The color map ’viridis’
is used to visually distinguish the error magnitude. As can be seen from the three subplots, the
influence of potential order on mean absolute error varies significantly, providing a comprehensive
overview of the fitting performance under different conditions."

potential for each electrode has been modeled on a grid of approximate axial resolution of 30 µm,
this could already cause troubles if we are trying to get equilibrium positions of around 20 µm.
Furthermore, it would be reasonably beneficial to experimentally verify the model. To do so, one
could think of probing some positions in the axial direction with one ion in a quadratic well, and
then at each position slightly modify each electrode and measure the radial frequency splitting to
quantify the offset, displacements to quantify stray fields and the axial frequency to quantify stray
quadratures. Then one could feed the data back in the model and tune it correspondingly.



Chapter 4

Experimental decoupling results

This chapter highlights our experimental attempts to achieve an uncoupled system. Due to limita-
tions from numerical simulations, as noted in Section 3.2, we focus on strategies involving voltage
control through potential orders. Hence, the applied potential is parametrized as a fourth-order
polynomial in the axial plane, as shown:

V (x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4. (4.1)

Here, a0, a1, a2, a3 and a4 represent the individually tunable coefficients for each term in the po-
tential, allowing us to carefully tailor the potential in our experiments. Each order has then been
fitted axially with PyTrans and the tunable coefficients have been implemented in our experiment
interface.

Three aspects are discussed, namely, firstly trapping two ions at an equilibrium positions of ap-
proximately 12 µm and detuning the radial of the two ions by gradually adding a third order. With
this approach, we reach a decoupling factor ∆ω/2ΩB of 2.05 which would result in a theoretical
by 50% reduced energy exchange. Secondly, we also discuss our attempts to handle a double well
setup and address limitations. Finally, we will present results of two ions in a setting similar to the
first part, but with a shallower quadratic to have higher ion distances. We argue why this would in
theory allow for higher decoupling. However, we also present experimental results where we only
reach a decoupling factor ∆ω/2ΩB of 1.55 and discuss the mismatch to the numerical simulations.

4.1 Third order potential decoupling

As seen in the numerical analysis, it seems best to start with just a quadratic potential and get
the asymmetry for our detuning for an added third order. This also seems to be beneficial as
our electrodes are struggling to simulate a fourth order potential on the length scales we need.
Consequently, we firstly loaded two ions in the trap in a 0.3MHz quadratic potential, then we
scanned the cubic prefactor stepwise around 0 up to ±0.4 · 1011V/m3, and measured positions of
the ions and mode frequencies at each step. This is approximately the maximal range for the cubic
term for that quadratic strength, as increasing it further would result in a non-confining potential.

21
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Figure 4.1: Coupling analysis for two ions with equilibrium distance (11.90 ± 0.11) µm in a
0.3MHz quadratic potential with changing cubic potential of strength up to ±0.4 · 1011V/m3. (a)
Mode frequencies of in-phase and out-of-phase modes of the second radial mode, demonstrating
an anti-crossing diagram, with the waist representing a coupling of 24.2 kHz. (b) Detuning divided
by 2ΩB(s0), illustrating a maximal decoupling factor ∆ω/2ΩB of 2.05 resulting in theoretical
oscillations with a reduced contrast of 0.49.

To measure the positions, we proceeded as explained in Chapter 2, and the mode frequencies were
measured by scanning an offset carrier frequency to resolve the RSB. We adjusted first and second
order terms to keep the interion distance constant at (11.90± 0.11) µm. This was done initially to
be able to plot an anti-crossing diagram where a constant coupling strength is needed. However,
to factor out fluctuating distances, we later on opted to plot the detuning, which can be calculated
from the interion distance and the radial modes’ frequencies.

The mode frequencies of the in phase and the out of phase modes of the second radial mode with
mean frequency 2.28MHz can be seen in Figure 4.1 a). As the distance is approximately constant
for each cubic term, this can be regarded as an anti-crossing diagram, where the waist corresponds
to a coupling of 2ΩB

2π = 24.2 kHz. For the corresponding distance of 11.84 µm we would expect a

coupling of 2Ωid
B

2π = 23.1 kHz, thus the results correspond to the theory.

In figure 4.1 b) the detuning divided by 2ΩB(s0) is depicted. We can see that the maximal
decoupling factor ∆ω/2ΩB is 2.05, however, this factor is not enough to reach the uncoupled
setting ∆ω >> ΩB . In fact, if comparing with Eq. 2.14, we can see that one excitation in mode 1
would be transferred with a factor of 1

2.05 = 0.49 to mode 2 after a time of τ = π
2·2.05·ΩB

≈ 10 µs.
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4.2 Double well potential

As seen in the above section, the resulting decoupling factor ∆ω/2ΩB of only using a quadratic
and then adding the asymmetry in the system through a cubic potential is not big enough in our
setup to allow for a good enough decoupled setting. But as the decoupled setting is dependent on
the detuning of the frequencies and the coupling strength, it seems reasonable to consider working
in a regime where the coupling is lower. This is achieved by increasing the equilibrium distance
of our ions. However, as our final goal is a switchable interaction for a two-qubit gate where we
ideally do not move the ions, we should work with a distance that gives a strong enough coupling
strength such that the gate does not take too long. Consequently, we ideally do not want to exceed
distances of 20 µm to have a coupling rate above 2 kHz.

One way to achieve a setting where the equilibrium distances are increased compared to the
quadratic plus cubic potential is a double well configuration. That this configuration is useful
for a detuning was already hinted at by our numerical simulations of abstract potentials. In the-
ory, one could create a detuning by adding a linear term or a cubic term to the double well, where
in both cases the double well will be tilted and one well will be at a higher potential than the
other, resulting in the wanted detuning of the radial modes. However, in practice, working with a
double well with our setup has proven to bring big challenges with it.

The first problem that appeared was that, at the trap position of 593 µm we were not able to
generate a double well that had an equilibrium distance below 35 µm. This approximate minimal
distance corresponded to numerical simulations and was mainly due to the fact that we could not
generate enough quartic strength to bring the coulomb repulsed ions closer together. However,
this distance would still be conceivable for our purposes, and thus we still went on. However,
the next limitation came from the micromotion compensation and the cooling, which we did not
manage to correctly get working. We suspect that this is due to the low axial frequency the ions
are experiencing if the inverse quadratic is set too low to reduce the ion distance. Consequently,
we took the decision to use the numerical simulations and find a trap zone where we could increase
the quartic strength. Nevertheless, we only managed to find a region at 325 µm where the quartic
strength could be increased by a factor of 2. And even if this factor seems enough at first glance, it
would only allow for a reduction of the distance of a factor 1/

√
2 ≈ 0.7, thus, theoretically allowing

for distances of 25 µm. Furthermore, the curvatures at the double well minima are given by 4a2,
but since the frequency is proportional to the square root of the curvature, we would likewise only
increase the axial frequency by a factor of 1/

√
2 ≈ 0.7. Hence, instead of pursuing the double well,

where we would only be able to have distances of 25 µm and above and be in an unknown potential
type where we are not exactly sure how to cool and compensate the micromotion correctly we
decided instead to return to the quadratic and increase the ion distance by reducing the quadratic
strength.

4.3 Increased distance third order decoupling

Another attempt we thought of was to work with lower quadratic potentials, this would, in theory,
allow us to repeat the experiment of Section 4.1 but with a bigger distance. However, it would



24 4.3. Increased distance third order decoupling

also mean that we can apply less third order before the trap become too shallow as the depth of
the potential scales like ω4

x/a3.

To better understand the dependence of the possible decoupling on the quadratic strength we are
working with, we numerically found for a list of quadratic frequencies each corresponding maximal
third order potential that we can apply before two ions are not confined anymore. Then, with that
maximal third order strength, we computed the resulting potential difference at the ion equilibrium
positions. This potential difference should be linear in the detuning of the radial modes, according
to 3.1. Finally, by multiplying this potential difference by the distance cubed, we get a quantity
that is proportional to the decoupling factor ∆ω/2ΩB . Results of these numerical calculations
are shown in 4.2. In subplot a) we can see that the voltage difference is increasing with higher
quadratic frequencies. This is to be expected as with higher quadratic the max third order is
higher and, thus, the possible voltage difference is increasing as well. In fact, we see that the exact
relation between the voltage difference and the axial frequency is ∆V ∝ ω

2/3
x . In subplot b) we see

that the equilibrium distance goes as s0 ∝ ω
−2/3
x in accordance with the theory of a pure quadratic

potential [11]. Finally, we plot ∆V · s30 ∝ ∆ω/2ΩB in subplot c). There we see that the decoupling
factor ∆ω/2ΩB is proportional to ω−4/3

x , thus in theory we see that it is advantageous to work in
regimes with lower quadratic potentials.

Figure 4.2: Numerical calculations illustrating the relationship between quadratic frequencies,
the potential difference at ion equilibrium positions, and decoupling. Subplot a) demonstrates
the increase in voltage difference with higher quadratic frequencies, showing a relationship of
∆V ∝ ω

2/3
x . Subplot b) displays the equilibrium distance relation s0 ∝ ω

−2/3
x , consistent with the

theory for a pure quadratic potential. Subplot c) shows ∆V · s30, proportional to the decoupling
factor ∆ω/2ΩB , revealing a dependence on ω−4/3

x . These findings suggest an advantage in working
within regimes with lower quadratic potentials.

To verify if we would have better decoupling rates for lower axial potentials, we started by loading
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two ions in a 0.2MHz quadratic potential, and then we scanned the cubic factor as high as experi-
mentally possible. Numerically, we expect the maximal cubic strength to be around 9.03·109V/m3,
however, experimentally we did not manage to get much more than half that strength, namely
around 5 · 109V/m3. Even if the maximal cubic strength is a bound as we might lose the ions
earlier due to heating, scattering of photons, etc., we suspect that the voltages for our third and
second orders are not exactly corresponding to the theory and thus, especially for low strengths, we
get undesired effects that affect the stability. This is also indicated by the increasing equilibrium
distance with increasing third order that we see in the experiments and which should not be hap-
pening. Nevertheless, we still tried to repeat the results from Section 4.1. To do so, we gradually
increased the third order strength and measured positions and mode frequencies1 of both radials
with both ions2 at each step.

Figure 4.3: Mode frequencies of in-phase and out-of-phase modes of both radials in a 0.2MHz
quadratic potential with changing cubic strength. The modes could not be resolved for the first 2
data points of radial 1. For radial 2 the waist corresponds to a coupling rate of 2ΩB

2π = (6±5) kHz,

which is consistent with the expected coupling of 2Ωid
B

2π = 7.27 kHz for the corresponding distance
of 17.4 µm.

A plot of the in phase and out of phase mode frequencies for both radials can be seen in Figure 4.3.
Nevertheless, in contrast to the previous experiment, we did not correct the quadratic strength
to keep a constant distance, thus, the plot cannot be directly interpreted as an avoided crossing
diagram as the coupling rate is not constant. Furthermore, for radial 1 the separation of the in
phase and out of phase mode frequency peaks was not possible for the first 2 data points for at
least 1 ion. This was probably due to our short RSB pulses. However, for radial 2 the peaks could
be resolved for 0 cubic strength, resulting in a mode splitting of 2ΩB

2π = (6 ± 5) kHz. For the

1We asserted the error of the frequency of taking the FWHM of each peak. The big uncertainty comes from the
small separation in frequency of the two peaks.

2We later on took the mean of the two frequencies that we got from the two different ions.
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corresponding distance of 17.4 µm, we expect a coupling rate of 2Ωid
B

2π = 7.27 kHz, thus the results
are coherent with the theory.

Figure 4.4: Evaluation of the decoupling factor ∆ω/2ΩB under varying cubic strength for two
different radials at a 0.2MHz quadratic potential. The analysis illustrates the maximal decoupling
factor ∆ω/2ΩB achieved, corresponding to a theoretical energy exchange of 0.65. Despite numerical
expectations, the results indicate a higher contrast, likely influenced by the lower stable cubic
strengths attained during the experiments.

The decoupling factor ∆ω/2ΩB(s0) as a function of the cubic strength is depicted in Figure 4.4.
Here we see that the maximal decoupling factor ∆ω/2ΩB that we reach with a quadratic potential
of 0.2MHz is 1.31 for the radial of mean frequency 2.33MHz and 1.55 for the radial of mean
frequency 2.11MHz. This would correspond to a reduced contrast of 1

1.55 = 0.65. Contrary to our
numerical expectations as seen in 4.2, this would result in a higher theoretical energy exchange
contrast than for our experiment at 0.3MHz, however, as discussed before this is probably due to
the low stable cubic strength that we did not manage to surpass in the experiments.



Chapter 5

Conclusion and Outlook

During this project, we tried different approaches to reach a tunable beamsplitter interaction to be
used later on in a two-qubit gate between GKP encoded qubits. At first, we presented an analyt-
ical analysis detailing the ways in which Coulomb interaction induces a beamsplitter interaction,
along with the parameters that influence ion coupling. Furthermore, we highlighted two analytical
metrics to quantify the level of coupling and discussed how to validate them experimentally. Sec-
ondly, we showed numerical methods and optimization results where we reached theoretical modal
participation rates of below 6% for interion distances of 17 µm for the uncoupled setting. We also
proposed various numerical analyses, including examining the mode splitting response to voltage
offset increases. This revealed a linear relationship between the change in radial mode frequency
and voltage offset. We also evaluated the fitting performance of different potential types on the
electrodes. Through this, we identified trap zones capable of achieving order-potentials larger by
a factor two. Finally, we analyzed the quadratic strength-dependent maximally reachable decou-
pling. This showed that in a system governed by both a quadratic and third-order potential, better
decoupling can be theoretically achieved at lower quadratic strengths. Finally, we presented ex-
perimental results demonstrating noticeable ∆ω/2ΩB factors. Specifically, we achieved a factor of
up to 2.05, leading to an energy exchange reduction of more than 50% for a 0.3MHz quadratic
potential. Further, we obtained a decoupling factor of up to 1.55, which resulted in a 35% reduc-
tion in energy exchange for a 0.2MHz quadratic potential. We also discussed the challenges and
limitations encountered in our attempts to reach an uncoupled regime using a double well potential.

The detuning we reached in the experiment are insufficient for a switchable beamsplitter interac-
tion. Several strategies could potentially help attain a better level of decoupling. For instance,
working with even lower quadratic potentials could be considered, ensuring that the fitting of
the quadratic and cubic potential is optimized for such lower strengths. Alternatively, employ-
ing higher distance double wells with the addition of a third order could be explored, as this
setup seems to naturally facilitate detuning. Finally, an experiment where the interion distance is
changed in-sequence could be envisaged to manipulate the distance, hence controlling the coupling
rate.
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