
Using the Zynq-7000 XADC and signal

pre-conditioning

Author

Pascal Engeler

engelerp@phys.ethz.ch

Supervisor

Vlad Negnevitsky

nvlad@phys.ethz.ch

Institution

Trapped Ion Quantum Information Group

D-PHYS, ETH Zurich, 2017

Abstract

This report describes the findings of a project conducted in summer 2017

by Pascal Engeler. The goal of the project was to get a specific analog digital

converter running such that photo diodes measuring LASER intensities can be

monitored. The first part summarizes the functionalities of the XADC part of the

Zynq-7000 SoC. In the second part a description of how the XADC can be pro-

grammed and used on the Zedboard is given by using hands-on examples. The

final part concerns the properties and usage of a signal pre-conditioning PCB that

was designed, assembled and tested as part of the project.

1

Contents

1 Introduction 3

2 Properties and Functionality of the XADC 4

2.1 XADC specifications . 4

2.1.1 Channels . 4

2.1.2 Sampling settings, channel sequencer and single channel mode . . 5

2.1.3 Continuous sampling mode and event driven sampling mode . . . 6

2.1.4 External multiplexer mode . 6

2.2 Accessing the XADC on the Zedboard 7

2.3 Measured properties of the XADC . 8

2.3.1 Conversion . 8

2.3.2 Noise and drift analysis . 9

2.3.3 Sampling speed . 11

3 Programming the XADC 13

3.1 Initialization . 13

3.2 Self-Test . 14

3.3 Setting up the sequencer . 14

3.4 Getting converted values . 17

3.5 Single channel mode . 18

3.6 Event Mode . 18

3.7 Interrupts . 19

3.8 Putting it all together . 23

4 Signal pre-conditioning PCB 29

4.1 Specifications . 29

4.2 Usage instructions . 30

4.3 Measured properties . 33

4.3.1 Transfer function . 33

4.3.2 Conversion function . 35

4.3.3 Step function response . 35

2

1 Introduction

LASERs are used to carry out operations on qubits encoded in electronic states of ions.

As coherence of the qubit states must be preserved during the computation, precise

control of the operating LASERs is necessary, especially the intensity must be well known

such that the duration of pulses can be set correctly. In this project, developments in the

direction of real-time intensity monitoring and control were made. To keep things simple,

the analog digital converter (ADC), called XADC, present on the Zedboard’s Zynq-7000

system-on-a-chip (SoC) is used, because this board is already present in the experimental

setup and controls the synthesis of LASER pulses. Even though this ADC is too slow to

monitor LASERs in real time, the efforts necessary to port the tools developed here to

a faster ADC later on are greatly reduced by the experience gained in this project.

As a first step it was necessary to investigate how the XADC works and what it can and

cannot do. This includes figuring out the functioning of the driver shipped by Xilinx. The

results are presented in sections 2 and 3. Having the XADC running, we developed a

printed circuit board (PCB) that is used to precondition signals that are to be monitored.

Hence signals are first passed through this PCB before being fed to the XADC. The

purpose of this board is filtering, amplifying, multiplexing and possibly shifting signals.

In section 4 the functionality of this PCB is described.

In the next section an overview of the XADC is given.

3

2 Properties and Functionality of the XADC

The XADC is an analog-digital converter part of the Zynq-7000 chip present on the

Zedboard. In the following sections the specifications and functionality of the XADC will

be summarized and properties that were measured in the project will be stated.

2.1 XADC specifications

The XADC is a dual 12-bit precision ADC that takes input in a 1 Volt range. Thus the

conversion error (maximum difference in voltage that will not flip any bit) amounts to

∆V ≈ 0.25 mV. The sample rate is 1 MHz, which means 1 µs / sample in theory, in

practice this is only reached under special conditions.

Even though the XADC contains two ADCs, we will mostly restrict the discussion to only

one of them. The second ADC can be used to sample different signals simultaneously in

order to preserve their phase relationship, or one ADC is used as a watchdog for board

sensors while the other fulfills other tasks.

The following sections will give an overview of the operational features of the device.

2.1.1 Channels

A number of distinct channels are present on the XADC on which conversions can be

triggered. They can be classified into two categories, internal sensors and analog input.

The internal sensors that can be accessed are

• Die temperature sensor,

• 6 power supply sensors.

By virtue of these sensors the XADC can be used as a monitoring device. Alarms can be

set that trigger interrupts when the sensors report values outside of user-set thresholds.

Also, the XADC keeps track of the highest and lowest values recorded since turn-on.

The analog input channels are

• Dedicated analog inputs (VP/VN),

• 16 auxiliary analog inputs (AUXP1/AUXN1 - AUXP16/AUXN16).

Each channel corresponds to an input pair, the XADC takes signals that are differential

and the conversion result is the difference between the two channels. This is useful as it

cancels any noise that is common to the two inputs. The dedicated channel can only be

used for analog input and is active as soon as the XADC is instantiated in a design, while

the auxiliary channels can be configured for digital input too and must be constrained

separately. Other than that the main difference between dedicated and auxiliary channels

4

lies in the resistance present between the input pins and the sampling capacitor. The

dedicated pair VP/VN has 100 Ω, while the auxiliary channels have 10 kΩ. This means

that the dedicated pair is around 100 times faster than the auxiliary inputs from an

acquisition-time point of view, as described in the user guide [1], page 30.

All inputs can be configured to either unipolar (but differential nonetheless) or bipolar

mode. In unipolar mode the difference P−N between the two poles must lie in the range

[0, 1] V, while the common mode voltage (with respect to the XADC ground GNDADC)

must be between 0 V and 0.5 V. Bipolar mode supports P−N ∈ [−0.5, 0.5] V with the

same common mode voltage restriction.

2.1.2 Sampling settings, channel sequencer and single channel mode

The XADC contains a channel sequencer which is responsible for the selection of the

next channel on which a conversion is to be triggered. It comes with a set of predefined

operation modes and the way in which sampling is carried out can be influenced through

the following settings:

• Analog-input mode (unipolar / bipolar),

• Averaging (0, 16, 64 or 256 samples),

• Acquisition time (lengthen by 10 ADCCLK cycles).

Analog-input mode has been discussed before. If averaging on a channel is set to n, the

XADC will acquire n samples from that channel, calculate the (non-rolling) average and

only then write the result to the status register. If a channel sequence is used, the whole

sequence will be completed n times until a result is written. Acquisition time adjustment

can be used to make the XADC wait for a longer period of time on a channel until a

conversion is triggered. This is useful if the input signal is slow, for example due to the

presence of large impedances.

The channel sequencer provides the following modes:

• Default mode

• Single pass mode

• Continuous sequence mode

• Simultaneous sampling mode

• Independent ADC mode

5

The default (safe) mode should be enabled whenever any sampling-related settings are

changed. In this mode the XADC monitors the on-chip sensors with 16 sample averaging.

This is the only mode that does not respect any user-defined settings. In all other

modes the sequencer passes through a user-defined channel sequence using the settings

mentioned earlier. In single pass mode a single pass through the sequence is carried out

and subsequently the XADC switches to single channel mode (described later). Continuous

sequence mode means that the sequencer will pass through the sequence and restart the

sequence once it’s finished. In simultaneous sampling mode the two ADCs sample in a

time-coherent manner from different channels such that phase coherence can be retained.

Independent ADC mode makes one ADC monitor the on-chip sensors while the other

ADC can be used for any other application.

Apart from sequence operations the XADC also supports single channel mode. In this mode

a single channel is specified from which the XADC obtains values. While it is possible to

switch channels in single channel mode, the overhead can be significant if a switch is

done after each conversion. The channel sequencer should then be used instead.

2.1.3 Continuous sampling mode and event driven sampling mode

Continuous sampling is the default mode of the XADC. Once a conversion is finished a

conversion on the next channel in the sequence is triggered automatically. In this mode

high throughput is achieved.

If conversions need to be done at specific points in time, for example as given by an

external device, then event mode should be used. Note that event mode expects the

DCLK clock to be present. In event mode, the XADC waits for a raising edge on its

CONVST port (or CONVSTCLK). The waiting period is used as acquisition time. Once

a trigger is registered, a conversion starts on the next rising edge of ADCCLK. Once the

result of the conversion has been written to the corresponding register, the EOC (end of

conversion) port will be driven high for one DCLK cycle. Note that only with averaging

turned off this implies one can now fetch a new result from the status register. With

finite averaging one should instead wait for the EOS (end of sequence) port to be driven

high for one DCLK cycle.

For more precise information on the timing of the XADC one should consult chapter 5 of

the user guide [1].

2.1.4 External multiplexer mode

The XADC can control an external multiplexer (mux) with up to 16 channels. Usually the

dedicated VP/VN channel is connected to the multiplexer and the number of the AUX

channel nominated by the channel sequencer for conversion is sent to the MUXADDR[3 :

0] port. Hence one should connect this port to the external multiplexer’s control bits.

6

Figure 1: The XADC header on the Zedboard, taken from the user guide [2]. The VN pin

is the pin closest to the nearest corner of the Zedboard.

Pin Voltage

Vcc 2V5 2.45 V

AV 5V 4.98 V

VREF 1.23 V

DXP 80 mV

AGND −24 mV

DXN 80 mV

AVDD 1.77 mV

Table 1: Voltages measured on several pins of the Zedboard XADC header. The voltages

were measured relative to the same reference. No errors are given as these voltages are

quite stable and the measurements are rather a verification of the documentation than

a precision-characterization of the Zedboard.

Everything else is controlled in the same fashion as when using the channel sequencer

to control the internal multiplexer.

2.2 Accessing the XADC on the Zedboard

The Zedboard provides access to several XADC pins through the XADC header. The pinout

is shown in figure 1.

One can see that only three analog input channels, namely VP/VN, AUX0 and AUX8,

are exposed. If more than 3 channels are needed, an external multiplexer is a necessity.

The DIO pins can be used to control the channel selection of an external mux if they

are constrained correctly in the FPGA programming. The AGND pins are connected to

the ground of the XADC, GNDADC. The AV 5V pin is the 5 V supply from the Zedboard

and can deliver up to 150 mA. The results of measurements on the different (output)

pins of the header are shown in table 1.

The Zedboard includes an anti-aliasing filter, shown in figure 2. It has a cutoff frequency

of

7

Figure 2: The anti-aliasing filter included in the Zedboard [2]. The cutoff is around

ω ≈ 5 MHz · rad.

fcutoff =
ωcutoff

2π
≈ 1

4πRC
≈ 800 kHz.

This is a limiting factor of the speed the XADC can be operated at in external multiplexer

mode. In order to generate correct results one should take into account that this built-in

filter adds an impedance to the VP/VN input channel and slows down the sampling rate.

2.3 Measured properties of the XADC

The XADC was tested and certain properties were characterized. The results are presented

in the following sections.

2.3.1 Conversion

The results from XADC conversions are stored in XADC status registers as 12-bit values. As

will be explained in section 3, the XADC driver includes macros to convert these values to

voltages or temperatures. To test this, a triangle signal at 1 kHz with amplitude 200 mV

centered at 0 V was synthesized with the Analog Discovery Kit’s DAC and fed into the

VP/VN pins of the XADC header. For this measurement the XADC was operated in bipolar

mode. The results are shown in figure 3.

One directly sees that the device is not gauged correctly, the maximum is supposed to lie

at 0.2 V—as verified with an independent oscilloscope—but it is at about 0.6. The XADC

driver supplied by Xilinx suggests that there is automatic calibration functionality, one

might try and investigate this. I was unable to make it work, so I just took it as a given

that the XADC values do not directly correspond to voltages and one should calculate the

conversion function oneself.

For this purpose the triangle output of the Analog Discovery Kit is assumed perfect.

Then, for times between 0 ms and 0.5 ms in figure 3, it can be modeled as

V (t) = 750
V

s
t− 0.2 V.

8

Figure 3: Conversion result of the XADC when a triangle signal from the Analog Discovery

Kit (frequency 1 kHz, amplitude 0.2 V) is fed into the VP/VN pins of the XADC header.

The red dashed line is a linear least squares fit to the rising edge and is given by

VXADC(t) = 2446 Hz · t− 0.65.

With this assumption the conversion from XADC macro output to voltage can be calcu-

lated from the data in figure 3. It is found to be

Vreal(VXADC) = 0.30668 V · VXADC − 8 · 10−5 V,

where VXADC is the (dimensionless) output of the XADC conversion macro and Vreal is the

input voltage we want to recover.

The conversion function should be recalculated before any real-world applications are

implemented, preferably using a high-precision DAC. As a rule of thumb one may keep

in mind that the XADC conversion macro outputs a value that is around 3 times the

applied voltage. Note that this result only holds for the VP/VN input channel, but

having tested the AUX channels exposed on the Zedboard I assume they follow similar

behaviour.

2.3.2 Noise and drift analysis

The drift of the XADC and the noise produced between the Zedboard XADC header VP/VN

pins and the XADC were analysed by shorting the two pins and triggering several conver-

sions per second on the VP/VN channel for about 14 hours. The result can be seen in

figure 4.

9

Figure 4: Noise analysis of the XADC on the Zedboard. The black dots are conversion

results of the VP/VN channel with the corresponding pins on the Zedboard XADC header

shorted together. The red line is the average value of the data, the green area highlights

points closer than one standard deviation from the mean. The mean has y-value 0.0054,

the standard deviation is 0.00083. The data allows the extraction of the drift via a rolling

average. A rolling average of length 100 on the data yielded a maximum value of 0.0057

and a minimum value of 0.0050, the difference of which is smaller than one standard

deviation or less than 3 LSB flips in 12-bit precision on a 1 V range. The two extremal

values have a temporal separation of just over 2.5 hours

10

There are a few peculiarities to be observed in this plot. Firstly, we should keep in mind

that the XADC outputs values that are around three times the applied voltage. Hence

the mean voltage is around 0.0018 V, and the standard deviation translates to 0.28 mV.

While not impossible per-se, the standard deviation is suspiciously small considering the

12-bit resolution of the XADC. Taking a close look at figure 4, the problem becomes

evident. While the output values indeed make up a discrete set—the black dots lie

on horizontal lines—the spacing between the different values is around 0.00004559,

corresponding to about 0.01520 mV. This is much smaller than a flip of the least-

significant-bit which corresponds to 0.25 mV. However, this is quite precisely the least-

significant-bit flip of a 16-bit ADC on a 1 V input range.

The conundrum is resolved in the following way. The XADC doesn’t store the conversion

values in 12-bit registers but in 16-bit registers. The additional 4 bits are used to improve

precision when averaging is applied. As it seems the noise measurement was carried out

with averaging turned on. This is strange, checking the code used for this measurement

I find no evidence, neither for nor against this hypothesis. It might be that the bitstream

used at the time had averaging turned on by default, unfortunately this can no longer

be verified.

The data of figure 4 allows the analysis of the drift. A rolling average of length 100 was

calculated on the data and yielded a maximum average of 0.0057 and a minimum of

0.0050, corresponding to a difference of about 0.23 mV. The two extremal values have

a temporal separation of about 2.5 hours. Being less than one standard deviation of the

data, the drift over 14 hours is negligibly small.

2.3.3 Sampling speed

A first approach to monitoring photodiodes needed the following sequence to be repeated:

• Sample channel 0 of the external mux for 20 µs

• Sample channel 1 of the external mux for 20 µs

• Sample channel 2 of the external mux for 20 µs

• Sample channel 3 of the external mux for 20 µs

For this, one needs to select a channel, trigger conversions for a certain amount of

time, switch channel and repeat. In a first approach the channel sequencer with a single

channel enabled was used. As it turns out this is suboptimal, because switching channels

needs the sequencer to be turned off first and turned back on after the switch. The

implied temporal overhead means that switching from one channel to another takes

around 10− 13 µs, only leaving 7− 10 µs to actually obtain samples. Sampling can be

done at a rate close to 1 MHz, the duration from the conversion trigger to the EOC

11

signal is typically around 1.2 µs. However, one needs to fetch the result before the next

conversion can be carried out. There is no deterministic timing for this process, it usually

increases the time per sample to around 3 µs. One could use averaging such that only

one readout per channel is necessary, but the smallest number of samples per average is

16, which needs at least 16 µs of sampling time.

A better approach is using single channel mode, as switching channels can be done in

around half the time required when using the sequencer. However, using single channel

mode with an external multiplexer was not achieved; the driver contains conflicting

information about this functionality and several tests led nowhere.

12

3 Programming the XADC

This section gives an overview of the usage of the Xilinx provided xadcps driver for

the XADC. Interrupt functionality within the Zynq-7000 SoC are treated, especially those

originating from within the programmable logic (PL) interrupting the processing system

(PS).

3.1 Initialization

The first thing to do when programming the XADC is to include the driver provided by

Xilinx. This means

1 #include "xadcps.h"

Next up we need to initialize the XADC. This is done through the following lines of code:

1 #define XADC_DEVICE_ID XPAR_PS7_XADC_0_DEVICE_ID

2

3 XAdcPs XADC_Driver_Instance;

4 XAdcPs_Config* cfg = XAdcPs_LookupConfig(XADC_DEVICE_ID);

5 if(cfg == NULL)

6 {

7 printf("Config Lookup Failed!");

8 return;

9 }

10 XAdcPs_CfgInitialize (& XADC_Driver_Instance , cfg , cfg ->BaseAddress);

First we need to create an object of type XAdcPs, which holds the XADC instances

data. Next we need to fetch the config of the device we want to target—namely the

XADC—, which is defined through its device ID. This number is defined to be called

XADC DEVICE ID in the first line, the preprocessor will take care of the rest. Hence we

look up the config and keep a pointer to it in an object of type XAdcPs Config* in line

4. If the lookup fails, this method will return a nullptr, so we can check for errors in

lines 5-9. On line 10 we finally initialize the config, don’t ask me what exactly this does,

but it is necessary. One quick note: I saw several code examples that merely create a

pointer (XAdcPs*) instead of an actual object. This seems dangerous to me, if there is

never an actual allocation for an XAdcPs object, I would expect one might easily run

into memory problems. I think my way is the right way to do it. The XAdcPs* pointer

&XADC Driver Instance is the central object used to access the XADC. Hence this is

the object that is passed to all functions that involve the XADC.

Now the XADC is ready, and its state is as defined in the bitstream (i.e. in Vivado).

However, any setting you can apply in the hardware definition—except for the actual

wiring—can be changed through the software. If only one setting is necessary, it is easiest

to just set it up in Vivado and not worry about it anymore later.

13

There are now several things one can do. In the following sections we go down differ-

ent paths to illustrate how the driver works. From here on I will always assume that

initialization has been taken care of in the sense of the above.

3.2 Self-Test

The driver comes with a self-test which checks certain functionalities of the XADC. Unfor-

tunately I don’t currently have a copy of the driver and thus can’t look up what exactly

it does. I have never seen it fail, and I guess only a fatal hardware error could trigger

failure. The self-test can be called in the following way:

1 int Status = XAdcPs_SelfTest (& XADC_Driver_Instance);

2 if(Status != XST_SUCCESS)

3 {

4 printf("Self Test Failed!");

5 return;

6 }

Line 1 performs the self test, which returns an integer. It is common that methods

which can either fail or succeed return either XST SUCCESS or XST FAILURE; hence we

can again check for errors. Note that the self test takes a pointer to the XAdcPs object

as argument; this is common, all methods that involve the XADC take this as argument

in order to target the right instance of the XADC.

An important thing to note about the self test is that it changes the state of the XADC.

Hence if your XADC is nicely set up, do not call the self test as it will reset its

state.

3.3 Setting up the sequencer

The sequencer essentially decides on which channels conversions are triggered and in

which way. On one hand one can choose one of several sequencer modes, on the other

hand one can enable and disable different channels, choose the input mode for each

channel (i.e. unipolar or bipolar), set the averaging for each channel and choose the

acquisition time (if the input signal is slow, additional time might be needed for the

ADC capacitors to settle, as described in section 2.1.2).

Choosing the sequencer mode is done in the following fashion:

1 XAdcPs_SetSequencerMode (& XADC_Driver_Instance , XADCPS_SEQ_MODE_SAFE

);

In the above example the sequencer mode is set to the default safe mode. The available

modes are (as #defined in xadcps.h):

14

• XADCPS SEQ MODE SAFE: Monitor the internal sensors. It’s called safe mode be-

cause it allows writing to setup-registers (channel enables, channel input modes,

alarm enables etc.) as the XADC functions independently from all of these. When-

ever such settings are changed, the sequence should first be put into safe mode,

else the setup functions will fail.

• XADCPS SEQ MODE ONEPASS: The sequencer takes a single pass through the se-

quence. This means it will trigger one conversion on each enabled channel and

then stop.

• XADCPS SEQ MODE CONTINPASS: Continuous mode. In this mode the sequencer

goes through the sequence of enabled channels and triggers conversions on each.

At the end of the sequence it restarts, so it will just keep sampling and converting

the enabled channels indefinitely.

• XADCPS SEQ MODE SIMUL SAMPLING: Simultaneous mode. I’m not sure what it

does, I believe it involves simultaneously sampling two channels at once, but this

involves two XADCs. Apparently this is useful when phase relationships between

signals should be preserved.

• XADCPS SEQ MODE SING CHAN: Single channel mode. In this mode the XADC only

samples and converts a single channel. Further setup is necessary, this will be

discussed later on.

• XADCPS SEQ MODE INDEPENDENT: Independent ADC mode. One ADC monitors

the on-chip sensors, the other can be used for other applications.

The safe mode is only used when settings are changed. The most useful modes for my

purposes were continuous pass mode to just sample a set of channels as fast as possible

(I think only this mode can truly come close to the 1MSPS limit) and single channel

mode to look at a single channel for as long as desired. One can also use continuous

mode to sample only one channel by only enabling one channel in the sequence, which

is what I sometimes did, as described in section 2.3.3.

Setting the sequencer mode is in itself not sufficient to operate the XADC. One should

also specify some further options, such as channel enables, averaging and input mode:

1 XAdcPs_SetSequencerMode (& XADC_Driver_Instance , XADCPS_SEQ_MODE_SAFE

);

2 XAdcPs_SetSeqChEnables (& XADC_Driver_Instance , XADCPS_SEQ_CH_VPVN |

XADCPS_SEQ_CH_AUX00 | XADCPS_SEQ_CH_AUX07);

3 XAdcPs_SetSeqInputMode (& XADC_Driver_Instance , XADCPS_SEQ_CH_AUX00 |

XADCPS_SEQ_CH_AUX07);

4 XAdcPs_SetAvg (& XADC_Driver_Instance , XADCPS_AVG_16_SAMPLES);

15

5 XAdcPs_SetSequencerMode (& XADC_Driver_Instance ,

XADCPS_SEQ_MODE_CONTINPASS);

In line 1 we first disable the sequencer to allow for changing of the sequencer options.

In line 2 we enable three channels, namely VPVN, AUX1 and AUX8, the three analog

input channels exposed on the Zedboard. This function takes as arguments a pointer

to the XAdcPs instance and a 4 byte number (e.g. uint32 t). Each bit in this number

corresponds to one channel. If the bit corresponding to channel i is set to 1, then the

channel is enabled and will be part of the sampling sequence, if it is zero the channel is

disabled. In the file xadcps hw.h there are some useful #defines which we use here.

Some important correspondences are:

• XADCPS SEQ CH VCCPINT VCCPINT voltage sensor

• XADCPS SEQ CH VCCPAUX VCCPAUX voltage sensor

• XADCPS SEQ CH VCCPDRO VCCPDRO voltage sensor

• XADCPS SEQ CH VCCINT VCCINT voltage sensor

• XADCPS SEQ CH VCCAUX VCCAUX voltage sensor

• XADCPS SEQ CH TEMP die temperature sensor

• XADCPS SEQ CH VPVN dedicated VPVN analog input channel

• XADCPS SEQ CH AUX00 AUX1 channel

• XADCPS SEQ CH AUX07 AUX8 channel

• XADCPS SEQ CH AUX15 AUX16 channel

There are AUX channels 1 to 16, but on the Zedboard most of these are only accessible

through an external multiplexer.

In line 3 we set the input mode for each channel. This function takes the same arguments

as the one on line 2, but now each channel that has a 1 bit is set to bipolar input mode,

while the ones with 0s are set to unipolar mode. Usually I used the same input mode on

all channels.

Line 4 sets up the channel averaging, which is applied to all channels (same averaging

for all). The XADC can either convert a channel and write the result directly to the

corresponding register, or it can do N ∈ {0, 16, 64, 256} conversions, average them and

only then write the averaged value to the register. Note that in a sequence, each channel

will still be converted once. However, the sequence is only finished (i.e. EOS goes high)

and results are only written to the registers once there have been N conversions on each

channel. The signal EOC will still transition high after each conversion. The values passes

to achieve a certain averaging are (as #defined in xadcps.c):

16

• XADCPS AVG 0 SAMPLES

• XADCPS AVG 16 SAMPLES

• XADCPS AVG 64 SAMPLES

• XADCPS AVG 256 SAMPLES

Remember that all these settings can also be set via the FPGA programming. In line 5

we finally restart the sequencer, and we choose to set it to continuous mode.

3.4 Getting converted values

In order to obtain converted values for further processing in software, one must first turn

on the sequencer, e.g. in continuous mode, and then read out the register corresponding

to the channel of interest. Reading out status registers is done in the following fashion:

1 u16 volt_raw = XAdcPs_GetAdcData (& XADC_Driver_Instance ,

XADCPS_CH_VPVN);

2 float volt_f = XAdcPs_RawToVoltage(volt_raw);

3

4 u16 temp_raw = XAdcPs_GetAdcData (& XADC_Driver_Instance ,

XADCPS_CH_TEMP);

5 float temp_f = XAdcPs_RawToTemperature(temp_raw);

Here lines 1 and 4 read the status registers of VPVN and the internal temperature sensor.

The #defines for certain important channels are

• XADCPS CH TEMP temperature sensor

• XADCPS CH VPVN VPVN

• XADCPS CH AUX MIN 1st AUX channel

• XADCPS CH AUX MAX 16th AUX channel

and more are #defined in xadcps.h. Note that the function XAdcPs GetAdcData(XAdcPs*,

u8) returns a 12-bit number contained in a u16 (i.e. in the range 0x000 - 0xFFF in unipo-

lar mode, and two’s complement for bipolar mode, do cast to s16). To get a physical

value, one can either measure the input-output relation oneself and implement a conver-

sion, or one uses the provided macros as shown on lines 2 and 5. One should be careful

though; at least the voltage conversion macro does not do its job well, as described in

section 2.3.

If the value read out is constant over time, then probably the XADC isn’t running the

sequencer or the read out channel isn’t part of the sequence. Another reason can also

be that the XADC is in event mode instead of continuous mode.

17

3.5 Single channel mode

If only one channel should be monitored, then single channel mode is a good alternative

to the sequence mode of operation. To use it one first needs to set the channel sequencer

to single channel mode and then apply some settings:

1 XAdcPs_SetSequencerMode (& XADC_Driver_Instance ,

XADCPS_SEQ_MODE_SING_CHAN);

2 XAdcPs_SetSingleChParams (& XADC_Driver_Instance , XADCPS_CH_VPVN ,

FALSE , FALSE , FALSE);

In line 1 the sequencer is turned off, and in line two settings are applied. We set VPVN

as the single channel to monitor, we do not want to increase the number of acquisition

cycles (number of ticks the ADC waits for the capacitors to settle), we don’t want

event mode and we don’t want bipolar input mode. From this point on one can acquire

converted values from the status register just as in sequence mode. Switching channels

in single channel mode can be done quite a bit quicker than when using the sequencer

with a single channel, because in single channel mode one doesn’t have to turn off and

restart the sequencer in order to do so. This saves several microseconds.

I have not been able to figure out how to use an external multiplexer in single channel

mode; the driver suggests that this is possible, but conflicting information is provided on

how to do so.

3.6 Event Mode

Up until now the discussion was limited to continuous sampling. The XADC has an event

mode, in which a conversion on the next channel in the sequence is triggered by an

external signal. This is the way to go if time synchronization is crucial. In event mode,

the XADC listens for rising edges on the convst in channel which trigger a conversion.

In order to get the timing right (signal acquisition and the like), one should consult the

manual [1]. Apart from these operational differences, everything works exactly the same

as in continuous mode.

An example setup of event mode using the channel sequencer to monitor channel VPVN

is shown below:

1 #define CONVST 54

2 #include "sleep.h"

3

4 //set up the sequencer

5 XAdcPs_SetSequencerMode (& XADC_Driver_Instance , XADCPS_SEQ_MODE_SAFE

);

6 XAdcPs_SetSeqChEnables (& XADC_Driver_Instance , XADCPS_SEQ_CH_VPVN);

7 XAdcPs_SetSequencerEvent (& XADC_Driver_Instance , TRUE);

8

18

9 //set up the GPIO system

10 XGpioPs Gpio;

11 int Status_GPIO;

12 XGpioPs_Config* GPIOConfigPtr;

13 Statis_GPIO = XGpioPs_CfgInitialize (&Gpio , GPIOConfigPtr ,

GPIOConfigPtr ->BaseAddr);

14 if(Status_GPIO != XST_SUCCESS)

15 {

16 return XST_FAILURE;

17 }

18 XGpioPs_SetDirectionPin (&Gpio , CONVST , 1);

19 XGpioPs_SetOutputEnablePin (&Gpio , CONVST , 1);

20

21 //turn on the sequencer

22 XAdcPs_SetSequencerMode (& XADC_Driver_Instance ,

XADCPS_SEQ_MODE_CONTINPASS);

23

24 // trigger a conversion

25 XGpioPs_WritePin (&Gpio , CONVST , 0x1);

26 XGpioPs_WritePin (&Gpio , CONVST , 0x0);

27

28 //give conversion time to finish , wait 1us

29 usleep (1);

30

31 //fetch result

32 float result = XAdcPs_RawToVoltage(XAdcPs_GetAdcData (&

XADC_Driver_Instance , XADCPS_CH_VPVN);

In this example events are triggered by the PS via GPIO, hence the need to set up the

GPIO system. The pin connected to convst in is number 54. In line 7 the sequencer is

set to event mode. In single channel mode this would have to be done via the correspond-

ing setup function. We then pulse the CONVST GPIO on lines 25, 26 and subsequently

need to wait a little until we can confidently fetch the newly written result.

There is a better way to do this, namely interrupts. This will be treated in the next

section.

3.7 Interrupts

Waiting until the conversion is finished is not very elegant. Firstly it blocks the CPU,

secondly we can’t really be sure how long we have to wait. A nice way out is provided

by interrupts.

In general, interrupts are used when a certain state requires immediate action, be it for

synchronization purposes or for error handling. As the XADC pulses high on the EOC port

when a conversion result has been written to the corresponding register, we can use this

19

signal to trigger an interrupt in the PS. The handler of this interrupt can then fetch the

new data and, for example, add it to an array containing converted values.

Let us now have a brief overview of how the interrupts in the Zynq-7000, especially

PL→PS ones (i.e. the programmable logic interrupts the processing system), work.

In the following it is assumed that the FPGA programming includes a connection from the

XADC eoc out port to the PS IRQ F2P[0 : 0] port. One can identify the ID for interrupts

occurring on any IRQ F2P bit by checking the GIC options in the PS re-customization

menu (Interrupt Port → Fabric Interrupts → PL-PS Interrupt Ports → IRQ F2P[0 : 15]

→ ID). In my case, the entry is [91 : 84],[68 : 61] such that bit 0 is on port 61.

There are different types of PL→PS interrupts:

• IRQ F2P: 16-bit shared interrupt port. Both CPUs are interrupted.

• Core0 nFIQ: 1-bit fast private interrupt to CPU0.

• Core0 nIRQ: 1-bit slow private interrupt to CPU0.

• Core1 nFIQ: 1-bit fast private interrupt to CPU1.

• Core1 nIRQ: 1-bit slow private interrupt to CPU1.

We consider the first case, shared PL→PS interrupts.

The mechanics of interrupts (at least for PL→PS ones) is roughly the following: There

is a generic interrupt controller (GIC), which owns a look-up table that contains one

function and its arguments for each interrupt port that is registered (turned on). The

GIC continuously monitors if any of the registered interrupts has occurred. If it detects

an interrupt on a registered port, it interrupts program execution and the GIC interrupt

handler calls the interrupt handler it finds in the corresponding look-up table entry. When

the interrupt handler returns, the GIC restores the previous context and normal program

execution continues, with possible changes done by the interrupt handler.

It is important to note that interrupt handlers in general should return as quickly as

possible, as this exceptional state seems to be error-prone. For example, it is not a good

idea to write to std::cout in an interrupt handler; I tried this once, and when normal

execution resumed, totally unrelated variables were changed to seemingly random values.

Interrupts have different priorities. Priorities are 1-31, where lower values correspond to

higher priorities. However, nested interrupts are NOT supported by the xscugic driver.

Interrupts can be triggered on rising edge, level, or falling edge on the interrupt port.

For more information, one should have a look at the driver (start at xscugic.h).

As a first example, let’s look at a trivial interrupt handler. The simplest possible interrupt

handler has the signature void IntrHandler(void* baseaddr p) with a mystical

void pointer argument that seems to correspond to the driver instance of the interrupting

device.

20

In order for the interrupts to work, one needs to initialize the GIC, connect its inter-

rupt handler (which handles all interrupts by calling the corresponding handlers) and

then register the custom handler to the correct interrupt port (here it’s port 61). The

corresponding code is

1 //Our custom (trivial) handler

2 void IntrHandler(void* baseaddr_p)

3 {

4 return;

5 }

6

7

8 //we assume that an XADC is instantiated and configured. Hence

there exists:

9 XAdcPs XADC_Driver_Instance;

10

11 // allocations we need

12 XScuGic InterruptController; // instance of the GIC driver

13 XScuGic_Config* GicConfig; // pointer to the GIC config

14 int Status_Gic; // setup status

15

16 //setup GIC

17 Xil_ExceptionInit ();

18 GicConfig = XScuGic_LookupConfig(XPAR_PS7_SCUGIC_0_DEVICE_ID); //

fetch config

19 if(GicConfig == nullptr) // check for failure

20 {

21 printf("Config Loading Failed\n");

22 return;

23 }

24 Status_Gic = XScuGic_CfgInitialize (& InterruptController , GicConfig ,

GicConfig ->CpuBaseAddress); // initialize config

25 if(Status_Gic != XST_SUCCESS) // check for failure

26 {

27 printf("Config Initialization Failed !\n");

28 return;

29 }

30

31 // connect GIC interrupt handler which processes all interrupts and

then calls the correct handlers

32 XIL_ExceptionRegisterHandler(XIL_EXCEPTION_ID_IRQ_INT , (

Xil_ExceptionHandler) XScuGic_InterruptHandler , (void*) &

InterruptController);

33

34 // Connect our custom handler. This is done with the XScuGic_Connect

function. To disconnect handlers , use XScuGic_Disconnect.

35 //The first arguments are: Pointer to GIC driver , interrupt port we

21

target , interrupt handler (cast to Xil_ExceptionHandler),

argument of interrupt handler

36 Status_Gic = XScuGic_Connect (& InterruptController , 61, (

Xil_ExceptionHandler) IntrHandler , (void*) &XADC_Driver_Instance

);

37 if(Status_Gic != XST_SUCCESS)

38 {

39 printf("Handler Connection Failed !\n");

40 return;

41 }

42

43 // Enable interrupts on port 61

44 XScuGic_Enable (& InterruptController ,61);

45

46 // Enable interrupts in ARM

47 Xil_ExceptionEnable ();

48

49 //Set the priority and trigger type for interrupts on port 61. I’m

not sure how the last two arguments work , but they set the

trigger type (rising ,level ,falling ,..) and priority

50 XScuGic_SetPriorityTriggerType (& InterruptController ,61,0xa0 ,3);

51

52 printf("Interrupt setup on port 61 complete. eoc_out will interrupt

the PS , and the interrupt will be handled by IntrHandler(void*)

.\n");

Now let’s have a look at a more sophisticated interrupt handler. In the following piece

of code the difference to the previous example is the implementation of the interrupt

handler and how it is connected to the vector table of the GIC. We now create an

interrupt handler that checks which channel is enabled and fetches the value contained

in the corresponding register. If more arguments are to be used, one can pass as argument

some data structure containing them, for example an std::pair<T*,Q*>. We assume

everything is set up as in the previous example, and only need to make the changes

shown below:

1 // interrupt handler that accesses the XADC registers. Still not

useful , but educational.

2 void IntrHandler(XAdcPs* XADC_Driver_Instance)

3 {

4 u32 channel_mask = XAdcPs_GetSeqChEnables(

XADC_Driver_Instance);

5 u32 channel = 0;

6 //only 4 channels are supported

7 if(channel_mask == 0x00010000)

8 channel = 16;

9 else if (channel_mask == 0x00020000)

22

10 channel = 17;

11 else if(channel_mask == 0x00040000)

12 channel = 18;

13 else if(channel_mask == 0x00080000)

14 channel = 19;

15 else

16 return;

17

18 float asdf = XAdcPs_RawToVoltage(XAdcPs_GetAdcData(

XADC_Driver_Instance ,channel));

19 }

20

21 //The connection must now be changed , as the handler takes a

different argument

22 Status_Gic = XScuGic_Connect (& InterruptController , 61, (

Xil_ExceptionHandler) IntrHandler , (void*) &XADC_Driver_Instance

);

3.8 Putting it all together

A complete example using interrupts to fetch results in event mode (triggered via GPIO)

is shown below. The handler puts the new conversion result into a pair and flags it, such

that during normal execution the program can identify the data as new and add it to

the list of collected conversion results. Once the list is full, the content is printed and

the list is overwritten.

1 // standard libraries

2 #include <cstdio >

3 #include <cmath >

4 #include <bitset >

5 #include <cassert >

6 #include <iostream >

7 #include <iomanip >

8 #include <string >

9 #include <vector >

10 #include <utility >

11

12 #define _USE_MATH_DEFINES

13

14 // General driver defines

15 #include "xparameters.h"

16 #include "xstatus.h"

17

18 //GPIO

19 #include "xgpiops.h"

20

23

21 //timing , sleeping

22 #include "xtime_l.h"

23 #include "sleep.h"

24

25 // interrupts

26 #include "xscugic.h"

27 #include "Xil_exception.h"

28

29 //XADC device ID

30 #define XADC_DEVICE_ID XPAR_PS7_XADC_0_DEVICE_ID

31 //GPIO pin connected to conversion_start (event mode triggering)

32 #define CONVST 54

33 // interrupts through GPIO (interruptor: XADC , interruptee: PS)

34 #define GPIO_DEVICE_ID XPAR_XGPIOPS_0_DEVICE_ID

35 #define INTC_DEVICE_ID XPAR_SCUGIC_SINGLE_DEVICE_ID

36 #define GPIO_INTERRUPT_ID XPS_GPIO_INT_ID

37 #define INTR_PIN 0

38

39

40 // Handler that collects the data and saves it to a vector

41 //The pair contains XAdcPs* and std::vector <float >*.

42 //the only supported channel is channel 16 (mux 0)

43 void InterruptHandler(void* pair)

44 {

45 //don’t change the data if it hasn’t been fetched yet.

might corrupt readout (race condition)!

46 //if ((*(((std::pair <XAdcPs*,std::vector <float >* >*)pair)->

second))[1] > 0)

47 // return;

48 float data = XAdcPs_RawToVoltage(XAdcPs_GetAdcData (((std::

pair <XAdcPs*,std::vector <float >* >*)pair)->first ,16));

49 //in first entry of data vector store the actual data

50 (*(((std::pair <XAdcPs*,std::vector <float >* >*)pair)->second

))[0] = data;

51 //the second entry is a flag that communicates that the

data is new

52 (*(((std::pair <XAdcPs*,std::vector <float >* >*)pair)->second

))[1] = 1.;

53 return;

54 }

55

56

57

58

59 int main(){

60

61 // -------------------------------------

24

62 // Initialization and configuration

63 // -------------------------------------

64 //XADC

65 printf("Initializing XADC ...\n");

66 XAdcPs XADC_Driver_Instance;

67 XAdcPs_Config* cfg = XAdcPs_LookupConfig(XADC_DEVICE_ID);

68 if(cfg==NULL)

69 {

70 printf("Config lookup failed\n");

71 return XST_FAILURE;

72 }

73 XAdcPs_CfgInitialize (& XADC_Driver_Instance , cfg , cfg ->BaseAddress);

74

75

76 printf("XADC initialization complete .\n");

77 printf("Setting up channel input mask ...\n");

78 XAdcPs_SetSequencerMode (& XADC_Driver_Instance , XADCPS_SEQ_MODE_SAFE

);

79 XAdcPs_SetSeqInputMode (& XADC_Driver_Instance , 0); //all unipolar

80 XAdcPs_SetSeqChEnables (& XADC_Driver_Instance , XADCPS_CH_VPVN); //

only VPVN

81 printf("Sequencer setup complete\n");

82

83 printf("XADC setup complete\n");

84

85

86 // Interrupts

87 printf("Setting up interrupt system ...\n");

88

89 //pair

90 std::vector <float > data (2,0.);

91 std::pair <XAdcPs*,std::vector <float >* > mypair (&

XADC_Driver_Instance , &data);

92

93 XScuGic InterruptController;

94 XScuGic_Config* GicConfig;

95 int Status_Gic;

96 Xil_ExceptionInit ();

97 GicConfig = XScuGic_LookupConfig(XPAR_PS7_SCUGIC_0_DEVICE_ID);

98 if(GicConfig == NULL)

99 {

100 printf("GIC config lookup failed !\n");

101 return -1;

102 }

103 Status_Gic = XScuGic_CfgInitialize (& InterruptController , GicConfig ,

GicConfig ->CpuBaseAddress);

104 if(Status_Gic != XST_SUCCESS)

25

105 {

106 printf("GIC config initialization failed !\n");

107 return -1;

108 }

109 Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_IRQ_INT , (

Xil_ExceptionHandler) XScuGic_InterruptHandler , (void*) &

InterruptController);

110 Status_Gic = XScuGic_Connect (& InterruptController , 61, (

Xil_ExceptionHandler) InterruptHandler , (void*) &mypair);

111 XScuGic_Enable (& InterruptController , 61);

112 Xil_ExceptionEnable ();

113 XScuGic_SetPriorityTriggerType (& InterruptController , 61, 0xa0 , 3);

114 if(Status_Gic != XST_SUCCESS)

115 {

116 printf("Handler connection failed !\n");

117 return -1;

118 }

119 printf("Interrupt setup complete !\n");

120

121

122

123 //GPIO for event triggering

124 printf("Setting up GPIO system ...\n");

125 XGpioPs Gpio;

126 int Status_GPIO;

127 XGpioPs_Config *GPIOConfigPtr;

128 GPIOConfigPtr = XGpioPs_LookupConfig(XPAR_PS7_GPIO_0_DEVICE_ID);

129 Status_GPIO = XGpioPs_CfgInitialize (&Gpio , GPIOConfigPtr ,

GPIOConfigPtr ->BaseAddr);

130 if (Status_GPIO != XST_SUCCESS)

131 {

132 return XST_FAILURE;

133 }

134 XGpioPs_SetDirectionPin (&Gpio , CONVST , 1);

135 XGpioPs_SetOutputEnablePin (&Gpio , CONVST , 1);

136 printf("GPIO system setup complete !\n");

137 printf("Setup complete .\n");

138

139 printf("Enter any key to start the sequencer\n");

140 char asdf;

141 std::cin >> asdf;

142

143 // -------------------------------------

144 //This is where the good stuff happens

145 // -------------------------------------

146 XAdcPs_SetSequencerMode (& XADC_Driver_Instance ,

XADCPS_SEQ_MODE_CONTINPASS);

26

147

148 XTime begin , current;

149 XTime_GetTime (&begin);

150

151 std::vector <float > data_storage (1000 ,0);

152 std::vector <float > time_storage (1000 ,0);

153 unsigned current_index = 0;

154

155 // trigger first conversion

156 XGpioPs_WritePin (&Gpio , CONVST , 0x1);

157 XGpioPs_WritePin (&Gpio , CONVST , 0x0);

158

159 while(true)

160 {

161 // print data if the buffer is full

162 if(current_index == data_storage.size())

163 {

164 for(unsigned i = 0; i < data_storage.size(); ++i)

165 printf("%f %f\n", time_storage[i],

data_storage[i]);

166 // start overwriting the buffer from the beginning

167 current_index = 0;

168 //set flag to "old data"

169 (*(mypair.second))[1]=0.;

170 // initialize next conversion

171 XGpioPs_WritePin (&Gpio , CONVST , 0x1);

172 XGpioPs_WritePin (&Gpio , CONVST , 0x0);

173 }

174

175 // fetch the data if the interrupt handler has updated it

176 if((*(mypair.second))[1] >0.)

177 {

178 // trigger next conversion

179 XGpioPs_WritePin (&Gpio , CONVST , 0x1);

180 XGpioPs_WritePin (&Gpio , CONVST , 0x0);

181 //set the flag to "old data"

182 (*(mypair.second))[1]=0.;

183 //get the data

184 float data_real = (*(mypair.second))[0];

185 //get the time

186 XTime_GetTime (& current);

187 float time = static_cast <float >(current -begin)/

static_cast <float >(COUNTS_PER_SECOND)*1000000.f;

188 // store data and time in buffers

189 data_storage[current_index] = data_real;

190 time_storage[current_index] = time;

191 //next element

27

192 ++ current_index;

193 }

194 }

195 }

28

4 Signal pre-conditioning PCB

In order to monitor four channels with the XADC on the Zedboard, external multiplexing

is a necessity. Hence a circuit containing a differential 4-to-1 multiplexer was designed

and prototyped on a breadboard. For this purpose we had to rely on slow components

only, as tests with fast components failed. Feedback loops on high-speed amplifiers

are very sensitive to capacitance and inductance which standard breadboard wires and

components have plenty of. After several design-test iterations, the design was finally

put onto a printed circuit board (PCB). The final version of this PCB implements further

functionality than just channel switching. The signals are buffered, filtered and amplified.

In the following sections this board is discussed in more detail.

4.1 Specifications

The circuit schematic of the board is shown in figure 5. The names of any components

in the following are derived from that schematic.

The board contains a header P2 that is a copy of the Zedboard XADC header. The BNC

connectors P3 thru P6 allow the connection of up to 4 differential signals to be monitored

by the XADC. In the current configuration, these signals should be restricted to 0-400

mV. Each of these signals is fed into one of the fully differential amplifiers U1 thru U4.

All fully differential amplifiers on the board are of the type THS4521; they have a

145 MHz bandwidth, a 490 V/µs slew rate and can be driven by a 5 V supply. Hence

the components are well suited for our purpose, they are a lot faster than necessary and

can be driven by the 5 V supply provided on the XADC header. Slower components aren’t

significantly cheaper and the choice at hand means the board is future-proof for the use

with faster ADCs.

The first amplifier stage serves a quadruple purpose. It amplifies the signal to the maxi-

mum range of the XADC, low-pass filters the signal with a 1 MHz cutoff, buffers the signal

for further stages and can shift the signal up or down. Note that the latter functionality

is not a mere amplification, as modulations on the signal are not amplified in the process,

only the levels of the two rails are shifted antisymmetrically around the common mode

inherent to the amplifier. This feature facilitates mapping the level of signals violating

the [0, 400] mV range into the allowed region. More information on its usage is provided

in section 4.2. Filter and amplification gain can be adjusted by populating the board

with different capacitors and resistors, the shift can be put into effect and controlled by

connecting a resistor between pins 1 or 3 and 2 of the headers P8 thru P11.

After the first amplification stage the signals are passed to the input of the analog

multiplexer MUX1. The active input channel on the multiplexer is controlled by the P2

header pins DIO18 (LSB) and DIO17 (HSB).

29

The multiplexer is an ADG709 (dual 4-to-1). This component can be driven by 5 V

single supply, takes signals rail-to-rail, has a low resistance of a few Ω between input and

output channel that is quite constant as a function of input voltage and has a −3 dB

bandwidth of 55 MHz. For the use with 60 MHz ADCs, as the one present on the DDS’,

one should replace the multiplexer if the speed can’t be reduced to around 50 MHz.

The signal exiting the multiplexer is put through another amplification stage U5. Here the

signal is filtered again and the common mode voltage applied by the differential amplifiers

is reduced to a value acceptable to the XADC. To this end the signal is amplified with

gain two and subsequently divided by the same factor. Then the signal is passed to the

VP/VN pins of the header P2.

The PCB is shown in figure 6. It is a 4 layer PCB with ground and power plane. The

ground plane is connected to the AGND pins on the P2 header, the power plane to the

AV5V pin with a large tantalum capacitor nearby. All components present on the board

are protected against supply modulations by bypass capacitors of several different sizes.

This is important because the current drawn by one component might change abruptly,

which leads to changes to the power supplied to all other components. Capacitors close

to the supply pins can then bridge the fluctuation in power. As the modulation can have

different frequencies, different capacities should be used. Switching components—e.g.

multiplexers—are especially prone to this effect.

4.2 Usage instructions

In order to use the signal pre-conditioning board with the XADC one needs to take care

of a couple of things. First the FPGA must be programmed correctly. More precisely, the

XADC must be set to external multiplexer mode, and the two least significant channel

control bits (muxaddr out) should be connected to the XADC header pins 18 (LSB) and

17 (HSB).

Once the Zynq-7000 is set up correctly, one connects the XADC header on the Zedboard

to the header P2 on the signal pre-conditioning board using a ribbon cable. There should

be one available within the XADC box made by me. Take care that the header is connected

the right way around, else components might easily be damaged.

Now apply a well known signal (e.g. slow (1 kHz or so triangle from a DAC) into the

circuit and analyse the values that the XADC reports. This can now be used to calculate the

conversion function that relates XADC readings to voltage input into the pre-conditioning

board, in the same way demonstrated in section 2.1.3.

The shifting functionality in the first amplification stage is controlled by connecting

resistors between pins 1 or 3 and 2 on the headers P8 thru P11. Simulations in LTspice

were run to characterize this. The circuit used for the calculations is shown in figure

7. One should note that, for convenience, the simulation circuit uses the LT1994 fully

30

Figure 5: Circuit schematic of the signal pre-conditioning PCB.

31

Figure 6: Top layer of the 4-layer signal pre-conditioning PCB. The bottom layer only

includes some tracks that could not be fit to the top layer, the two intermediate layers

are power and ground plane.

Figure 7: The circuit that was used to run the LTspice simulations of the shifting

feature. The simulated differential amplifier works quite similarly to those present on

the PCB. Connections in the shift-controlling headers on the PCB are simulated by

connecting either R5 or R6 to the wire labeled ”Shift Connection”, or simply leaving it

unconnected. The results of the simulation are shown in figure 8.

32

differential amplifier instead of the one present on the PCB. This should not affect

the results, important properties coincide. The differential amplifier is supplied with a

sinusodial signal of amplitude 5 mV that is shifted upwards by 100 mV. One should

think of the 5 mV modulation as a small change to the signal, for example due to a

drift in LASER intensity when monitoring photodiodes, or due to noise. The modulation

amplitude is not affected by the shift.

When the wire labeled ”Shift Connection” is left unconnected, the amplifier oper-

ats with two standard feedback loops that give a gain of 2. Then the output signal

(Vout+) − (Vout−) is 200 mV, as shown in figure 8 (b). Connecting resistor R5 to

”Shift Connection” raises the current demand through resistor R2, the voltage over it

must rise and the output signal is shifted to a larger value. Connecting R6 to ”Shift

Connection” leads to the inverse effect, the power supply delivers current towards the

negative amplifier terminal, attenuating the current demand through the feedback loop

such that the output voltage is lowered.

One should note that the voltage change on the output is shared symmetrically between

the two rails. The voltages Vout+ and Vout- are always the same distance apart from the

common mode voltage Vocm applied by the amplifier. Consequently the shifter cannot

be used to change the common mode voltage. It is useful when signals violating the

input constraints of the board should be monitored. If they have differential voltages

larger than 400 mV they should be shifted downwards by connecting pins 3 and 2 on

the corresponding header with a suitable resistor. If the signal is weak one can shift it

up by connecting pins 1 and 2.

4.3 Measured properties

I carried out measurements on the pre-conditioning board to characterize its properties.

More precisely, I extracted the frequency response in form of a Bode plot and the relation

between input voltage and output voltage. To get a general feeling for the board I

also looked at its response to signals at different frequencies. Note that during the

measurements described in the following, only one signal line was populated on the

board.

4.3.1 Transfer function

The Bode plot measured with the Analog Discovery Kit’s network analyzer feature is

shown in figure 9.

The bandwidth is about 1 MHz, which is what we expect. Even though exclusively high-

speed components with bandwidths orders of magnitude larger than 1 MHz are used,

the anti-aliasing filters incorporated in the differential amplifiers feedback loops have a

cutoff frequency of 1 MHz, which, being the slowest part of the signal line, gives the

33

(a) Supply voltage connected (b) No connection (c) Ground connected

Figure 8: Results of LTspice simulations of the shifting functionality with the circuit

shown in figure 7. The differential input voltage is shown in cyan and constant over the

three cases. Voltages on positive and negative output terminals are red and blue, the

difference of the two is shown in black. The dotted magenta line marks the common

mode voltage around which the amplifier symmetrically places the output voltages. The

three figures show the three possible cases in which the line ”Shift Connection” can be

connected. In figure (a) the supply voltage Vcc is connected and the rails are shifted

towards the common mode voltage, the differential output is lowered. Figure (c) shows

the case where ground is connected and the differential output is enhanced. Figure (b)

shows the standard case with no connection.

Figure 9: Bode plot of the signal pre-conditioning board. Measurements were done using

the network analyzer feature of the Analaog Discovery Kit, which feeds a signal into an

input BNC of the board while monitoring that input and the output at the VP/VN pins

of header P2 simultaneously. In the top graph the blue curve shows the amplitude of the

output signal with respect to the yellow input signal. They y-axis is in dB. As expected

by construction, the 3 dB point is close to 1 MHz. The bottom graph shows the phase

shift of the output signal with respect to the input, with the y-axis in degrees.

34

overall frequency restriction of the circuit.

4.3.2 Conversion function

For the board to be useful, one must know the relation between the signal on the output

side, the VP/VN pins on header P2, and the signal on the input side, the BNC connectors.

To this end, in the spirit of section 2.1.3, I fed a slow (5 kHz) triangle signal synthesized

by the Analog Discovery Kits DAC into the circuit and monitored the output. Figure

10 shows the input voltage in blue and the output voltage in yellow, as measured with

the Analog Discovery Kits ADC. I then used the 100 µs long ramp seen in figure 10 to

calculate the conversion from output voltage to input voltage. The result is shown in

figure 11.

This measurement suggests a conversion according to

Vin(Vout) = 0.4717Vout − 0.0397,

consistent with our expectation by construction.

4.3.3 Step function response

The response of the board to step functions at different frequencies was analysed. The

results are shown in figure 12.

One should keep in mind that a step signal with frequency ν means edges (rising or

falling) occur at a frequency of 2 ν, as any period contains one step up and one step

down.

The way these measurements were carried out is not realistic, in the sense that the

switching between high and low is not effected by the multiplexer switching channels,

but rather by the DAC itself. As the multiplexer is a fast component, relative to the

frequencies considered here, my analysis highlights a worst-case scenario. When the

input signal switches, it is passed through the anti-aliasing filter of the first amplification

stage as well as the one in the stage after the multiplexer. Were the switching done by

the multiplexer, only the second stage would filter the change. This shouldn’t change

much, but it’s important to be aware of the limitations when interpreting the results.

The important difference to reality that will lead to better behaviour of the circuit in

most real-world applications is the switching amplitude. In the tests carried out here,

each switch travels all the way from maximum input voltage to minimum input voltage,

or vice versa. In real applications, when the multiplexer switches channels, the signal will

typically not change by that much and the circuit will perform better than highlighted

here.

35

Figure 10: Response of the board to a 5 kHz triangle signal. The input voltage is shown

in blue, the output voltage in yellow. The ramp between −18 µs and 82 µs can be used

to calculate the conversion function between output and input voltage. The result of

this procedure is shown in figure 11.

Figure 11: Calculation of board input (BNC) from board output (VP/VN). The plot

shows the output voltage of the board on the x-axis and the input voltage on the y-axis.

Dark points show data measured with the Analog Discovery Kit, the dashed red line is

a least squares fit following the equation y = 0.4717x− 0.0397.

36

(a) 50 kHz

(b) 200 kHz

(c) 500 kHz

Figure 12: Response of the board to step functions at different frequencies. The input

voltage is shown in yellow, the board output is shown in blue. The 200 kHz signal seems

to be the cutoff at which the XADC can be supplied usefully, with the 500 kHz step not

saturating at all.

37

The result of the worst-case analysis is that the multiplexer should not be operated at

frequencies closer to 1 MHz than 500 kHz. Switching at 1 MHz can lead to wrong results

as the circuit cannot saturate the signal in time. When switching at 400 kHz, one should

only trigger conversions in the XADC more than 1 µs after a channel has been activated.

This still leaves enough time for the XADC to convert.

The application described in section 2.1.3 is not affected by the results of this test. A

channel is active for 20 µs, which corresponds to operating the multiplexer at 50 kHz.

As shown in figure 12 (a), this is easily possible, especially considering that this figure

corresponds to the multiplexer switching at 100 kHz. Problems only become apparent

when the sequencer is operated in non-trivial fashion. Then either the FPGA program-

ming should be adjusted such that the XADC’s speed is choked, or the filters in both

amplification stages should be modified to have a higher cutoff.

38

References

[1] 7 Series FPGAs and Zynq-7000 All Programmable SoC XADC Dual 12-Bit 1 MSPS

Analog-to-Digital Converter (ug480)

[2] Zedboard Hardware User’s Guide

39

https://www.xilinx.com/support/documentation/user_guides/ug480_7Series_XADC.pdf
https://www.xilinx.com/support/documentation/user_guides/ug480_7Series_XADC.pdf
http://zedboard.org/sites/default/files/documentations/ZedBoard_HW_UG_v2_2.pdf

	Introduction
	Properties and Functionality of the XADC
	XADC specifications
	Channels
	Sampling settings, channel sequencer and single channel mode
	Continuous sampling mode and event driven sampling mode
	External multiplexer mode

	Accessing the XADC on the Zedboard
	Measured properties of the XADC
	Conversion
	Noise and drift analysis
	Sampling speed

	Programming the XADC
	Initialization
	Self-Test
	Setting up the sequencer
	Getting converted values
	Single channel mode
	Event Mode
	Interrupts
	Putting it all together

	Signal pre-conditioning PCB
	Specifications
	Usage instructions
	Measured properties
	Transfer function
	Conversion function
	Step function response

