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1. I N T R O D U C T I O N  

1.1. The Strong-Field  Environment 

The physical conditions which define a strong field will be identified in detail below, but 
it is instructive to begin with the examination of  a practical example of  a field which is 
unquestionably strong, and presently achievable. It  is now possible to obtain an energy flux 
of  10 ~9 W/cm z from a laser operating at a wavelength of  about  1/~m. An isolated electron 
in such a field has an energy of interaction with the field (the 'ponderomotive potential ')  of  
approximately 106 eV. Since the energy of  a single photon of  this laser field is about  1 eV, 
this means that the electron must have interacted with at least 106 photons in order simply 
to exist in the presence of  the field. Furthermore,  106eV is roughly 105 times the binding 
energy of  an outer shell electron in an atom, so if the electron whose behavior is being 
examined has just been ionized from an atom, it will regard the a tom as a small disturbance 
in comparison with the laser field. Finally, we remark that the 106 eV field-interaction energy 
of the electron is even in excess of  the 511 keV rest energy of  an electron, so that the electron 
is a relativistic particle irrespective of  its net translational velocity. 

All of  the above comparisons bespeak a physical environment quite foreign to the 
conventional world of  low-intensity laser physics. The simultaneous interaction of the 
electron with 106 photons makes it very clear that the lowest-order-dominant concepts of  
perturbation theory have lost all meaning. One's intuitive guess that it is irrelevant whether 
the electron is in interaction with 1,000,000 or 1,000,001 or 1,000,100 photons can be shown 
to be justified. The fact that the interaction of the electron with the laser field is 105 times 
stronger than atomic binding energies means that an electron, once ionized, behaves almost 
as if the a tom is not present. (The properties of  the atom, however, remain very important  
for the electron while still b o u n d - - a  point of  considerable significance.) The relativistic nature 
of  the ionized electron means that relativity enters into atomic physics purely as a function 
of the intensity of  the laser field, and with no a priori considerations of  electron velocities 
comparable to the velocity of  light. The electron will inevitably acquire such velocities as a 
result of  its laser-field-induced motion. 

The above qualitative features of  the strong-field environment have gradually come into 
focus over the past decade or so. As commonly occurs when a major  shift in experimental 
circumstances forces a corresponding adjustment in conceptual views of  the underlying 
physics, inertial effects in the change of  'paradigm '°) are not hard to find. The aim of  this 
review is to go directly to strong-field techniques without detours through evolutionary 
changes in low-intensity methods. The goal is to expound theoretical techniques which are 
entirely independent of  perturbative concepts, incorporate field-dominated electron behavior 
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in a natural way, and accommodate relativistic techniques in a fashion parallel to the 
treatment of the non-relativistic problem. All of this can be done from first principles in an 
efficient manner. In some ways, the strong-field environment has a theoretical structure 
simpler than the conventional physics of the interaction of atoms and molecules with 
electromagnetic fields. 

For all the recent emphasis on strong-field phenomena, it must be pointed out that many 
of the most interesting and curious results which are the focus of so much current attention 
have been known for a long time. As will be recorded below, one of the basic tools of 
strong-field research, the Volkov or Gordon-Volkov solution, was known in 1926. The 
shifting of conservation conditions and hence 'peak suppression' was known in 1962; the 
'ATI' effect, or loss of dominance of lowest order processes was discussed in 1970; the same 
year that the effect now known as 'stabilization' was described. 

1.2. Implications of Strong Fields for Quantum Optics 
As the discussion of Section 1.1 strongly implies, many familiar qualitative aspects of 

quantum optics become radically altered in very strong fields. When the laser field is so strong 
that the ponderomotive potential of an electron in that field approaches the magnitude of 
the atomic binding potential, then the fundamental premise of perturbation theory fails. That 
is, perturbation theory presumes that an atom is only slightly 'perturbed' by an external 
influence or interaction. When the interaction rivals in magnitude the cohesive energy that 
is responsible for the identity of the atom, then the concept of a perturbation is inappropriate. 

Long-developed intuition and qualitative concepts in quantum optics depend to a 
considerable degree on insights guided by perturbation theory. With the failure of pertur- 
bation theory one must abandon the concept of an n th-order transition as the orderly 
progression of an atom in n steps from an initial state to a final state while passing through 
n - 1 intermediate states. Although in some strong-field theories, it may still be possible to 
speak of the absorption or emission of exactly n photons, it is generally no longer possible 
or fruitful to specify the intermediate states. Once-useful concepts like oscillator strengths 
vanish from the theory. S-matrix methods as described herein invoke reference states in which 
no field is present. In some of these formalisms, it is then no longer appropriate to speak of 
Stark-shifted ionization potentials. Energy requirements for ionization are, indeed, altered by 
the laser, but field-dependent ionization energy requirements appear in a guise different from 
a Stark-shifted ionization potential. 

The loss of perturbation theory as a viable quantum-mechanical calculational procedure 
corresponds to a qualitative change in the physical nature of an atom. Sufficiently strong laser 
fields will cause the energy levels of an atom to shift and broaden to such a degree that they 
overlap to the point of losing any useful identity. It is no longer fruitful to even think in such 
terms. An example of this alteration to a new way of thinking is the concept of ionization 
by tunneling. It is useful, in a strong, low frequency laser field, to think of ionization as 
occurring as a result of the thinning of one side of the atomic potential by the quasi-static 
electric field of the laser. The electron can then 'leak out' over the top of the depressed atomic 
potential, or tunnel through the thin upper layer of the modified potential. This mechanism 
for ionization takes the place of the notion of the absorption of a discrete number of photons 
by the atom and its passage through a succession of excited states. 

A further remark about the failure of perturbation theory is that one must exercise caution 
in the application of strong-field corrections to the perturbation theory as the field strength 
increases. Some useful quantitative and qualitative results can be obtained by adding terms 
to the nominal n th-order term required by lowest order perturbation theory, as long as the 
field strength does not exceed the radius of convergence of perturbation theory. When that 
radius is exceeded (which may not be evident in practical application), the calculated results 
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may appear reasonable, but may have no relationship to the correct answer. An elementary 
analog is provided by the geometric series 

1/(1 - x )  = 1 + x + x 2 + x 3 + . . . .  Ixl < 1. (1 )  

Suppose the sum in Eqn. (1) is truncated at some finite order N. Suppose further, for ease 
of  visualization, that x is positive. As long as one is within the radius of convergence, Ix l < 1, 
an increase in the value of  N will yield an answer from the finite sum which improves in 
accuracy as N increases. However, when Ixl > 1, the left-hand side, 1/(1 - x) turns negative, 
while the truncated sum continues to exhibit positive values. In a physical problem where the 
actual radius of  convergence is not known (as is generally the case in perturbation theory), 
the truncated perturbative sum may continue to produce reasonable-looking results when, in 
fact, the finite sum has ceased to bear any meaningful relationship to the actual value of  the 
physical quantity it nominally represents. 

One further remark is in order about the implications of  strong fields. Photon occupation 
numbers are so large that semiclassical theories are indicated. It is not necessary to quantize 
the laser field. 

1.3. Measures of  Intensity 

1.3.1. Preliminaries. It is current practice in strong-field physics to point out that 
qualitative changes in behavior from the low-intensity case are to be expected when the 
electric field of  the laser is of the same order of magnitude as the electric field experienced 
by an electron situated at one Bohr radius from a Coulomb center of force arising from a 
single positive nuclear charge. That  is, a strong field is one in which the laser's electric field 
equals the Coulomb electric field experienced by the ground state electron in a simple Bohr 
model of  the hydrogen atom. This is simply stated as the field such that dr = 1, where 8 is 
the electric field in atomic units. In SI units, this amounts to 5.14 x 1011V/m. This is a 
plausible criterion, and it has the convenient feature that a laser field of  3.51 x 1016W/cm 2 
(3.51 x 102o W/m 2 in SI units, I = 1 in atomic units) will give rise to dr = 1, irrespective of  the 
frequency of  the laser. 

In fact, the definition of a strong field as one which has dr = 1 is unsatisfactory, and the 
reason is that the onset of  strong-field behavior is observed to be decidedly frequency 
dependent. For  example, ionization of  atoms with an excimer laser of 193 nm at 1015 W/cm 2 ~2~ 
(or even at 1017W/cm2) (3) does not have as well developed a strong-field character as 
multiphoton ionization with a CO2 laser at 1014W/cm2. ~4-6~ The 193 nm experiments with 
dr = 0.17 involve multiphoton orders of  ten or less, whereas the CO2 experiments with 
dr = 0.05 require a minimum photon order, for some ionization channels, of several hundred. 
Even this type of  comparison does not make the point as strongly as possible because the 
energy of  a laser photon at 193 nm is about 50 times the energy of  a CO2 laser photon, which 
makes for vastly disparate photon orders at threshold. A more direct comparison is to match 
the intensity conditions at two different wavelengths for cases where the lowest photon 
multiplicities are about the same. This cannot be done exactly, but the photoionization 
experiments with the excimer laser might reasonably be compared to negative ion photode- 
tachment experiments with the CO2 laser. (7,s) In that case, the low-intensity threshold order 
with the CO2 laser is seventh order, and an intensity of  2 x 101° W/cm 2 results in very well 
developed strong-field behavior. The field strength in atomic units is then only dr = 0.0008! 

A more satisfactory and universal means of  judging strong-field behavior is based on energy 
comparisons. This is consistent with the fact, to be discussed shortly, that all of  the intensity 
parameters which arise in the strong-field theory can be expressed as ratios of energies. 

The special role of  energies as opposed to field strengths is not surprising. The Schr6dinger 
equation, for example, is essentially the statement that H = T + V, where H is the total 
Hamiltonian, and T, V are the kinetic and potential energies. In particular, the Schr6dinger 
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equation for an electron in interaction with the electromagnetic field can be written in terms 
of  the electromagnetic potentials, but not directly in terms of  the fields. Determined attempts 
in the 1960s to re-express quantum mechanics directly in terms of  fields rather than 
potentials <9-~') met with failure (although there was an ancillary development of  path-integral 
methods which proved fruitful for other purposes). It has been argued 05) that potentials are 
more fundamental than fields, despite the contrary traditional view. A case in point is the 
Aharonov-Bohm effect, ~6-~8) which occurs °9-2~) in regions with electromagnetic potentials, but 
with no fields present. There is thus strong evidence that energies--including electromagnetic 
interaction energies--are more basic measures in quantum mechanics than are field strengths. 

1.3.2. Ponderomotive potential. A central element in strong-field photoionization is the 
behavior of  a free electron in a plane-wave electromagnetic field. This problem has been 
exactly solved, both classically (24'25) and quantum mechanically. <26'~7) The classical equations 
show the electron to follow a path which, apart from any uniform translation, is a circular 
motion in a circularly polarized light wave, or a figure-eight motion in a linearly polarized 
field. The circular motion is about the propagation direction as axis. The figure-eight motion 
is in the plane defined by the polarization vector and the direction of  propagation, with the 
double lobe of  the 8 deployed along the polarization direction. 

Of particular interest here is the relativistic energy of  the electron's motion. As given by 
Sarachik and Schappert (25) for the classical case, this is 

E = mc 2 - e2A 2/2mc2, (2) 

where A 2 is the square of  the electromagnetic four-vector potential A n according to the 
inner-product rule 

A 2 : AnAn = AnAn = (AO)2 _ A s = ~2 _ A 2, (3) 

with the scalar potential designated either as A ° or q~, and where A is the three-vector 
potential. The indices/z range over the values 0, 1, 2, 3. The leading term in Eqn. (2) is the 
relativistic rest energy of  the electron, and the second term is the ponderomotive potential 
Up. As Eqn. (3) shows, Up is a relativistic invariant. That  is, it has the same expression in 
every Lorentz frame of  reference. 

Although the ponderomotive potential is expressed in terms of  the four-vector potential, 
it is independent of  gauge. The general gauge transformation is 

An. . .  A,n = A n + OnA, (4) 

where A is a scalar function of  the space-time four-vector x n. It is then possible to s h o w  (26) 

that A nA n = A'nA'._n for all 'simple' gauge transformations as well as for transformations 
between the relativistic length and velocity gauges. (:8) It is thus possible to evaluate the 
ponderomotive potential in any convenient gauge and arrive at a universal result. If the 
Coulomb gauge is selected, then A ° = 0, and IA[ 2 = 1812/~o2c~, where co is the circular frequency 
of  the electric field vector 8.  The time-averaged 8 2 is ( 8  2) = 85/2, where 8 is the amplitude 
of  8. Hence, the ponderomotive potential can be written as 

Up = e2 g2 /4mco 2, (5) 

a form frequently used. 
1.3.3. Non-perturbative intensity parameter. One of  the intensity parameters which arises 

naturally in strong-field theories of atomic ionization (29-3~) is 

z =- Up/hco = e282/4hmco 3, (6) 
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with the last expression in SI units. Alternative expressions in atomic units are 

z = Up/co = I /4co  3 = 82/4o9 3. (7) 

Yet another form is instructive, given in terms of the density of photons p, the wavelength 
of the radiation 2, and the electron Compton wavelength 2c, 

Z = p~2/].c, (8) 

where ~ is the fine structure constant and ~ - 2 / 2 n .  This form is useful since it essentially 
defines an interaction volume associated with z. In atomic units, this becomes simply 

z = p / ca  2. (9) 

There are two reasons why z may be called a 'non-perturbative intensity parameter'. The 
first comes from the formal consideration that if the non-perturbative theory (31) is expanded 
in a perturbation series, the expansion parameter is exactly z. The second reason is qualitative. 
An electron, when released from an atom to become a free particle in the laser field, acquires 
the ponderomotive energy Up. If  this energy is greater than hco, that means that many photons 
must collaborate in order to provide the electron with this field-interaction energy. It is 
inherently a multiphoton process in which many photons must interact simultaneously with 
the electron. It is thus fundamentally non-perturbative. Only if hco > Up is it possible to have 
a single-photon process provide the necessary field interaction energy. 

The parameter z occurs prominently in Ref. 3 1. It occurs also in the work of Keldysh, (29) 
but he makes no explicit mention of it. 

1.3.4. B o u n d - s t a t e  i n t e n s i t y  p a r a m e t e r .  It will be seen in Sections 4 and 5 that Keldysh-like 
theories are useful for practical application to the prediction of ionization yields in very strong 
laser fields. Such theories are also known as Keldysh-Faisal-Reiss (29-3° or K F R  theories. 
When the large-z limit of a K F R  theory is sought, a new intensity parameter automatically 
appears. This is the 'bound-state intensity parameter' or 'field-dominant intensity parameter' 
z~, defined by 

z, =- 2UplEB = (eglco)212mEB, (lO) 

where EB is the atomic binding energy, and again the last expression is in SI units. Expressions 
in atomic units are 

z, = I/2~o~EB = (~/~o )2/2EB = 2p /coEB. ( l l )  

This is the parameter emphasized by Keldysh, (29) although he did not write it in the form of 
an intensity parameter. Instead, he defined a quantity V which declines with rising intensity. 
The connection is z~ = 1/V 2. 

The definition in Eqn. (10) provides the most direct physical interpretation of zl. If  
Up > EB, then the energy of interaction of the electron with the field exceeds the binding 
energy of the electron, and the field can be said to be the dominant influence on the detached 
electron. That is, z~ > 1 corresponds to the field-dominant or strong-field domain. 

An alternative view in terms of more traditional atomic quantities comes from noting that 
the amplitude of power broadening of atomic levels is of the order of leS"rl ~ eS0a0, where 
a0 is the Bohr radius, or, more generically, the size of the bound system. When this is 
compared with a single photon energy and squared, one has 

lieS 
'r[ ~2 

---h-~-~ / ~ z t  (12) 
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when the general connection 
a~ = h2/2mEB (13) 

is used. Qualitatively, this means that zl > 1 signifies an intensity at which the power 
broadening of  levels exceeds a single photon energy, and it is no longer reasonable to 
separately identify levels in the field-interacting atom. They are smeared beyond redemption. 

1.3.5. Free-electron intensity parameter. The last of  the intensity parameters to be discussed 
is, historically, the first to receive significant notice. The free-electron parameter, zf, is defined 
by 

zf = 2Up/mc 2 = (eg/mcm)2/2, (14) 

with the last expression in SI units, or in atomic units as 

zr = 0t2I/2m 2 = (~g/m)2/2 = 2at2p/m, (15) 

where ~t is the fine structure constant. 
The quantity zf arose many years ago (32-34) in the context of  the quantum-mechanical 

behavior of  a free electron in a strong plane-wave electromagnetic field. The first problem 
considered was photon-mult iphoton pair production, (32) followed by the related crossed- 
channel processes of  photon-mult iphoton pair annihilation (33) and strong-field Compton 
scattering. (33'~) It was found that zf occurs, and can be viewed as a 'mass-shift' effect, (32-34) 
where the normal mass of  a free electron is modified by the field to an apparent increased 
mass according to 

m 2 --* m 2 + Am 2 = m2(1 + Zr). (16) 

It is seen from Eqns (2), (5) and (14) that this corresponds exactly to the classical result. It 
is possible also to show how Eqn. (16) can be obtained by a formal mass renormalization 
procedure. ~35) 

The physical meaning of  zf is quite clear. When the interaction energy of  the electron with 
the field (Up) is greater than the electron's rest energy, then the effects of  the field will be 
relativistic in nature. This conclusion is explicitly borne out by calculations ofphotoionizat ion 
done by a completely relativistic method, ~36) where the consequences of  relativity are found 
to be measured precisely by the parameter zf. This same parameter arises in another 
important way described in the next section. 

1.3.6. Classical free-particle motion. The classical relativistic equations of  motion for a free, 
charged particle in interaction with a plane-wave electromagnetic field can be solved 
exactly/24'25) In the frame of  reference in which there is no net motion of  the electron over 
a full period of  the field, a linearly polarized laser with electric and magnetic fields given by 

8 = 80 cos[m(t --x/c)];  B = (ck/og) x ~ (17) 

causes an electron motion such that 

my/c = - ( 1/2 cos[to (t - x/c)] (18) 

mx/c = - ((/8)sin[2m (t - x/c)], (19) 

where k is the propagation vector for the field of  circular frequency o9, the electric field is 
polarized along the y axis, the direction of  propagation is x, and the parameter ( is defined 
by 

( = 2zf/(1 + Zr). (20) 

The motion given in Eqns (18) and (19) is in the form of  the numeral eight, oriented upright 
along the direction of  polarization in a plane defined by the directions of  polarization and 
propagation. 
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A profoundly important implication of  the above results is that the proportions of  the 
electron figure-8 motion are determined entirely by zf. The amplitude of the motion depends 
both on zf and on the frequency co, but the proportions depend only on the dimensionless 
intensity parameter zf. The 'fatness' of  the Fig. 8 as compared to its height is given by (~/2/8, 
which approaches the limit 2 -5/2 in the extreme relativistic case, and approaches 0 in the 
non-relativistic limit. That is, in the non-relativistic case, one obtains the expected linear 
oscillation of  the electron along the direction of the electric field. The amplitude of  the motion 
in the electric field direction, from Eqn. (18) is, in general 

~t 0 = c~ t/2/a~, (21) 

which gives the non-relativistic limit 

~0 "~ e S /m¢02. (22) 

This last result is easily derived directly. It is now becoming very familiar in strong-field work 
because it is so intimately involved in the Kramers-Henneberger transformation {37,3s) which 
is the subject of  much recent attention in connection with the stabilization phenomenon in 
atomic processes/3~9) (Stabilization is a uniquely strong-field effect in which, beyond a certain 
critical intensity, further increases in intensity cause a decline in transition rate, rather than 
the 'obvious' increase one would expect.) Stabilization is treated in Section 5.2. 

Since the free-particle amplitude of  motion in the laser field is now in widespread use, the 
intensity parameters will be stated in terms of the non-relativistic ~0 as given in Eqn. (22). 
The expressions are 

z = m~oct2/4h, (23) 

zl = m (a~0t 0)2/2E B , (24) 

zf = (~oat0/c)2/2. (25) 

It is really more consistent to express zf in terms of the relativistic ~t 0 as given by Eqn. (21), 
in which case Zr is 

zf = (~o~t 0)2/[2c2 - (o9~ 0)2]. (26) 

1.3.7. Critical values o f  the intensity parameters.  It is instructive to examine the laser energy 
fluxes required to achieve a value of  unity for each of  the intensity parameters z, Zl, Zr. The 
word 'laser' is used here in a generic sense, since it is wished to describe not only laser 
environments, but strong-field microwave environments as well. Four representative wave- 
lengths are considered: 200 nm (typical of  an excimer laser); 1/~m (Nd laser); 10/~m (CO2 
laser); and 3 cm (i.e., 10 GHz) representing the microwave case. 

The non-perturbative intensity parameter is considered first. The value z = 1 is a clear 
upper limit for the radius of convergence of perturbation theory, °~) since a necessary (but 
not sufficient) condition for convergence of a series is that successive terms should decline 
in magnitude. The demand that z = 1 means that I = 4a~ 3 in atomic units, from Eqn. (7). 
Table 1 lists the required intensity both in atomic units and in W/cm 2 to achieve a unit value 
of  z. 

The most noticeable fact in Table 1 is the relatively modest intensities needed to surpass 
the perturbative regime. At 1/~m, the 1013 W/cm 2 limit is in accord with the ATI (above- 
threshold ionization) experiments, where, after extended debate, the consensus is that 
perturbation theory fails at that intensity. Note, however, how small the critical intensity is 
in atomic units. In other words, the electric field of the laser is significantly smaller than the 
Coulomb field of  the atom at the intensity where perturbation theory fails. This conclusion 
is even more striking with the CO2 laser, where both the 3.8 x 10 -7 au and the 
1.3 × 10 ~° W/cm 2 numbers are very modest. 
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TABLE 1. In tens i ty  requi red  to ob ta in  uni t  va lue  for the non-pe r tu rba -  
tive in tensi ty  pa ramete r ,  z 

In tens i ty  (a tomic  uni ts)  In tens i ty  (W/cm 2) 
W a v e l e n g t h  for z = 1 for z = 1 

200 n m  0.047 1.66 x 1015 
I # m  3.78 x 10 -4 1.33 x 1013 

l 0 / ~ m  3.78 X 10 -7  1.33 x 101° 
3 cm 1.40 X 10 -17 0.493 

Most notable of all is the microwave example. The frequency employed in the example is 
similar to the 8.2 GHz used by Gallaghe~ 5°) in a set of experiments carried out at 
3 x 104W/cm 2, corresponding to z = 105. Even though the intensity in the Gallagher 
experiments is only about 10-12 in atomic units, the physical behavior observed was extremely 
non-perturbative. A relatively weak laser, sufficient in energy only to excite a Rydberg state 
in a beam of  sodium atoms, was intersected with the atomic beam in a cavity with intense 
microwaves. Photoelectrons were observed to emerge with energies of nearly 10 eV, where this 
considerable kinetic energy could come only from the microwave field. The microwave 
photons have only 3 x 10 -5 eV apiece, so more than 105 photons have to act cooperatively 
to produce the final state. This is consistent with a z value of 105, but it is not at all suggested 
by a microwave intensity of 10 -12 au, which means an electric field amounting to only 10 -6 
of the atomic Coulomb field at the Bohr radius. This reinforces the remark above that the 
field is most meaningfully measured by energy ratios, as in the z, Zl parameters, and not by 
the electric field strength. 

Table 2 is the analog of Table 1, but for the bound-state intensity parameter Zl. Two 
separate sets of values are given in this table. One is for photoionization from the ground 
state, where the hydrogenic principal quantum number is n = 1; and the other is for an initial 
Rydberg state, where n = 20. This is especially relevant for the microwave frequency, where 
the field will normally be used only to ionize Rydberg states, and not the ground state. 

The results displayed in Table 2 are particularly important because the parameter zl is the 
essential measure of the applicability to atomic ionization of Keldysh-like methods, to be 
introduced in Section 4. Keldysh-like methods, or the K F R  method (or the SFA--strong-field 
approximation) are the quintessential strong-field techniques, and their applicability demands 
zl > 1. (This is true for long-range potentials. For short-range potentials, the requirements 
are less stringent/31) A laser environment with zl > 1 can properly be termed a strong-field 
environment, and Table 2 shows (even for the n = 1 case) that the intensity in atomic units 
need not be at all close to the value unity so often assumed to be the hallmark of the 
strong-field situation. 

For completeness, Table 3 is included here, to show when relativistic effects are important. 
Table 3 gives the intensity at which zf = 1. Relativistic effects, however, are most likely to 

be in evidence at zf ~ 0.1/36) This means that relativity is already of significance in present 
state-of-the-art environments at the shorter wavelengths in Table 3, whereas it may never be 
of significance for the long wavelength cases. 

TABLE 2. In tens i ty  requi red  to ob ta in  uni t  va lue  for the bound- s t a t e  intensity parameter z I 

Intensity (atomic units) Intensity (W/cm 2) 
for zl = 1 for z, = 1 

W a v e l e n g t h  n = 1 n = 20 n = I n = 20 

200 n m  0.052 1.30 x 10 -4 1.82 x 1015 4.55 x 1012 
I g m  2.08 × I 0  -3  5.19 x 10 -6 7.29 x 1013 1.82 × 10 II 

1 0 g m  2.08 x 10 -5 5.19 x 10 - s  7.29 x 10 'l 1.82 x 109 
3 c m  2.31 × 10 -12 5.77 x 10 - '5  8.11 x 10 + 2.03 x I02 
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TABLE 3. Intensity required to obtain unit value for the free-particle 
intensity parameter z r 

Intensity (atomic units) Intensity (W/cm 2) 
Wavelength for z r = 1 for zf = 1 

200 nm 1950 6.84 × 1019 
1 #m 78 2.74 x 10 j8 

10/~m 0.78 2.74 x 1016 
3 cm 8.68 x I0 -8 3.04 × 10 9 

TABLE 4. Peak values for intensity parameters with laser systems 
presently available 

Wavelength W/cm 2 z z I zf 

248 n m  1019 11500 8440 0.225 
1.054/zm I 0  t9 88200 152000 4.06 
10.6 #m I0 t4 8970 154 0.00411 

1.4. Available Strong-Field Environments 

A brief compendium is supplied here of 'state-of-the-art' laser intensities for some 
commonly used systems. The principal intent is to demonstrate that z and zt parameters are 
currently attainable that are well into the strong-field domain. With the presumption that 
relativistic effects will become visible within the region of 0.1 ~< zr ~< 1, it appears that 
relativistic experiments can be done with existing lasers. 

The excimer laser is represented by the example of  KrF, at a wavelength of  248 nm. 
The intensity presented has been achieved, and the goal is to increase this to 1051 W/cm 
in the future, l The Nd laser is of the phosphate glass type, and 1019W/cm 2 corresponds 
to a new-generation system now available, z Information on the CO2 laser refers to an 
intensity that has been in existence for some time now. There is a presumed limit 
of 1016 W/cm 2 for this type of system. 3 Table 4 shows only the smaller of  the intensities 
quoted. 

A general conclusion that can be drawn from Table 4 is that higher frequencies favor 
relativistic conditions. This seems intuitively obvious, except for the reminder that, for 
example, the Nd laser has only about 1 eV per photon. Furthermore, if the COs system is 
extended to 1016 W/cm 2, then this system also enters the relativistic domain, but with only 
0.1 eV per photon. 

1.5. Limits on the Dipole Approximation in Strong Fields 

Most current strong-field experiments are being done in an environment where zr'~ 1, 
and so (see Section 1.3.5) one expects the problem to be non-relativistic. This, in turn, 
leads to the expectation that a dipole approximation should be adequate since the 
usual condition ao/2 ,~ 1 is well satisfied in most strong-field environments, where a0 is 
the atomic radius and ), is the field wavelength. This presumption will now be examined. 

The most naive requirement that one might impose for validity of  the dipole approximation 
is that a free electron, moving parallel to the field propagation direction with a velocity v, 
should travel only a small fraction of a wavelength during a single wave period z. This is 
expressed as 

v z ~ 2 ;  or v ~ v 2 = c ;  or v / c ~ l .  (27) 

1Information kindly supplied by T. S. Luk of the University of Illinois, Chicago Circle. 
2Thanks are due to P. H. Bucksbaum of the University of Michigan for this information. 
3Information kindly supplied by S. L. Chin of Universit6 Laval, Quebec. 
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This is the conventional non-relativistic condition in classical mechanics. However, as 
discussed in Section 1.3.6, an electron in a plane wave electromagnetic field is not free to move 
in a straight line. Instead, any straight-line motion is superimposed on a figure-eight motion 
with amplitude parallel to the propagation direction given by 

Ix t/2 = (( /8)  (c/2o~), (28) 

from Eqn. (19). The factor (c/2~o) is just 1/2n, and when zf<~ 1, Eqn. (20) shows that 
( /8  ~ zf/4. Hence, the amplitude of field-induced motion given in Eqn. (28) is simply 

[x[/2 ~ zf/87r. (29) 

This now gives a condition in terms of field strength as 

zf <~ 1 (30) 

in place of the pure velocity condition of Eqn. (27). 
The above considerations relate to a free electron. What if the electron is associated with 

a binding potential of range a0, where a0 is a Bohr radius? The displacement Ix l should then 
be compared with ao rather than 2. With ( ~ 2zr as before, then Eqn. (28) becomes 

I xl/ao ~ (zr/4) (c/a0 o9). (31 ) 

It is easily shown that the right-hand side of Eqn. (31) is expressible in terms of the 
non-perturbative parameter z of Section 1.3.3, with the final result that 

Ixl/ao ~ ~z /2, (32) 

where ~ is the fine structure constant. To have Ixl/ao small, one must then require 

z <~ 2/~ ~ 300. (33) 

The condition given in Eqn. (33) is surpassed in many present-day experiments, even those 
with zf < 1. See Table 1 for a guide to the intensity requirements. 

The conclusion is that the dipole approximation is in question when the condition (33) is 
violated, rather than the (usually) much milder condition (30). The significance of this result 
has yet to be explored. 

1.6. Characteristics o f  a Strong-FieM Theory 

From the introductory remarks to this point, certain basic features of a strong-field theory 
may already be inferred. 

A strong-field theory must be more than non-perturbative. It is not likely even to be based 
on extensions of perturbative concepts. When the ponderomotive potential exceeds ho9 by a 
large factor (i.e., z >> 1), the notion of an atom absorbing photons one by one on its way to 
a final state is no longer useful. Not only are too many stages involved, but the properties 
of an atomic state are no longer clear cut. States are broadened and shifted beyond 
recognition, and transitions may involve many thousands of photons3 *-6'5°) ATI behavior, 
where high-order processes (often very high orders) are competitive with low orders are the 
rule, not the exception. By now, experimental evidence of  the ATI phenomenon is so 
widespread that only a sampling of early results is referenced here. ~1-53) It was not long before 
multiple states of ionization produced by multiphoton absorption were observed. 0'4'~) (See 
one of the many specific review articles on these subjects for more extensive referencing. A 
recent one is Ref. 55.) As with so many strong-field phenomena that have recently attracted 
much attention, the ATI phenomenon was explicitly remarked upon long before its 
observation. It was pointed out in 1970 that "at  very high intensity a large number of  photon 
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multiplicities become almost equally probable"; ~39) supplemented by a 1971 comment that "an 
extremely high-order process can be competitive with--and even dominate--the lowest 
order". (56) 

An important adjunct of strong-field photoionization or photodetachment is that the field 
has major effects on the electron(s) released in the process. As discussed in Section 1.3.6, a 
free electron immersed in a strong laser field exhibits large-amplitude motions that can 
represent a considerable amount of energy. This was recognized in the earliest work on the 
free-electron processes of strong-field pair production, pair annihilation, and Compton 
scatteringJ 32-34's7.Ss) Energy conservation conditions are substantially modified by the require- 
ment that an electron in a field can not have stationarity as its minimal energy state. The same 
is true when an electron is separated from an initial bound state. This is stated in the 
conservation conditions in the early work on the subject ,  (29-31'56"57) and is even described in 
terms of its physical meaning33t'6°) The observed effect of this field-induced motion of the 
electron (sometimes referred to as 'jitter motion') is to suppress the lowest order processes 
in multiphoton ionization: 31'61) That is, the minimum order permitted by the energy 
conservation conditions is higher when one considers the need to supply jitter motion to the 
electron than when that effect is neglected. This phenomenon was demonstrated experimen- 
tally by Kruit et a1362) (see also Ref. 63). 

An apparently counter-intuitive prediction from theories of extremely strong fields is that 
the transition amplitude can actually decline with increasing intensity beyond some extremal 
value. (39-42'44~9) This was also remarked upon at a very early date and then later overlooked. 
The words used in 1970 spoke of the "seemingly paradoxical result that high field intensities 
lead to smaller transition probabilities than much more modest intensities". ~39) This is almost 
the same as the 1988 statement that "the transition rate exhibits a maximum as a function 
of intensity. Beyond that point an increase in intensity has the counter-intuitive effect of 
decreasing the transition probability"34°) The phenomenon has come to be called "stabiliz- 
ation". It has been found in the theories of so many different types of strong-field phenomena 
that one can probably view this as an expected consequence of strong fields. It must be 
pointed out, however, that stabilization normally is predicted from monochromatic theories. 
It has yet to be demonstrated that the effect is discernible experimentally in a laboratory 
environment where a target is subjected to a laser pulse of complex shape in three spatial 
dimensions and in time. 

The explanation of all of the above characteristics in a single, universally applicable 
theoretical technique is the goal of the methods explicated here. 

2. S MATRICES 

2.1. History 

The S-matrix approach to the description of transitions was introduced over fifty years ago 
by Wheeler, ~64) and owed much of its early development to Heisenberg ~65) and Stiickelberg. ~66) 
For many years, S matrices were used only in quantum field theory, ~67-7°) and in the theory 
of scattering, t71-73) both in its general form and in various applications such as elementary 
particle physics c74'75) and ion-atom collisions376) However, there is no reason to confine S 
matrices to continuum problems or to relativistic problems, and they offer significant 
advantages in many areas in atomic and molecular physics. That is, S matrix methods can 
be applied to every variety of problem: free-free, bound-free, free-bound, and bound-bound. 
S-matrix techniques in multiphoton processes date back about twenty years. ~77) Although the 
most usual application of the S matrix in external-field electrodynamics is in the context of 
perturbation theory, it has been found to be especially useful as a vehicle for non-perturbative 
treatments. °°'31,36'4°'77'78) The essential points about the S-matrix method are that it is 
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very simple in concept and formal statement, clear about specification of boundary 
conditions, and universal in application. 

2.2. Development of  the General S Matrix 

An attractive feature of the S matrix is that it is directly related to the laboratory 
measurement process. A typical measurement is one in which a system is prepared in some 
known state; a physical influence is then brought to bear on this system, which causes changes 
away from the initial state; and then the products of the interaction are examined in order 
to appraise the nature and extent of the changes. These general statements will be given 
formal expression. Generalizations are easily developed in which the transition-causing 
interaction may be still active in the final state, though not in the initial state (or vice versa); 
and there may be latitude in deciding which of two (or more) interactions 'causes' the 
transition, and which is always present. 

The focus of this article is S-matrix techniques as they relate to the calculation of processes 
occurring in very strong electromagnetic fields of frequencies such as might be provided by 
a laser as a source. There will thus be no consideration given here to such very formal 
developments as Moiler wave operators or the analytic S matrix. (79-sl) 

The physical problems most likely to be familiar to the reader are non-relativistic, and that 
case is developed first. Relativistic conditions, in the present physical context, arise as a 
consequence of extremely strong fields in problems that are otherwise nominally non-relativis- 
tic. The relativistic S matrix is therefore also developed. It is then seen to be not only a logical 
extension of the non-relativistic S matrix, but is found to possess inherently covariant forms 
which allow one to appreciate the power and formal beauty of the method. 

2.2.1. Non-relativistic case. The Hamiltonian is taken to consist of two parts: one which 
is present at all times, H0; and an additional part which is presumed to give rise to transitions, 
H~. It is not necessary that H0 be simply a free-particle Hamiltonian. It may itself contain 
non-trivial interaction terms, and may be explicitly time dependent. The interaction Hamil- 
tonian HI may also be explicitly time dependent. The case where Ht 'turns off' at both 
asymptotic times is developed, although this can be generalized, as remarked. For conven- 
ience, asymptotic conditions will be designated by t ~ ~ and t -~ - o0, but in practice these 
asymptotic times may be separated by picoseconds or less of actual elapsed time. The 
Hamiltonian of the system will be stated as 

H = H0 + H~; lim H = H0. (34) 
t~±oO 

The 'non-interacting' asymptotic states • of the system satisfy the Schr6dinger equation 

(ihd,- H0)~ = 0, (35) 

whereas the complete solutions ~v of the fully interacting system satisfy the Schrrdinger 
equation 

(ihd, - H)~P = 0. (36) 

The state ~v~+) is that solution of Eqn. (36) which satisfies the boundary condition 

lim ~[+)(t) = ~i(t). (37) 
t--* - o o  

In other words, ~[+) is the state which is initially non-interacting. It is then subjected to the 
full Hamiltonian H, and eventually emerges from the interaction region to be analyzed for 
an assessment of the manner and degree to which the state has been altered by the interaction. 
This final analysis is generally accomplished within measuring devices where the interaction 
Hamiltonian Hi is no longer in effect, and so the final analysis is done by appraising the 

~ E  16/I--S 
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overlap of the fully evolved state ~vl+) at large asymptotic times onto non-interacting states 
4. Any such overlap, or transition amplitude, is termed an S matrix. That is, 

S~ = lim (4r(t),  ~l+)(t)) .  (38) 
t ~ o 0  

The information contained in the transition amplitudes to a complete set {4 } of non-inter- 
acting states serves to completely define the fully interacting state ~I +). The Sfi expressed in 
Eqn. (38) is in accord with the usual notion of a transition amplitude. 

It bears repeating that t ~ oo in Eqn. (38) simply signifies that the atom or electron being 
analyzed has left the interaction region and entered the final measuring device (ion counter, 
electron spectrometer . . . .  ). Actual elapsed time may be very brief. 

The equations of motion of quantum mechanics are invariant under time reversal, and so 
Eqn. (38) may be replaced by the fully equivalent 'reversed-time S matrix' 

Sfi = lira ( ~ - ) ( t ) ,  4i(t)) ,  
1 4  - - 0 0  

where ~ -~  is that solution of Eqn. (36) which satisfies the asymptotic condition 

(39) 

lim ~ - ) ( t )  = 4f(t). (40) 
f ~ - t -  oo 

The ( _+ ) superscripts on the ~u functions are not necessary when dealing with bound states. 
It is useful to retain them, however, for the formal development. 

It is now desired to eliminate the necessity of evaluating asymptotic limits in order to 
determine the S-matrix expressions. This is accomplished by using Green's operators. The 
retarded Green's operator G~+)(t, to) and the advanced Green's operator G<-)(t, to) both 
satisfy the equation 

(ihd, - Ho)G~±)(t, to) = 6(t  - to), (41) 

based on the non-interacting Hamiltonian H0 of Eqn. (35). One operator propagates state 
vectors forward in time and the other backward in time in accordance with 

G~+)(t, to)4(to) = - ( i / h )O( t  - to)4(t) ,  (42) 

G~-)(t, to)4(to) = (i/h )O(to-  t )4( t ) ,  (43) 

where O(t) is the standard unit step function. The two Green's operators are related by 

G¢-)(t, to) = G~+)t(to, t). (44) 

A formal solution of Eqn. (36) is given by the integral equation 

~ ±)(t) = 4 (t) + f dh  G ¢ ±)(t, tl )HI (tl)~P< ±)(t~ ). (45) 

When Eqn. (45) is substituted into Eqn. (38), the result is 

$6 = lim (4f, 4 i ) +  lim ~dh(4f(t) ,  G~+)(t, tl)nl(tl)~lll+)(ll)), 
d 

= 6fi + lim f d t t (G~- ) (h ,  t)4f(t), H~(t~)~+)(t~), (46) 
l ~ o o  3 
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when Eqn. (44) is used, or, finally, 

(S - 1)n - ( i /h )  fdt(~f, HI mt+)~ Z i / ,  

with the help of Eqn. (43) and the fact that 

(47) 

lim O(t -- t,) = 1. (48) 

The subscript on the variable of integration has been omitted in Eqn. (47) since now only 
one time parameter remains. An exactly analogous procedure gives the alternative S-matrix 
expression 

(S - 1), = - (i/h) f d t ( ~  -), HI ~i). (49) 

An important remark is that the functions • in Eqns (47) and (49) are reference states which 
in no way reflect the presence of the interaction causing the transition. In intense-field 
electrodynamics, much interest attaches to the broadening and shifting of levels that occur 
in the presence of the field. The most straightforward application of S-matrix techniques is 
carried out such that H! contains the effects of the laser field, and so • has no field effects. 
These effects are confined entirely to the states 7L It is a convenient feature of the S matrix 
formalism that such field effects need not and should not be considered in the • states. 

Equations (47) and (49) are exact. They provide a powerful tool which can be used as the 
foundation either of perturbative or non-perturbative calculational techniques. Specifically, 
Eqn. (47) is employed in Ref. 74 as the basis for development of Feynman diagram techniques 
in all generality. Included among the applications is the interaction with electromagnetic 
fields, where the full power of the Feynman diagram technique of gauge-invariant quantum 
electrodynamics can be based on Eqn. (47) or (49). 

2.2.2. Relativistic spinor case. The classic textbook of Bjorken and Drell ~74) provides a 
development of the relativistic S matrix in a physical context which is not dependent on the 
formal developments of quantum field theory. Yet the results are, in fact, identical to what 
is constructed in quantum field theory with the formalism of the Wick theorem ~67-7°) and all 
that goes with it. Yet even the development given by Bjorken and Drell ~74) is not direct nor 
is it made manifestly covariant until the final stages. The alternative derivation given here 06,78) 
exactly duplicates the Bjorken and Drell S matrix, but in a succinct derivation which parallels 
the non-relativistic treatment in the preceding section, and yet achieves a covariant form at 
an early stage. 

The relativistic problem comes in two varieties for our purposes. An electron possesses 
intrinsic spin of h/2, and so it is properly treated by means of  the Dirac equation. This is 
a first order differential equation, which is very simple in form. That seeming simplicity arises 
as a consequence of the fact that the wave function is a spinor and not a scalar quantity, 
and the entire problem is formulated in the four-dimensional Dirac matrix space. Basic 
expressions are easy to derive, but practical computations can be extremely difficult to carry 
through to completion. An alternative is to neglect the intrinsic spin of the electron while 
maintaining a relativistic theory in all other senses. This is done by treating the electron as 
a scalar particle whose state vector obeys the Klein-Gordon equation, which is a second order 
differential equation. There is the added complication that the definition of a scalar product 
in the Klein-Gordon space is more complicated than for the Dirac case. Yet, because there 
are no Dirac matrices to consider, practical computations are generally easier to accomplish 
than for the spinor Dirac case. The Dirac problem will be treated first because of the seeming 
simplicity of the formulation. 
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The starting point for the Dirac relativistic S matrix will again be the physically motivated 
Eqn. (38) or (39). In other words, one wishes to evaluate the consequences of an interaction 
by direct comparison of the final outcome of the interaction with a non-interacting state as 
reference. It is now convenient to incorporate the asymptotic 'starting' conditions (37) and 
(40) directly into the S-matrix expression. That is, simple orthogonality allows one to replace 
Eqn. (37) by the expression 

lim (~f(/), ~l+)(t)) = fin. (50) 

This combines with Eqn. (38) to give 

(S - 1), = lim (4~f. ~vl+) ) - lim (¢~f. ~I+)). (51) 
t ~  -b of 3 l ~ - - o o  

since tS~ is just the matrix element of the unit operator. In like fashion, Eqns (39) and (40) 
combine to give 

(S - 1)fi = lim (~}-), 1~i) - -  lim (~}-), ¢~i). (52) 
l ~ - - ~  t ~ + ~  

Equations (51) and (52) could also have been used in the non-relativistic case. They are 
entirely general, with a well-defined physical meaning. It is now desired to express these 
equations in terms of relativistic state vectors. As a preliminary, Eqn. (51) will have its inner 
product expressions rendered in the equivalent form of an integration over all space. This 
is done by using the Dirac metric to express the inner product in the form 

(a~, ~)= f d~ra~*~" = f d~r~,°~ ", (53) 

using the standard definition of the Dirac adjoint as 

~3 = ¢~ty0, (54) 

when y 0 is the Dirac matrix (see the definitions of the Dirac matrices contained in Ref. 74) 
which has the property (70)2= 1. This puts Eqn. (51) in the form 

( S - 1 ) ~ =  t-+~lim fd3r,~r~,°~'l +)- ,--~lim fd3r~fe°~'l +), (55) 

where now • and ~P are to be regarded as spinor solutions of the Dirac equation and no 
longer as scalar solutions of the Schr6dinger equation. Clearly, Eqn. (52) can be rewritten 
in an analogous way. 

The above expressions will now be converted to a covariant form. Consider a four-dimen- 
sional space-time Minkowski space with origin at the event corresponding to the occurrence 
of the quantum-mechanical transition to be described. Let ~f be a flat, constant-time surface 
at a large positive time, and let zi be another such surface at large negative time. The surface 
zf will have its normal lying along the direction of the positive time axis, and take the normal 
to the surface ~c i to be in the negative direction of the time axis. If  the times corresponding 
to zr and 'r i have the same absolute magnitude, then xf will intersect the forward light cone 
from the origin in a hypercircle of the same radius as that with which zi intersects the 
backward light cone from the origin. These intersections can then be connected by a 
hyper-circular cylindrical surface xs which has a spacelike normal everywhere, directed 
outward away from the time axis. The geometry of this configuration is shown in simplified 
fashion in Fig. 1, rendered in a Minkowski space with only one spatial dimension. The union 
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FIG. 1. Surface of integration in space-time represented 
in Eqn. (56) for use in the integration in Eqn. (57). 

FIG. 2. Covariant generalization of the surface of inte- 
gration shown in Fig. 1. This is the surface employed in 

Eqn. (59). 

of these hypersurfaces constitutes a closed surface Y, with outwardly directed normal 
everywhere, i.e. 

= "~fU T i U T s • (56) 

If  the time associated with ~r approaches + ~ (so that the time on Ti approaches - ~ ) ,  then 
the surface ~s will approach an infinite spacelike distance from the origin, i.e., from the 
quantum transition event. The state vectors can then be taken to approach zero on %. Hence 
the right-hand side of Eqn. (55) can be rewritten as the surface integral in four-space 

lim d3r~f~°~l+) - t l_imo0 d3r~fr°~l +) - u  (+) 
t.-* + CO 

The scalar product of two four-vectors employed in Eqn. (57) is given in general by 

a~,b"  = a " b  u =. a ° b  ° - a'b.  (58) 

That is, the conventions used in Bjorken and Drell (Ta) continue to be employed. The surface 
Y. of Eqn. (56) may now be generalized so that the surfaces zr, "ci are no longer flat, although 
their normals must still everywhere be timelike; and the surface ~ is now no longer perfectly 
a hypercircular cylinder, although its normal must still everywhere be spacelike. This 
generalization of Fig. 1 is rendered in Fig. 2 with one spatial dimension. With this generalized 
notion of Z, the Lorentz-covariant statement of the S matrix is 

(S - 1)a = .~ d t r ,~ rT"~  +). (59) 

The V" in Eqn. (59) are the Dirac matrices ?0, ), ,, V2, ~3 employed with the conventions adopted 
by Bjorken and Drell374) Equation (59) is in a form in which the divergence theorem in 
four-space can be directly applied, leading to 

(S -- 1)~ = fd4x  O~,(~ryuTJl+)). (60) 
J 
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It is now necessary to introduce the equation of motion for an electron in the simultaneous 
presence of an atomic binding potential and of the laser field. It is necessary to depart 
temporarily from the covariant expressions in Eqns (59) and (60) since the standard practice <82) 
of using a fixed center of force for the binding potential will be adopted here. This, of course, 
destroys covariance; but the group-theoretical approach <83,s4) which, in principle, would allow 
one to retain covariance for bound states has not been implemented for the Coulomb 
potential. For the fully interacting state 7 j, the Dirac equation is 

(iTrOr -- eTrAr - ~°V - rn)~ = 0, (61) 

which has the adjoint equation 

cP(i~r~ r + e~rAr + y°V + m )  = O. (62) 

The backward-directed arrow on the 0 u operator in Eqn. (62) is meant to indicate that it 
operates to the left. That is, 

9iyr?~, = (0 r 9 ) iy  r, (63) 

where the 7 r must be retained to the right of ~ to preserve the meaning of an adjoint spinor 
in the Dirac matrix space multiplied into the square Dirac matrices ~r. The transition-causing 
interaction is taken to be the laser field represented by the four-potential A r, so the 
non-interacting Dirac equation is 

(i7 r 0 r - 7°V - m)~  = O, (64) 

with the adjoint equation given by 

~(iY r ?u + 7 °V + m) = 0. (65) 

If  Eqn. (61) for ~v}+) has 7~ r multiplied into it from the left, and Eqn. (65) for 7~ r is multiplied 
on the right by ~}+), the resulting pair of equations can be added, giving rise to 

(66) 7~r(iTu 0u + i7 r ~r - eyUAu)~I +) = 0. 

This can be rewritten as 

0u(~rTu~l +)) = -- iU~reAuv.~l+) , 

which puts Eqn. (60) into the final form 

(S - 1)~ = - i Id4xT#feA ry r ~vl+). 

Analogous procedures can be used to convert Eqn. (52) to 

(S - 1)~ = - i f d4x ~}-) eA r~r ~[~i" 

(67) 

(68) 

(69) 

Equations (68) and (69) are the final 'direct-time' and 'time-reversed' forms of the Dirac S 
matrix for laser-field induced transitions. Alternative terminology to be found in the literature 
is that the direct-time form is called the post form, and time-reversed is referred to as prior. 
As will be seen below, the time-reversed form has powerful advantages for the treatment of 
intense-field photoionization problems. 

A sometimes-useful alternative form to Eqn. (68) is 

- -  i f d4xU~f(iy r d r - ~°V  - m~qJ(+) (70) (s 1)~ i ~  i , 

J 
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found with the help of the equation of motion for ~,  Eqn. (61). For later reference, we note 
that the operator contained between the two states in Eqn. (70) is exactly the operator from 
the non-interacting equation of motion, (64). 

2.2.3. Rela t i v i s t i c  sca lar  case.  The relativistic scalar-particle, or Klein-Gordon problem (Ts) 
can be treated in essentially the same way as the spinor-particle or Dirac problem. °6) The 
starting point again is Eqn. (51) or (52). A central distinction between the scalar and spin-l/2 
cases lies in the different metric appropriate to the state space. The Dirac method in Eqn. 
(53) must be replaced by the (time projection of the) Klein-Gordon metric 

f ( 4 ,  ~ )  = d 3 r ~ * ( i O  ° - 2eA°)~, (71) 

where the double-arrow notation is defined to mean c74) 

aiO° b - a (  i O°b ) - (i O°a )b. (72) 

It is understood now that the ~, and ~ states are no longer spinor states, but are scalars. The 
adjoint of the wave function • is no longer given by Eqn. (54), but is simply the complex 
conjugate of 4, designated by the asterisk superscript. The next steps follow exactly as in the 
Dirac case, leading to the replacement of Eqn. (59) by 

1)~ = ~ d a u q ~ ( i O r  - 2eA r)~(+), i " (73) (s 

The Klein43ordon metric exhibited in Eqn. (73) is the covariant extension of the time 
projection of that metric that appeared in Eqn. (71). Application of the four-divergence 
theorem gives 

i f d ' x i  O r [ ~ r  (iO u - 2eA  r)TJ}+)]. (74) ( S  1)n l 

Recourse to the Klein-Gordon equation for 7 j and the adjoint Klein-Gordon equation for 
q~* allows Eqn. (74) to be converted to the final form 

1)n - i  f 4 . (+) (75) (s - = d X(~f "~KG ~Pi ' 

for the direct-time S matrix, or 

--i 1" d4x~-)"  ~V'KG ~i, (S -- 1)6 = 
. /  

(76) 

for the time-reversed S matrix, with the definition 

~t/'~: G = ie (d~A r + A r Or) - e 2 A ~ A  r. (77) 

An essential step in the progression from Eqn. (74) to the final form (75) involves recourse 
to the Klein-Gordon equation, which has not yet been stated. For the complete state ~, this 
is 

{[i 0 r - e A  u --  guo V] [i 0 ~ - e A  ~ --gUO V] - -  m 2} ~ = O, (78) 

where g~0 is the/~, 0 component of the metric tensor grV of  special relativity, V is the Coulomb 
potential of the atom (presumed, as earlier, to be represented by a fixed center of  force), and 
A r is the four-potential of  the laser field. With the relativistic conventions used here, we have 
g~0 = 6~0, in terms of the usual Kronecker delta. An alternative way to write Eqn. (78) is 

{[i 0 r - guo V] [i 0 r -- gr°V] - ~¢"KG - -  m 2 }  1/1 = 0, (79) 
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in terms of the ~ : ~  of Eqn. (77). Separability of the laser interaction (as contained in ~ : ~ )  
and the Coulomb interaction (g~°V) in Eqn. (79) is non-trivial and not universal, and is the 
subject of several later comments. The Klein-Gordon equation for 4~* is also needed, which 
is found simply from Eqn. (79) with C~:G removed, and the remaining equation complex 
conjugated. 

There is an important constraint in the derivation of Eqn. (79). To be able to eliminate 
the cross terms between the gu°V and eA u potentials that exist in Eqn. (78), it is necessary 
that the plane-wave laser field be represented in the Coulomb gauge (also called the radiation 
gauge) so that eA 0 = 0. If  one uses instead the 'length gauge', where the principal contribution 
to the laser field potential is the scalar potential ecf'r, then the laser field and the Coulomb 
potential will be strongly coupled in Eqn. (78) and no such separable result as Eqn. (79) is 
possible. This is the basis of an important distinction between Keldysh-like theories to be 
treated later. 

2.3. Gauge Transformations in the S-Matr ix  Formalism 

The point of view adopted here about gauge transformations in transition amplitudes ~85) 
is the same as that conventionally employed in other fields such as high energy physics ~74) or 
nuclear physics386) This point of view is that gauge invariance of a transition amplitude is the 
statement that an expression such as Eqn. (47) refers to an arbitrary gauge, unspecified a 
priori. This is not as trivial a statement as it might seem. Suppose Eqn. (47) refers to 
laser-introduced transitions where there is no electromagnetic field dependence in H0, and 
hence none in ~f. The interaction Hamiltonian HI and hence the interacting state ~i will be 
field dependent. Then the S matrix in gauge 'a' is 

and in gauge 'b' it is 

(S - 1)~ = - (i/h) f d t ( ~ f ,  H~ a) --im~'~)~,, (80) 

(S - 1)n = - (i/h) f d t (q~r, H~ b) 7t I b) ), (81) 

where superscripts ( + ) will be suppressed for now. The state ~f in both expressions is the 
same state, since in both instances it refers to a solution of Eqn. (35) for the same set of 
quantum numbers, and a gauge transformation is of no consequence for a state that does 
not depend on the electromagnetic field. 

The above definition of gauge invariance of a transition amplitude is here termed 
'strong gauge invariance', although it appears to be so straightforward that a special 
name hardly seems warranted. However, views contrary to the above are not hard to find 
in the literature in atomic, molecular, and optical physics. The reason is that a gauge 
transformation not only changes the potentials representing the field, but in quantum 
mechanics it also implies a phase transformation of the wave function. That is, the gauge 
transformation of the scalar potential ~b and vector potential A generated by the scalar 
function ~(r, t): 

dp .--, dp" = ~ -- OK/O(ct) (82) 

A ~ A' = A + VZ, (83) 

implies also the transformation of the wave function 

~P ~ ~ '  = exp(iex/hc)~.  (84) 
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Some authors, therefore, regard the carrying out of a gauge transformation as requiting that 
each wave function in a transition amplitude must be subjected to the transformation given 
in Eqn. (84). Those authors would write, in gauge 'a' 

(S - 1)[ ~) = - ( i / h )  fdt(cPf, Hi ~) ~Pl~)), (85) 

and, in gauge 'b' 

(S - 1)~ b) = - (i/h) fdt(¢Pt b), H~ b) ~ ) ) .  (86) 

That is, it is presumed that there is a starting gauge in which no gauge transformation 
factor needs to be attached to the non-interacting wave function ~, but that the 
gauge transformation to a new gauge requires that phase factor, even on ~. Hence • occurs 
without factor identification in Eqn. (85) since there is no transformation, but then gauge 'b' 
must have such a factor, as in Eqn. (86). Gauges 'a' and 'b' are then, ipsofacto, not equally 
fundamental, since the 'bare' non-interacting state can be employed only in one gauge. By 
implication, this is therefore a preferred gauge. Some extended reasoning has been pre- 
sented (s7-9°) as to why one particular gauge should not have a phase factor attached to the 
non-interacting state, even though this would require that the non-interacting state must be 
transformed in all other gauges. The dilemma posed by the conflict between this situation 
and the concept of strong gauge invariance is clarified by the considerations of the following 
section. 

2.3.1. Gauge transformations andphase transformations. There is a fundamental distinction 
between a gauge transformation and a phase transformation. A gauge transformation always 
implies a phase transformation of the wave function, but the converse is not true. The 
gauge transformation has already been defined. It is simply a change in the potentials 
used to represent an electromagnetic field, done in such a fashion that the electric and 
magnetic fields so represented are unchanged by the transformation. <9~-93) This is true of Eqns 
(82) and (83). The gauge transformation of the potentials can be stated succinctly in 
relativistic notation as 

A~-., A , ' =  A,--d~X. (87) 

In quantum mechanics, one must also transform the wave function as in Eqn. (84)36s'94) The 
application of the set of transformations (82), (83) [or, equivalently, (87)], accompanied by 
Eqn. (84), is known as a 'gauge transformation of the second kind'. ~6s'94) Equation (84), taken 
by itself, can be regarded as the definition of a phase transformation. The above remarks can 
be rephrased to say that when the potentials are gauge transformed, then the wave function 
must simultaneously be phase transformed. It is shown here that the inverse is not true. A 
phase transformation applied to the wave functions does not necessarily imply a gauge 
transformation of the potentials. 

A phase transformation will now be introduced in the relativistic spinor S matrix of Eqn. 
(68) with ( + ) superscripts suppressed. This case is selected because the first-order, non-differ- 
ential interaction operator associated with the relativistic spinor S matrix minimizes 
complication, and hence maximizes transparency of meaning. The phase transformation is 
introduced into the integrand in Eqn. (68) as the unit operator in the form of a product of 
direct and inverse phase transformations, or 

~feAU~ ~1 i = ~feAU~, exp(-- iez)exp(iez)~ i = exp(iex)~feA'~ exp(iex)~i, (88) 
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since exp(-iez) commutes with eAZ?,.  Hence Eqn. (68) is exactly equivalent to 

(S - 1)fi = - i f d 4 x ~ e A  ~'y~, ~P~, (89) 

where the primes on the wave functions indicate functions phase transformed as in Eqn. (84). 
However, Eqn. (89) retains the interaction eA ~'~,, so that no gauge transformation has taken 
place. By comparison with Eqn. (68), it is seen that a phase transformation has been 
accomplished without any gauge transformation. 

Contrast the above situation with a gauge transformation, carried out in accordance with 
the strong gauge invariance principle expressed in Eqns (80) and (81). For ease of comparison, 
suppose that gauge 'a' quantities are represented with no prime, and gauge 'b' quantities are 
rendered with a prime. Then the relativistic gauge 'a' expression is identically the same as 
Eqn. (68), and the gauge 'b' expression is 

f 4 - -  #t I ( S -  l)fi= - i  d x ~ f e A  7u~i, (90) 

in terms of the gauge-transformed A ' '  of Eqn. (87). The distinction between the gauge-trans- 
formed Eqn. (90) and the merely phase-transformed (89) is clear. 

Apart from the obvious algebraic differences between Eqns (89) and (90), there are other 
important distinctions. Equation (89) patently has the same physical content as Eqn. (68), 
since they differ only in that a unit operator is introduced into the integrand. This is definitely 
not obvious for a comparison of Eqn. (90) with (68). In terms of unprimed quantities, Eqn. 
(90) is 

(S  - 1 )~ = - i f d4x~r(eA ~' - a ~'X)~, exp(ie~) ~'i. (91 ) 

Equivalence between Eqn. (68) and (91) is not in the form of an identity. In fact, the demand 
that (68) and (91) should--by virtue of gauge invariance--give the same results can be used 
as a device for extracting conditions imposed by gauge invariance. In practical application, 
the way to demonstrate equivalence is to carry calculations to completion in both gauges and 
then compare the results. In a non-relativistic context, and with a very different point of view 
than represented here, this was done by Forney, Quattropani, and Bassani. (95'90 They find 
exact equivalence between the length and velocity gauges for two-photon transitions in 
hydrogen when all intermediate states are included in both calculations. The details of the 
calculations and the relative contributions of particular intermediate states are quite different 
in the two gauges, but the final results are the same. This agrees with the conclusions of 
Fried, (97) done in a spirit much closer to the present work. 

A phase transformation introduced as in Eqns (88) and (89) has no effect on the transition 
amplitude, and has no connection with a gauge transformation, but it does have conse- 
quences. The non-interacting Dirac equation (64) gives 

(i~, ~ ~ -- ),°V - m)exp(-- ie~)~" = exp(-- iex)[?"(i ~ + e ~ X )  - 7 °V  - m]¢~', (92) 

so the phase-transformed non-interacting spinor satisfies the equation 

[7~(i ~ + e d~X) - Y °V - m]¢~' = 0, (93) 

rather than Eqn. (64). The corresponding equation of motion for the phase-transformed fully 
interacting state ~ '  is 

[~(i d~ - eA, + e d ~ X )  - ~ ° V  - m ] ~ / "  = 0 ,  ( 9 4 )  

in place of Eqn. (61). 
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Notice that Eqn. (94) is algebraically equivalent to 

[~,v(i ~v - eA'~) - ~ , ° V  - m ] ~ P '  = 0 ,  ( 9 5 )  

for the gauge-transformed interacting state ~ ' ,  when Eqn. (87) is used. This is an obvious 
possible source of confusion. In a phase-transformed S matrix, such as (89), it is Eqn. (94) 
which is appropriate. This is because the interacting state must be evaluated in terms of the 
phase convention established by the non-interacting state. That is, for the phase-transformed 
S matrix, the analog of Eqn. (70) is 

1)n = - i ~ d 4 x ~ [ ~ ( i  ~ + e d~Z) - ~°V -- m]~V~, (96) (s 
t /  

involving the operator from the equation of motion of the non-interacting state (93). By 
contrast, the S matrix for the gauge-transformed S matrix remains in the form (70), only with 
~v replaced by ~u,. In other words, Eqn. (94) is the appropriate equation of motion for the 
merely phase transformed ~P', and Eqn. (95) is appropriate for the gauge-transformed ~' .  

2.3.2. Non-Relativist ic  Gauge and Phase Transformations. The relativistic treatment of 
gauge and phase transformations was performed first because of the simplicity provided by 
a first order equation of motion with a non-differential interaction term. The non-relativistic 
case is significantly more complicated, but it can be easily understood in light of the above 
work for the Dirac problem. Now the non-interacting Schrrdinger equation is 

(ih ~, - V - p2/2m)~ = 0, (97) 

and the interacting Schrfdinger equation is 

[ih 0 , -  edp - V - (p - eA/c)2/2m]~ = 0, (98) 

where p is the usual - i h F  operator, and t# is the scalar potential of the laser field. The 
difference between the operators in Eqns (97) and (98) gives the interaction Hamiltonian 

H~ = ( 1 / 2 m ) [ - e A ' p / c  - p'eA/c + (eA/c) 2] + e~b. (99) 

It is clear from Eqns (98) and (99) that no particular gauge has been selected. It is entirely 
arbitrary. 

Following the model of Eqn. (88), a phase transformation is introduced into the 
non-relativistic S matrix of Eqn. (47). The result is 

(S - 1)a = - ( i / h )  dt(#~, HI ~(). (100) 

This differs from Eqn. (89) in that now H~ transforms to H~ because e x p ( - i e x / h c )  fails to 
commute with Hr. The phase-transformed interaction Hamiltonian is 

HI (phase) = H! + (e2/mc2)A" V~f. (101) 

This is quite different from the gauge-transformed interaction Hamiltonian. From Eqns (82) 
and (83) employed in (98), the gauge-transformed interaction Schr6dinger equation is 

[ih dt - e~b + e ~ t  Z / c  - -  V - -  ( p  - -  e A/c -- e V)~/c)2/2m ] ~P = 0. (102) 

The non-interacting Schr6dinger equation remains (97), and the gauge-transformed inter- 
action Hamiltonian can be written as 

HI (gaug¢) = H~ (phas¢)+ (1 /2m)(e  Vx/c) 2 -- (e V x / m c ) ' p  + ( ihe/2mc) V2)~ - -  e(0tZ)/c. (103) 

Only for the trivial case X = constant are H~ ~'u~) and H~ ~ph~) the same. 
The significant algebraic complications associated with the non-relativistic phase and gauge 

transformations may well be the underlying reason that the subject of gauge transformations 
in transition amplitudes has been for so long a source of confusion and contention in the 
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community of atomic, molecular, and optical physics. The Dirac case is clear and clean, and 
for that reason was presented first. 

3. APPROXIMATIONS TO THE EXACT S MATRIX 

3.1. Perturbation Expansions 
The transition amplitude in Eqn. (47) or (49) represents the complete solution to a physical 

problem. Equation (47) is reproduced here for convenient reference. 

(S - 1)fi = - ( i / h )  fd t (~ f ,  H, ~(+)~, ,, (104) 

where the states ~, 7 j satisfy 

(ih ~ , -  Ho)tP = O, (105) 

(ihOt-Ho-H~)tP =0.  (106) 

It is often true that an exact solution for • is known. Were an exact solution for 7 t also 
known, then transitions could be predicted precisely. Generally, the equation of motion for 

cannot be solved exactly, and some type of approximation must be made. By far the most 
common approach is by perturbation theory, which will be developed here to contrast with 
the following non-perturbative treatments. 

As shown in Eqns (41)-(45), a formal solution for ~ can be written in terms of the Green's 
operators for Eqn. (105). It is, however, an integral equation, implicit in form. As given in 
Eqn. (45), the complete solution for ~P is 

~(+)(t) = ~(t) + f dtl G(+)(t, tl)Hl(tl)~(+)(tl). (107) 

If HI is a small perturbation on H0, then a reasonable leading approximation for ~ is simply 
to neglect the integral in Eqn. (107), and call this the zeroth approximation for ~u, 

~(+)(o) = q~. (108) 

When this is substituted in the S matrix, Eqn. (104), the first approximation is obtained, 

( S  - 1 )~  ~) = - -  (i/h) fdt( f, HI ~ i ) .  (109) 

The convention for numbering approximations as 'zeroth', 'first', . . . .  is determined by the 
number of factors o f / / i  which appear in the expression. Equation (109) is well known as a 
transition amplitude in first order perturbation theory. The next approximation is found by 
substituting Eqn. (108) in the integrand of the integral equation (107) to obtain 

~(+)°)(t) = ¢(t)  + fd t l  G(+)(t, t l )Hl(t l)~(t ,  ), (110) 

(S - 1)~ 2) = -( i /h)  ~dt(~r,  H i ' i )  
d 

(i/h) jdt Jdt l  (~f(t), 1"11 (t)G(+)(t, tl)Hi (tl)~(tl)). (111) 

This gives the S matrix accurate to the second order in H I. The next term is found by the 
substitution of 97o) from Eqn. (110) into the integral in Eqn. (107) to find ~(2). That is then 
employed as a replacement for ~ in the S matrix expression (104) in order to find (S - 1)~ 3), 
and so on. 
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The convergence of this process is generally very difficult to assess. In principal, there will 
be a formal radius of convergence. If that is exceeded (which may not be manifested by easily 
recognizable signs), the outcome will not only be numerically unreliable, but will generally 
have a misleading analytical character. Furthermore, a perturbation expansion may lose 
practical utility even before a formal radius of convergence is reached. In Section IX of Ref. 
31, a heuristic technique is presented for evaluating the radius of convergence of perturbation 
theory for multiphoton atomic ionization. The method may actually be fully rigorous, but 
that has not been proven. 

In general, one judges the probable usefulness of a perturbative approach by comparing 
an order-of-magnitude estimate for In~) with a similar estimate for IH01. If I//11> In01, then 
clearly perturbation theory is not applicable. The opposite inequality, however, does not 
establish the utility of perturbation theory. As discussed in Section 1.3.3 on the subject of 
the non-perturbative intensity parameter, the problems of interest in this article fall 
exclusively outside the domain of perturbative solution. 

3.2. Non-Perturbative Expansions 
An important variation on the theme of perturbation expansions will be discussed here. 

Although it is uncommon, it occurs in the theory of strong-field ionization. Suppose that the 
non-interacting state ¢) of Eqn. (105) has a Hamiltonian H0 which is itself a sum of two 
parts, (31) i.e., 

Ho --/~o + V, (112) 

H =/--7o + V+H~. (113) 

Since ~ depends on both V and HI, it may prove useful to expand ~ in terms of V rather 
than/-/i. However, the S matrix contains HI, the interaction which "causes" the transition, 
as determined by the construction of the S matrix. The counting of the orders of 
approximation in the fully interacting state vector and in the S matrix, as described in the 
preceding section, is then disrupted. This procedure is neither a perturbation expansion in 
V nor in H=. It is useful when H~ is a larger influence than V. 

3.3. Analytical Approximations 
A lack of precise knowledge of the fully interacting state ~ is the underlying reason for 

resort to approximation methods. The most obvious procedure is to expand ~e in powers of 
HI, as in the perturbation method. An alternative, described above, is to use an expansion 
in V, when H has the property given in Eqn. (113). However, it may be possible to employ 
an analytical approximation for ~' which is not of the form of an expansion. A method of 
great current interest makes use of the Kramers-Henneberger (37'3s) transformation to alter the 
form of ~. This altered form can then suggest further approximations °°'9~-1°°) which do not 
depend on expansions in powers of an interaction. Even if the transformed wave function 
is so expanded, the final form for 97 after inverting the Kramers-Henneberger transformation 
will no longer be a simple expansion. In application, the methods based on the 
Kramers-Henneberger transformation have all required the high-frequency approximation 
that ho~ > EB, the binding energy of the system. (41'~°°'~°~) 

Keldysh-like theories can be regarded as of the type employing analytical approximations 
for ~v. This may take the form of an approximation on ~'~+) in Eqn. (47), as in the Faisal 
approach; °°) or on ~ - )  in Eqn. (49), as in the method of Keldysh (29) or of the author (3~'36'7s) 
This last work can alternatively be viewed as a non-perturbative expansion. 

Keldysh-like theories, in their most general form, offer the prospect of a very general 
structure vafid for all strong fields (defined by z~ > 1), for the entire frequency range, and 
directly extendible into the relativistic domain. They are most naturally expressed in an 
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S-matrix context. Much of the remainder of the present work is devoted to the explication 
of this subject. 

4. K E L D Y S H - L I K E  THEORIES 

4.1. History 
4.1.1. Keldysh-Faisal-Reiss (KFR) theory. Probably the most cited paper in the vigorous 

and mushrooming subject of the physics of bound states subjected to strong fields is the 1964 
paper of L. V. Keldysh. (29) It was nearly contemporary with the early work on the free-electron 
strong-field problem, (3:-34"57'5s) and was applied in the original paper both to solid state and 
atomic problems. The Keldysh method is unambiguously non-perturbative, and has served 
as a paragon of such methods from its inception. Different, but unquestionably related, 
methods proposed by Faisal (3°) and the present author f31'36'78) have come to be collectively 
referred to as the K F R  method. The practice seems to have originated with Bucksbaum et 
al., ~t°2) and has been widely followed. 

The Keldysh method is presented by its author as an Ansatz, but it can be understood very 
directly as an application of Eqn. (49). The required solution for ~f for the complete 
final-state of the electron subjected to both laser and Coulomb fields is replaced by ~GV, the 
Gordon-Volkov solution t26'27) for a free electron in a plane wave electromagnetic field. This 
amounts to the presumption that the laser field dominates the Coulomb field in the final 
state---clearly a strong-field condition. A defining feature of the Keldysh method is that HI 
is taken to be the length-gauge interaction Hamiltonian 

H~ L) = eS"r.  (114) 

Another critical element of the implementation of the technique is that the condition of high 
multiphoton order is imposed at an early stage to ease analytical difficulties, even though it 
is not inherent in the initial Ansatz. Thus, the method does not fare well when compared with 
low-order experiments. °°3-~°~) The 1964 Keldysh paper referred both to solid state and to 
atomic applications. In atomic photoionization experiments, it is almost standard (2-4'5~:°2:°7-"5) 
to include a qualitative or numerical comparison with the predictions of Keldysh. 

In 1973, Faisal °°) expressly used the S matrix of Eqn. (47) in his formulation of the 
photoionization problem. The core difficulty of finding a way to treat the fully interacting 
state ~ul+) was treated by first carrying out a Kramers-Henneberger transformation, and then 
making a simple approximation for the transformed state. An additional approximation was 
introduced in that the final state, ~r, nominally a Coulomb scattering state, was replaced by 
a simple plane-wave free electron state. The Faisal paper contains no calculations or worked 
examples, and no application was made of the method for many years. In particular, there 
was no appreciation that there might be any connection at all between the Faisal method and 
the Keldysh method. They appear to be entirely different. 

A method clearly related to the Keldysh approach was proposed in 1977 by Jones and 
Reiss o t6) in application to photon-induced transitions in band-gap solids. On the basis of the 
same Ansatz used by Keldysh, but with the velocity gauge or Coulomb gauge interaction 

H~ c) = - e A. p/m + (e A)E/2m (115) 

used in place of the length gauge interaction of Eqn. (114), it was found possible to greatly 
reduce the analytical complication and to obtain results without the need for ab initio use 
of a large photon number approximation. 

In a 1980 paper, °~) the present author re-evaluated the atomic photoionization problem 
from a completely formal application of Eqn. (49) with no Ansatzen at all. The state ~'~-) 
was given formal expansion in powers of V, the Coulomb potential, and the leading term of 
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the expansion was adopted. This gives the same qualitative outcome as the Keldysh method, 
although it displays the detailed basis for the method and exhibits the correction terms. As 
with the Jones and Reiss approach, the formulation is in the Coulomb gauge, the results are 
more tractable than the length gauge formalism, and there is no need for large photon-order 
assumptions. 

From what has just been said, it appears that the methods of Keldysh and of the author 
are essentially the same, except expressed in different gauges, with some consequent 
advantages to the Coulomb gauge work. There was no obvious relationship between the 
Keldysh-Reiss derivations and the Faisal method. Two surprises were in store. One was that, 
although numerical fitting of the Keldysh theory and the Reiss theory to the same experiments 
were generally similar, the differences were nevertheless somewhat larger than one might 
expect. (In an exact theory, different gauges will give the same answer, but there will be 
distinctions in an approximate theory.) The other surprise, not realized until the first detailed 
agreement between theory and strong-field experiment was found in 1986--7, ~117'11s) was that 
the analytical form of the Faisal theory was identical to that of the Reiss theory, despite the 
very different provenances of the two methods. These two unexpected results are given further 
elaboration in Section 4.5 below. 

4.1.2. Tunneling theories. The K F R  theories all yield essentially the same low frequency 
strong-field limit that the transition probability behaves as exp(-280/3g),  where 8 is the laser 
electric field strength and 8 0 is the Coulomb electric field at the location of the first Bohr orbit 
in an atom with binding energy EB. (In the Keldysh theory, this is specifically for ground-state 
hydrogen. For the others it is more general.) This is precisely the form obtained in theories 
of the ionization of an atom by a constant field through the mechanism of  tunneling through 
the potential barrier3 ~ 19.120) This type of tunneling behavior was found in other early theories 
of strong-field ionization. 

Detailed results of the tunneling type, with explorations of angular distributions, polariz- 
ation dependence, and so on, were found both by Nikishov and Ritus ~59'1:1) and by Perelomov, 
Popov, and Terent'ev36°'122) The first Nikishov and Ritus paper was concerned with 
short-range forces, and the second added Coulomb forces. Perelomov et al. obtain results in 
the form of a sum over multiphoton processes, which is a precursor of the form in which 
Faisal-Reiss appear naturally. Recent refinements by Ammosov et al. ~123) extend the work of 
Perelomov et al. to the case of  arbitrary initial atomic states and elliptical states of field 
polarization. 

4.1.3. Other related theories. A theory due to Szrke t1°9'124~ is based on the time-reversed S 
matrix of Eqn. (49), but introduces ad hoc corrections in the theory as a way of obtaining 
a fit to data in which the Zl values are less than unity. This has good success for those data 
for which it is intended, but it does not do well when Zl > 1. °15> The approach arises from 
the notion 11°9'124) that the initial state should be dressed by the field, which is explicitly not 
true when applying the time-reversed S-matrix formalism. In the spirit of strong-field S-matrix 
methods expounded here, • is well-known and independent of laser-field effects. 

Another theory due to Becker et aL (125'126) is constructed similarly to the K F R  theories, but 
it involves ad hoc 'final state' corrections involving continuum-continuum interactions, and 
an effective interaction Hamiltonian which enforces an 1" behavior on the transition 
probability, where 1is the laser intensity and n is the number of photons absorbed. This, also, 
is outside the spirit of the formally well-defined S-matrix techniques that are the subject of 
this article. 

4.2. Gordon-Volkov  Solutions 

The Gordon-Volkov solution is an exact solution of the quantum mechanical equation of 
motion for a free, charged particle in a plane-wave electromagnetic field. It has been known 
since the early days of quantum mechanics, ~26) and has been rediscovered several 
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times. (27'34'127-129) The Gordon-Volkov solution is known for both scalar and spinor particles, 
for arbitrary polarization of the field, and for arbitrary, uni-directional wave packets. It has 
become familiar since the early days of strong-field physics in the 1960s, but some of its 
properties are still not fully appreciated. The Gordon-Volkov solution is fundamental for 
both Keldysh and Reiss varieties of the K F R  method. It will be briefly reviewed here, with 
a focus on its application in the electric dipole approximation, and on its use within the length 
gauge. 

4.2.1. Coulomb-gauge Gordon-Volkov solution. In principle, an electron in interaction with 
a plane wave electromagnetic field constitutes a relativistic system, since the electromagnetic 
field is fundamentally relativistic. There are circumstances under which the Gordon-Volkov 
solution can be employed in a non-relativistic, dipole-approximation context, and the 
conditions for that very important special case will be considered below. Nevertheless, the 
basic solution is relativistic, and is given in the radiation gauge (or Coulomb gauge) for a 
spinor electron as 

m 1/2 e 

x • - i ~  kx " eEA2"~7 
e x p [ - i p x  j ~  d(k .x)'(~-.kP (116) 

_ 

where units with h = 1, c = 1 are used; p~ is a constant four-vector which satisfies the 
mass-shell condition pvp~ = m2; k v is the propagation four-vector with time and space parts 
to, k, where Ikl = to; u is a spinor which satisfies the condition (~'p~ - m)u = 0; E --- [p°l; and 
A ~ = A v(k.x), where k . x  = tot - k ' r .  Four-vector inner products are expressed by the rule 
specified in Eqn. (3). Normalization is carried out over a three-volume V to satisfy 

(~(~+), ~(b +)) = 6(p, -- !~,) (Ip ° +p°l/ZE). (117) 

The spinor ~(+)(x) of  Eqn. (116) satisfies the Dirac equation 

[7"(i 9, -- eAr) -- m ]~  = 0. (118) 

The integral in Eqn. (116) represents a superposition over frequencies, that is, a superpo- 
sition over the magnitudes of Ikl. However, all the k vectors must have the same direction, 
so the wave packet has a one-dimensional character in that sense. 

The solution for ~(-)  is 

m 1/2 e 

xexp[_ ip . x+ i f k+°~d(k . x ) ,~eA 'p  e2A2 x~l • x \ p - k  ~p ~k JJ '  (119) 

where the only differences from ~<+) are in the limits on the integral and the sign in front 
of  it. 

The scalar, or Klein-Gordon,  Gordon-Volkov solution shares the same exponential 
function as Eqn. (16), but lacks the spinor quantities that multiply it in Eqn. (116). The 
normalization factor in the scalar case is (2EV) -1/2. 

4.2.2. Gb'ppert-Mayer-gauge Gordon-Volkov solution. The terminology 'G6pper t -Mayer  
gauge' is here used to designate the extension of  the usual length gauge to a fully 
four-dimensional form. It was G6pper t -Mayer  who introduced the length gauge, (13°) which 
represents the electromagnetic field in the electric dipole approximation by the single 
component 

q~ = - - 8 ( t ) ' r .  (120) 
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This is necessarily an approximation, since the electromagnetic field is a vector field, not a 
scalar field. To express a Gordon-Volkov solution in the Grppert-Mayer  gauge, it is 
necessary to make a relativistic extension of Eqn. (120). This can be done straightforwardly 
in terms of the four-vector potential (28) 

A ~ = - (k~/co)~(t, r).r, (121) 

whose time component in the dipole approximation is precisely Eqn. (120). Equation (121) 
can also be written in a completely covariant form. (2s) Although it is monochromatic as stated, 
it is easily extended to an arbitrary superposition of frequencies. The A u of Eqn. (121) satisfies 
the Lorentz condition and the transversality condition. 

The relativistic Gordon-Volkov solution in the G6ppert-Mayer gauge can be written in 
various forms, (2s) but the one closest to the non-relativistic solution employed by Keldysh (29) 

is 

/1 E m(+) = exp -- ip . x +  ied?__o.r sin k .x 
o) 

f~.x (eP.8o e28°2 sin2(k.x)')l (122) --i -o~ d (k ' x ) '  k, toP "k sin(k-x) '  2to2p.k 

which is associated with the electric field given by 

8 = 80 cos k .x. (123) 

4.2.3. Dipole approximation in the Gordon-Volkov  solution. The applicability of the 
dipole approximation in strong fields has already been examined in Section 1.5, 
and this general analysis might be expected to apply directly to the dipole approximation 
with respect to the Gordon-Volkov solution. This expectation is examined and it is 
found that the true limits are even more restrictive than the analysis of Section 1.5 would 
indicate. 

The underlying premise in applying the dipole approximation is that the phase of a 
plane wave, k .x = tot - k ' r ,  can be replaced by k .x ~ tot. The usual justification for this 
in atomic physics is that Ik'rl ,~ 21r, or ao/2 ,~ 1. In other words, the spatial extent of the 
atomic system, a0, is a small part of a wavelength. In application to the Gordon-Volkov 
solution, quantities of the type sin k.  x are multiplied by field-dependent factors, and the 
result itself appears in the phase of an oscillatory function. Specifically, the monochromatic 
version of the Gordon-Volkov solutions possesses a term in the imaginary exponential which 
behaves as 

(e gop /hmto2)sin k . x ~ (eSop /hmto2)[sin cot - k ' r  cos cot], (124) 

where h, c have been restored. It is the second term on the right that is neglected in the dipole 
approximation, and since this appears in the phase of an oscillatory function, one must have 

(egop/hmco2)lk.rl ,~ 2ft. (125) 

If  an estimate for p for an ionized electron is taken to be such that 

p 2/2m ,~, hto, (126) 

and Eqn. (29) is used to estimate Ik'rl as 

]k'rf ~. 2rclxl/2 ,~ zr/4, (127) 

B, QE 16/I--C 
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TABLE 5. Laser intensities in W / c m  2 a t  which the dipole 
approximation fails in the Gordon-Volkov solution, based 

on the figure-eight motion 

Circular Linear 
Wavelength polarization polarization 

I0 p m  7 x 10 TM 1014 
1 ~m 1017 3 x 1016 

then the condition stated in Eqn. (125) can be expressed as 

zl/2zf ,~ 2rr. (128) 

The crudest part of the estimates that enter into the result Eqn. (128) is the statement that 
the ionized electron described by the Gordon-Volkov solution has an energy of about hog. 
For the strong fields under discussion here, the ATI (above-threshold ionization) phenom- 
enon would be very well developed, and so the estimate of Eqn. (126) and hence (128) is very 
conservative. 

In the case of linear polarization, there is a quadratic term in the phase which also makes 
a contribution proportional to Ik'rl in the dipole approximation. This contribution is such 
that Eqn. (125) is replaced by 

zlk'rL ,~ 27r, (129) 

and so Eqn. (128) is replaced by 

ZZr ,~ 8zr. (130) 

Neither Eqn. (128) nor (130) has the simple form zr '~ 1 that one might expect for validity 
of the dipole approximation. Equation (130) is more restrictive than Eqn. (128), but is 
associated only with linear and not with circular polarization. Table 5 is a brief listing of those 
laser intensities at which Eqns (128) and (130) indicate a breakdown of the dipole 
approximation in the Gordon-Volkov solution. 

The entries in Table 5 are based solely on the projection of the figure-eight motion in the 
direction of propagation. All of the entries in this table are such that they violate the 
constraint given by Eqn. (33). The conclusion is that there is a need for relativistic forms at 
intensities even more modest than those listed in Table 5. The extent of the error introduced 
by unjustified use of the dipole approximation, however, has yet to be assessed. Preliminary 
indications from numerical examples in Ref. 36 for circular polarization show important 
effects in angular distribution, but not in total rate. 

4.3. Strong-field Approximation (SFA ) 
The author's version of the KFR theory has had much attention devoted to its formal basis. 

Both in its original form (3~) and in later evolutions (36'4°'7s) it exhibits fundamental differences 
from the other elements of the KFR trio. The connections and distinctions among the K, F, 
and R theories will be summarized in Section 4.5. First, the formal basis of the author's 
method will be reviewed. This method has been called the SFA (strong-field approximation) 
both to distinguish it from the Keldysh and Faisal theories, but also because its formal 
derivation reveals thai it requires for practical application only the presumption that the 
ponderomotive energy of a photodetached electron should exceed the atomic binding energy 
of that electron. That is, the field must be 'strong'--hence the name. The method applies for 
both high and low field frequencies, and both relativistically and non-relativistically. 

4.3.1. Introduction to the SFA. For many readers, this qualitative introduction to the SFA 
may be sufficient. It may provide more ready insight into the meaning and power of the 
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technique than the rigorous treatment in the following section. It is important, however, to 
know that there is a completely rigorous foundation for the method. 

The power of the SFA arises from its formulation as a time-reversed S matrix. This makes 
it possible to circumvent the most difficult aspects of strong-field theories. The usual approach 
to strong-field photoionization requires a knowledge of ~i in Eqn. (47) or (104). This presents 
profound difficulties since a bound state in a very strong field experiences important changes 
in its properties. The calculation (or approximation) of ~P~ is the focus of most of the effort 
expended in research on strong fields. The 'secret' of the SFA is to use the time-reversed S 
matrix, which requires for the initial state only the well-known non-interacting ~i. The burden 
of approximation is shifted to the final ionized state ~Pf, which is easily managed in a 
sufficiently strong field. 

The SFA differs from an exact statement of the transition rate only in that the expression 
for a completely interacting final state is replaced by a Volkov solution--i.e., a solution for 
the electron in the laser field alone, with the atomic potential neglected. This becomes accurate 
in strong fields when the spectrum of ionized electrons becomes so hard that most of this 
spectrum has energies in excess of the binding potential. 

One may judge the accuracy of the SFA by comparing the energy of detached photo- 
electrons to the atomic binding energy. It is known from elementary quantum mechanics that 
if the final energy of an ionized electron is sufficiently high, then the outgoing electron is well 
approximated by a free electron state rather than by the nominally required continuum 
Coulomb state. Consider an example from Section 5.2 below. The physical problem is the 
stabilization of ground-state hydrogen in the presence of a circularly polarized field. At a 
frequency co = 1/8 (in atomic units), we examine the spectrum of detached electrons at the 
maximum of the transition rate curve. The spectrum peaks at a detached electron energy of 
64 eV, and drops to 10% of the peak value at 30 eV and at 115 eV. These energies are ample 
to justify the SFA. For intensities that lie beyond the peak rate in the stabilization regime, 
the photoelectron energies can be orders of magnitude greater than the binding energy, and 
justify the notion that the accuracy of the SFA improves as the field intensity increases. 
Limitations arise from the possibility of the opening of competing channels, such as pair 
production. 

The SFA has no frequency limitations. Intensity limitations are in the form of a lower 
bound on the intensity. 

4.3.2. Formal relativistic basis. The starting point of the SFA is the time-reversed S matrix 
as given in Eqn. (49). This generic expression is expressed in explicit relativistic form in 
Eqn. (69). One may now simply set 

~ - ) ~  ~-)Gv, (131) 

and obtain thereby the SFA, where ~p~-)Gv is the Gordon-Volkov solution of Eqn. (119). 
Effectively, this is what is done by Keldysh, (29) using the non-relativistic, dipole-approximation 
version of the G6ppert-Mayer gauge Gordon-Volkov solution of Eqn. (122). It is also the 
end result of the formal derivation presented in Ref. 31, in the Coulomb gauge. (Both Refs 
29 and 31 use the ~(+) solution instead of the appropriate ~v(-) solution. Nevertheless, when 
one goes to the monochromatic case, as both papers do, then the distinction between the two 
solutions vanishes.) 

The replacement expressed in Eqn. (131) comes simply from the physical reasoning that 
dominance of the laser field in the final state when zj > 1 justifies the neglect of the residual 
Coulomb field. Furthermore, the ionized electron is likely to be found in the neighborhood 
of r = 0, the center of the Coulomb force. In the 'transition region', where Zl > 1, but where 
one cannot yet set z~ >> 1, some loss of accuracy will occur. This can be described in terms 
of the spectrum of ionized electrons. For those lowest spectral peaks in the ATI spectrum 
where the kinetic energy of the photoelectron remains less than the binding energy of the 
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atom, then residual Coulomb effects will become important34°'7s'1'7) When z 1 ~ 1, these 
low-end spectral peaks become only a small part of the complete spectrum, and the fact that 
the low-end peaks are distorted by the Coulomb field becomes immaterial in describing the 
overall ionization process. 

A comprehensive strong-field theory will now be presented, of which the SFA is the leading 
term. The completely interacting state ~ depends on both the atomic potential V and the laser 
potential A r. The state ~ can be expanded in terms of either potential33~) but ~ - )  is most 
fruitfully expanded in V when z~ > 1. The required equations of motion are 

[~u(i 0r _ eAu) _ 70V _ m]~  = 0, (132) 

[7~(i a~ -- eAr) - m]~ Gv = 0, (133) 

[yr(i Or _ eAu) - m]GGV(x, x') = 64(x -- x' ) l ,  (134) 

where the superscript GV on the Dirac state in (133) and the Dirac Green's function in (134) 
refer to 'Gordon-Volkov',  64 refers to a four-dimensional delta function, and 1 is the unit 
operator in Dirac matrix space. A complete formal solution for ~ is given by the integral 
equation 

~r'/(X) = ~GV(x) + fd4x'GGV(x, x')7°V(x') 'P(x'),  (135) 

as can be confirmed by direct substitution. The Green's function GCV(x, x') satisfies Feynman 
boundary conditions, described in detail in Ref. 74 for free particles and in Ref. 35 for the 
Gordon-Volkov problem. The extensive exploration of the Gordon-Volkov Green's function 
carried out in Ref. 35 shows that there is a remarkably rich structure to the Green's function 
in strong fields, but the limit as the field strength approaches zero is a smooth and 
straighforward reduction to the ordinary free-particle Green's function. 

The fully interacting spinor required for the S matrix of Eqn. (69) is the adjoint of the 
solution given in Eqn. (135), which involves the adjoint Green's function given by 

GGV(x ', x) = 7°GGV*(x, x')~ °. (136) 

G Gv* satisfies anti-Feynman boundary conditions, i.e., it propagates solutions in the opposite 
direction to G cv, which is why the order of the arguments is reversed in G Gv* as compared 
to G Gv. (Note also the difference in notation between here and Ref. 35. In Section V of Ref. 
35, G is directly the Dirac Gordon-Volkov Green's function, whereas here G ~v is the adjoint 
function.) 

When the adjoint of Eqn. (135) is substituted into the S matrix of Eqn. (69), the result is 

(S - 1)~ = - i f d4x ~Gv(-) (x)eA r(x)7r ~i (x) 

- i  f d4x f (137) 

The first term on the right-hand side of Eqn. (137) is the SFA 

S - 1)SFA = _ i f d4x~pr Cv(-) (x)eA r(X)~r ¢i (x). (138) ( 

The second term on the right of Eqn. (137) represents all the corrections to the SFA. The 
~P~-) contained in that expression can be expanded in powers of ~°V by iterative solution of 
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Eqn. (135) starting with ~,~-)ov as the lowest order approximation in Eqn. (135). For example, 
the first correction term to Eqn. (138) is 

= -i f d'x f d4x"~-)6V(x'),°V(x')G°V(x',x)eA"(x)y.Oi(x), (139) 

the second will include two factors of )'°F, and so on. As explained earlier, however, the 
resulting expansion of Eqn. (137) is not a perturbation expansion in either ~°F or eA ~. The 
expansion of ~ - )  is in powers of ),°F, but the S-matrix interaction is eA ~. 

The foregoing is all in terms of a true spinor theory, which is entirely appropriate in view 
of the spin-l/2 nature of the electron. A scalar relativistic theory can also be constructed, (78) 
which gives rise to the Klein-Gordon equivalent of the above Dirac theory. The entire 
procedure reviewed above can be followed in the Klein-Gordon case, with all the important 
algebraic changes that follow from using a second-order equation of motion for a scalar 
particle instead of a first order equation of motion for a spinor particle. Above all, the metric 
in the Klein-Gordon case (see Eqn. (69) or (70)) is quite different from the Dirac metric. The 
SFA result for a scalar particle i s  (78) 

(S - -  1 ) f i  S F A  = - -  i fd'x~ v(-)* (2eA "p -- e2A • A )~ i .  (140) 

In this expression the indicated scalar products are four-dimensional products, the wave 
functions • and ~P are scalars rather than spinors, and p~ is a c-number four-momentum on 
the mass shell, and not an operator. 

4.3.3. Limiting procedures. The SFA expressions as stated subsume a very large amount 
of physics. One does not normally employ the full mechanism presented by the formal 
expressions. Three types of limits are commonly taken: the non-relativistic limit, the dipole 
limit, and the monochromatic limit. These are discussed here. Other approximations, such 
as the tunneling limit, or the limitation to hydrogenic 1 s states, are very restrictive, and are 
used in the SFA only for illustrative purposes. 

It is important that the SFA is derived on a relativistic basis. It is a theory intended 
for very strong fields; very strong fields imply a dominance of the electromagnetic field; 
and the electromagnetic field (in the absence of other influences) is fundamentally relativis- 
tic. In the light of Einstein's special theory of relativity, this last statement is actually 
a tautology. However, in practice, the atomic potential does have an important influence, 
and most strong-field atomic photoionization problems can be treated quite adequately 
by a non-relativistic approximation. The non-relativistic limit of Eqn. (140) is achievable 
in very general terms. In the radiation gauge the time part of the four-vector A ~ can be set 
to zero, so the four-vector products indicated in Eqn. (140) reduce to the three-vector 
products 

A . p - - , - A ' p ,  A . A ~ - A ' A = - A  2. (141) 

The relativistic scalar • and ~P functions reduce directly to the non-relativistic atomic wave 
function and non-relativistic Gordon-Volkov solutions, respectively. There is, however, one 
important remaining difference. Normalization in the Klein-Gordon metric introduces the 
normalization factor (2EV)- ~/2, whereas the corresponding Schr6dinger solutions are normal- 
ized with V-~/2, where V is the normalization volume in both cases. Since the non-relativistic 
limit of the total energy E is m, the electron mass, then the difference in normalization 
conventions introduces an overall factor or' (2m) -~ into Eqn. (140). The non-relativistic SFA 
transition amplitude is thus 

(S - -  1 )  s F A  = --i fd t (~ ' f  ~v(-)', ( - e A ' p / m  + e2A2/2m)~i),  (142) 
J 
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when the S d4x is written as S dt ~ d3r, and the three-dimensional spatial integration is 
represented by the matrix element form employed in Eqn. (142). Equation (142) is exactly 
the foundation of the non-relativistic SFA expounded in Ref. 31. 

Reduction of the Dirac SFA result in Eqn. (138) has not been accomplished in so 
general a form. The difficulty lies with the Dirac matrices in the relativistic expression. 
Unlike many problems concerning relativistic corrections to atomic physics, one cannot 
use a 'large-component, small-component' analysis to find the non-relativistic limit. The 
SFA is a true strong-field result, and it is found that all components in the Dirac 
matrices contribute equally. Thus the non-relativistic limit of the Dirac problem has 
been found in the special sense that an explicit problem (ionization of ls hydrogen) is 
formulated relativistically, and that explicit formulation is shown (78) to reduce in the 
non-relativistic limit precisely to the directly-solved non-relativistic version of the same ls 
hydrogen problem. 

Implicit in the reduction to the non-relativistic limit is the simultaneous introduction of the 
dipole approximation. The constraints governing that approximation have been treated 
separately in Sections 1.5 and 4.2.3 above. 

An approximation employed routinely in the SFA, as in all other strong-field 
theories of photoionization, is the assumption in application of the formalism that the 
laser field is monochromatic. This is not a fundamental constraint of the underlying 
formalism, in which the field occurs primarily in the Gordon-Volkov solution. That 
solution is explicitly expressible in wave packet form, as shown in Eqns (116), (119), and 
(122). The integrations contained in the phase expressions of those equations are designed 
to accommodate uni-directional wave packets. The question of the conditions for 
applicability of the monochromatic approximation is considered at some length in 
Section VI of Ref. 31. It is concluded there that a laser pulse containing of the order of ten 
wave periods is adequately long for the monochromatic approximation to be valid. Recent 
technology makes possible pulses shorter than that limit. In principle the SFA can be applied 
for such ultrashort pulses, but a true wave-packet approach must then be employed. This has 
not been done. 

If the laser pulse contains ten or more wave periods, the actual pulse shape remains 
important. It is then possible, however, to employ superpositions of monochromatic results 
to represent the actual laser pulse. This has been done by a number of investigators in 
comparing theory with experiment. 0°2,l°9,llUI3-tlS'124,131) The question remains open of the 
degree to which such monochromatic superpositions can reproduce the results of a true ab 
initio wave packet calculation. 

An alternative approach to the foundations of the SFA must be noted. Guo and/~berg, ~t3~) 
starting from a second-quantized relativistic quantum electrodynamics, proceeding through 
the large photon-number limit to obtain the semi-classical case, and then reducing to the 
non-relativistic limit, obtain precisely the same final form found in Ref. 31. The work is 
important in that it represents an independent approach to the problem, yet arrives at the 
same outcome. Unfortunately, the original Dirac relativistic form is formulated so differently 
from that of Ref. 36 that it is not possible to establish a correspondence at that level. 

4.3.4. S F A  S mat r i x .  The S matrix of the SFA has been stated in general form in 
Eqns (138), (140) and (142) for the Dirac, Klein-Gordon, and Schrrdinger cases, respectively. 
These expressions permit a clean separation of atomic effects from laser effects. A brief sketch 
will be given of the Schrrdinger case, using a method related to, but different in an important 
way from that given in Ref. 31. 

The interaction Hamiltonian used in this example is the standard expression for the 
interaction term in radiation gauge in the dipole approximation 

Hx ( t )  = --  [ e A ( t ) / m c ] .  ( --  i hF)  + ( 1 / 2 m ) [ e A ( t ) / c ]  2. (143) 
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We shall define as H 1 (p, t) the c-number value of H ! (t) when the operator ( -  ihF) is replaced 
by an eigenvalue p. With that terminology, the Gordon-Volkov solution for the Schr6dinger 
problem is 

~P(-)Gv=V-l/2exp(i/h)[p.r--(p2/2m)t+ji~dTHl(p,x)], (144) 

which is an eigenstate of H~(t), 

ni(t)~v{-)cv = Hi(p, t)!P (-)Gv. (145) 

The property stated in Eqn. (144) is rather trivial in this non-relativistic, dipole-approxi- 
mation case, but its analog remains true for the relativistic solutions. The reason is that/-/1 
acts only on the transverse components of momentum, while the presence of the field affects 
only the longitudinal momentum conservation conditions. 

Equations (144) and (145) lead to the SFA matrix element in the form 

1 )  sFA ---- -(i/h) f ~  dtH~(p,/)(~-)cv, t~i)" (146) (S 1 

The initial bound atomic state is just a stationary state, so time behavior is extracted as 

• i(t, r) = dp(r)exp(-iEit/h), (147) 

in which case space and time dependence can be separated in the S matrix expression to give 

(S_1)sFA_ i foo [ ( p 2  ~ 1  [ i ; f  ~ 1 h~.~/2 c~(p) dt exp i Fm - Ei H~(p, t)exp ~ dzHi(p, z) , 
- -c /3  

(148) 

where tp~(p) is the momentum space bound state wave function 

q~i (P) = (exp(ip" r/h), tki (r)). (149) 

The circular polarization case is always analytically simpler in strong-field problems than 
other polarizations, so that will be given here as the example. With the vector potential 

the interaction term is 

A = (a/2)(~ei~°t+ ~*e-i~°'), (150) 

Hi(p, t) = --(hco cos(cot -- ~p) + zhco, (151) 

where the phase angle tp is defined so that ( is real and 

= eap" ~e i~/mchco, (152) 

and z is the non-perturbative intensity parameter of Eqn. (6). To accomplish the integral over 
time in Eqn. (148), one can make use of the generating function for the Bessel functions 

exp [ - i (  sin(cot - rp)] = ~ Jn(()exp[-in(cot - tp)] (153) 
n =  - o t ~  

to obtain 

f dt . . . .  ~ J,(¢) f dt exp[(i/h)(p2/2m - Ei + zhco)] 

x [ze -~o,t-~) _ ((/2)e -'("-l)(tat- tp) - -  ((/2)e-~. + l)(o,- ~)1. (154) 
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Appropriate shifts in the origin of  n in the summation give 

f dt  f dt  - Ei + zhco ) - in(cot - ¢p )] [zJ, - (¢ /2) (J,+ l + J , -  1)] E exp[( i /h ) (pZ/2m 
.) 

(155) 
and then use of  the recursion relations for the Bessel functions yields 

f dt - - Ei - + zhco). (156) E J.(¢)e~*(z n )27rr (p2/2m n h o 9  

This gives for the SFA S-matrix element 

(S - 1) sFA = [(27ti)/VU2](~i(p)hoJ E (n - z)J , (~)e~*6(p2/2m - Ei - nhco + zhtn). (157) 

Equation (157) is identical to the expression arrived at in Ref. 31, but its derivation differs 
in one important way. In Ref. 31, an integration by parts was performed in the integration 
over time, and then a surface term was discarded because it could be identified as a zero 
'distribution' or 'generalized function'. As will be discussed in Section 4.6, the integration by 
parts accomplishes a transformation of the S matrix to a different kind of  S matrix, a fact 
which is irrelevant to the evaluation of  the physical consequences of the S matrix, but which 
is needlessly indirect. Furthermore, the appearance of the zero distribution has caused unease 
and confusion in some commentators on the procedures in Ref. 31. There is no need for any 
of  this complication, as the present demonstration shows. The integration by parts is avoided, 
there is no zero distribution, but the result is identical to that obtained in Ref. 31. 

Once the S matrix is established, it is then straightforward to proceed to the transition rate. 
The transition probability per unit time is 

w = lim -1 I(S - I)nSFAI2. (158) 

The total transition rate to all possible final states is found from w by integration over the 
phase space of  those final states available to the detached particle. This is given by 

W = _IwV d3p/(2nh) 3, (159) 

where (2nh) 3 is the volume of  a unit cell in the quantum-mechanical phase space. The result 
of  Eqns (158) and (159) with the S matrix of  Eqn. (157) is the transition rate per unit solid 
angle 

d W = (2m3c° s)'/2c3 ~ (n - z)2(n - z - E.)'/~I$~ (P)I 2J2,(z ,/zT). (160) 
df~ (27r) 2h3/2 "="o 

In this expression, the quantities EB, no, and ~) are defined as 

EB=EB/h~o, no = { z + % } ,  ~=2(n - - z - -EB) l / 2 s in0 ,  (161) 

where EB = I Eil, and the brackets on z + ~B designate the smallest integer that contains the 
quantity within the bracket. Although Eqn. (160) contains p in its statement, it is understood 
that the energy conservation delta function in Eqn. (157) determines this quantity through 
the expression 

p = ( 2 m h c o ) l / 2 ( n  - -  z - -  EB) U2. (162) 

The angle 0 in Eqn. (161) is the angle to the direction of  photoelectron emission measured 
from the direction of  laser propagation. EB is the binding energy. 

The transition rate expressed in Eqn. (159) is a function of  intensity. When employed for 
the description of  anything other than the ionization of a single atom, it will be expressed 
in the form W[I(r, t)]. That  is, as a functional of  the intensity distr ibution/ ,  the transition 
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rate depends on time and space coordinates. An application of  this aspect of  the transition 
rate is described in Section 4.3.6. 

Some properties of  Eqn. (160) warrant special mention. The summation over n can be 
regarded as a sum over photon order, as the energy conservation condition implies. Many 
orders can contribute significantly to Eqn. (160), and this constitutes the ATI (above- 
threshold ionization) phenomenon. Some rather extreme possibilities can occur. In a recent 
computation done in connection with an exploration of  the stabilization phenomenon, (133) 
ionization of  ground state hydrogen by a circularly polarized laser of  1.46 # m  wavelength at 
about 5 x 1017 W/cm 2 is found to require the computation of approximately 105 photon orders 
in the sum over n. 

The starting point of  the sum over n, as indicated in Eqn. (161), is not at {EB/hOg}, as one 
normally expects. Rather, this threshold quantity is increased by z, or Up/hco (from the 
definition of  z in Eqn. (6)). The need to add the ponderomotive potential Up to the binding 
energy EB in finding the threshold order comes from the requirement that an electron cannot 
be liberated from the atom unless it is provided with enough energy to exist as a free particle 
with its full energy of  interaction with the laser field. This was first clearly pointed out in the 
atomic ionization problem in Refs 31 and 61, although it was earlier well known in the 
free-electron problem332-34) Since the extra quantity z in the threshold photon order can have 
a significant effect in shifting the lowest possible order, the phenomenon has come to be 
known as 'peak suppression'. It was first observed by Kruit et al. (62) 

Finally we note that Eqn. (160) contains atomic information entirely in the form of a 
momentum space wave function ~i(P)" This convenient feature is an outcome of  the use of 
the time-reversed S matrix. As discussed in Section 4.3.1, the time-reversed S matrix of  the 
SFA makes possible a clean separation based on field dominance in the final state and atomic 
dominance in the initial state. The direct-time S matrix does not have that structure. 

The circular polarization case was developed above since it is analytically simpler than 
linear polarization. The final result for linear polarization of  the laser field, however, has an 
appearance identical to Eqn. (160) except that the Bessel function Jn(z ~/27) is replaced by the 
generalized Bessel function Jn(gl/20~, - z /2 ) ,  where 

= 81/2(n - z - EB) I/2 COS 0, (163) 

and here 0 is the angle between the direction of  emission of the photoelectron and the 
polarization of  the field. The generalized Bessel function can be defined by the expression 

Jn(u,v)= ~ J,_2k(u)Jk(v). (164) 

An extensive listing of the properties of  the generalized Bessel function is given in Appendices 
B-D of  Ref. 31. Further generalization and study of  this function has been undertaken 
recently.<134'135) 

All of  the above is for non-relativistic photoionization. It applies for any initial atomic 
state. Complete, fully relativistic results have been given so far ~36) for only a single atomic 
initial state. This is a calculation of the differential transition rate for ionization from an atom 
with a nuclear charge of Ze in an initial hydrogenic ls state by a circularly polarized laser. 
The calculation is within the Dirac theory. Everything is treated relativistically: the atomic 
state, the interaction term, and the Gordon-Volkov state. The solution of  the Dirac equation 
for the hydrogen atom may be found in Bethe and Salpeter. <82) The problem calculated is one 
in which an average over initial electron spin states and a sum over final spin states is 
accomplished. That  is, it is presumed that the initial state is not prepared in a particular spin 
state, and that no spin measurements are made in the final state. The end result for d W/df~ 
is sufficiently complicated that the reader is referred to Eqn. (3.67) (supplemented by a 
number of  supporting equations) in Ref. 36. 
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4.3.5. Atomic properties. It was emphasized in Section 4.3.1 that the SFA, by employing 
the time-reversed S matrix, shifts the primary dependence on atomic properties of 
the transition amplitude into the non-interacting atomic state ~i. The corollary of 
this argument is that ~i must be treated with reasonable accuracy. Little attention has 
been devoted to that subject. Part of the reason is that most fitting of experimental 
photoionization data by theory has been done with the Keldysh approximation, which 
is formulated exclusively for the ls state of hydrogen. Virtually the only reported exception 
is the fitting °~s) of circular polarization multiphoton experiments °36) by the SFA with a 
single-particle 5p atomic wave function to represent an outer-shell electron of the xenon used 
in the experiments. Agreement is quite good. Nevertheless, both experimental technique and 
the model used to represent the atomic wave function have been improved substantially since 
then. 

One advance in the treatment of the atomic state within the SFA is to generalize ~137) to any 
arbitrary hydrogenic s state, albeit still with hydrogenic binding energies, and still in a 
single-particle model. An important outcome of this work is the clear evidence of major 
quantitative and qualitative differences that are associated with different atomic states, even 
in the presence of extremely strong laser fields. Atomic properties retain their importance no 
matter how intense the laser. 

A further step ahead is to incorporate actual binding energy information into the 
representation of the atomic state in the SFA. This is done °as) by first transforming the atomic 
wave function to momentum space, and then employing empirical binding energies in that 
state. Although that state has, so far, been restricted to ns and np hydrogenic states (for 
arbitrary n), at least the state has the appropriate number of nodes in configuration space 
as well as the correct binding. It makes a major difference in matching against experimental 
data. 

Most attempts to match experiments with the SFA either have used ls states (or even 
a state intended for negative ions(at), (H5'124) or else have applied to SFA under circumstances 
where z~ < 1, (113'124) when the SFA is not expected to be accurate. With appropriate 
atomic information and adequate z~ values, agreement of the SFA with experiment is 
excellent3 m) 

For an arbitrary (i.e., any principal quantum number n and any binding 
energy EB) single-particle s state, the SFA differential transition rate of Eqn. (160) 
becomes 

( ) ?l~ "1/272 s= -~ -~J-o (J--z (J--z)2sin2271)~ ( 2 )  
" " ~  ~ ~ ---E~_-Z--Z-----EB+E,o)2J] Z'/2Ot,- . (165) 

In this expression, the photon order is now labeled by j, rather than n as in Eqn. (160), since 
n is now reserved for the principal quantum number. The charge state of the atomic nucleus 
is Z, there are now two energy ratios, 

EB = EB/hto, E,o = Z2R~/n2hog, (166) 

where R~ is the Rydberg energy, the lower limit on the sum over j is exactly as 
in Eqn. (161), i.e., J0 = {z + EB}, and the quantity Z in the argument of the sin function 
is 

X = arctan[(j - z - EB)/eo, ]1/2. (167) 

Equation (165) is for the case of linear rather than circular polarization, and the quantity 
appearing in the first argument of the generalized Bessel function is exactly the same as in 
Eqn. (163). 
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As written, Eqn. (165) is entirely in terms of dimensionless quantities except for the 
multiplicative factor (2R~/h), which is just the basic frequency in atomic units, 
4.134 x 1016 Hz. For arbitrary p states, Eqn. (165) becomes 

T 6  p =  2 

[ ] ( z )  
(j  - z  - EB-- 2 -2  x cos 2nz + 2m~2( j_  z - -  £ B )  1/2 sin 2nz ,i2 zl/20~, ; n >/2. (168) 

The results stated above are the outcome of a single-particle treatment of the atomic 
wave function. Most experiments have been done with the noble gases, where such an 
approximation obviously has shortcomings. There is no reason, in principle, why multi- 
electron wave functions cannot be introduced. In practice, this entire field of  investigation 
is still so new that such a refinement seems inappropriate in view of the many basic issues 
still unresolved. In due course the extension will be made. 

4.3.6. Application of the SFA to photoionization experiments. The transition rate given in 
Eqn. (165) or (168) refers to an elementary process. That is, the rate stated is the transition 
probability per unit time exhibited by a single atom subjected to a monochromatic laser field. 
In an experimental environment, one must consider an assembly of atoms (albeit treated as 
not mutually interacting) subjected to a laser field which may exhibit a complicated intensity 
distribution in space and time. Furthermore, depletion effects will occur in most strong-field 
experiments, and this can have an important effect on a total ionization rate plotted as a 
function of peak laser intensity. Yet another matter to be considered is that many experiments 
have now been done (2-5,54A°9,lt2,Ha'llSA24,13t't39,14°) in which multiple ionization can occur, up to 
a final charge state of ten or so. With the presumption (not universally accepted--see Refs 
141,142) that multiple ionization is sequential, it is necessary to establish the population of 
singly ionized atoms to calculate the number of doubly ionized atoms, and so on. 

All of the above matters are treated in terms of the solution of a rate equation. Let Nm 
be the density of atoms of charge state m. Then, for example, the density of  singly ionized 
atoms is found from the solution of the rate equation 

dN~ (t, r)/dt = [N O - N, (t, r)]W~ (t, r), (169) 

where N o is the density of neutral atoms and W~ is the total transition rate for producing 
single ionization of an initially neutral atom. The approximation is implicit in Eqn. 
(169) that depletion of the initial population No to N~ is the primary channel, and that 
subsequent flow into N2, N3 , . . .  is much less important. The assumption of  sequential 
ionization gives 

dNm (t, r)/dt = [Nm _~ (t, r) -- Nm (t, r)] Wm (t, r), (170) 

where Wm is the total transition rate for production of an ion of  charge + m  from an initial 
ion of  charge +(m - 1). Again the same approximation is made that the most important 
depletion of the Nm_ ~ population is to N~, and not to higher ionization states. The solution 

f, oxpI 
of Eqn. (169) is 

where the initial condition is N~ ( h ) =  0. For N2, the solution is 

N2(t)= No f'2du exp[-- fl dvW2(v)lWdu){1-exp[-- f, l dvW2(v)l}, 

(171) 

(172) 
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which satisfies the initial condition N2(t2)= 0. Integration by parts leads to a variety of  
possible alternative forms for Eqn. (172). The general solution of  the first-order ordinary 
differential equation 

dNm/dt + WreN m = WmNm_, (173) 

with the boundary condition Nm(tl)= 0 is 

Nm(t) = dsWm(s)N,~_l(s)exp - duWm(u . (174) 
I 

Implicit in all of the above is the assumption that an atom maintains its initial spatial 
location throughout the duration of  the laser pulse. A simple examination of  the consequences 
of thermal motion and recoil motion confirms that this is an acceptable approximation for 
picosecond pulses. 

The emphasis in Eqns (169) through (174) has been the time-dependent behavior of  the 
density of  atoms and ions. In application to a realistic laboratory environment, one must 
include the fact that the transition rates Wm are functions of field intensity, and field intensity 
varies both with time and with position in the laser pulse. Specifically, the number of  single 
ions formed in a laser pulse is found from Eqn. (171) to be 

X t  = 2~No r dr dz 1 - e x p  - duW[I(u,r)] . (175) 
- o o  L d - ° o  

The total transition rate W is found from Eqn. (165) or (168), integrated over the complete 
solid angle. The notation W[I(u, r)] of  Eqn. (175) is meant to convey that W depends on the 
intensity at a given time and location in the laser pulse. Cylindrical coordinates r, 0, z are 
used to integrate over the ion density N] to get the total number of  ions Jl:~. It is assumed 
that cylindrical symmetry exists, so the 0 integration is performed to obtain the 2n factor. 
Initial time t~ is nominally set to - oo, and the measurement time t is set to oo in recognition 
of  the summing of  ion counts over the entire laser pulse. A corresponding result for Jt/'2, the 
number of  doubly ionized atoms formed is, from Eqn. (172), 

Y 2  = 2nN0 r dr du exp - dvW2(v) W2(u) 
d - o o  - ~  

where again it is understood that both Wj and W2 are dependent on the spatial and temporal 
intensity profile: W = W[I(t, r)]. 

To implement Eqn. (175) or (176), it is necessary to specify an analytical form for the 
intensity distribution I(t, r). As measured in the laboratory, this distribution has a spatial 
character resembling that of  a Gaussian beam. (For example, see Section 14.5 of  Ref. 143.) 
The temporal distribution is found empirically to be sech 2(~) or to be Lorentzian. ("s) 
Specifically, the intensity distribution recommended by the experimentalists is of the form 

I(t, r ) =  IoF(t)[1 Jr  ~-~W~]:[J~X ~21-1j e x p { _  2(~00)511 + \~--~oW~](fl2z'~21-'" [ J  J '  (177) 

where r, z are cylindrical coordinates, ~. is the laser wavelength, w0 is the 1/e radius of  the 
focal spot, and fl is an empirical constant. The temporal distribution may be of the form °°9) 

F(t) = sech2(2t/To), To = T~WHM/arccosh 21/2; (178) 
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or it may be represented a s  015) 

r ( t )  = [1 + (2t/To)2] - ' ,  To = TvwnM, (179) 

where Tru.M is the full width at half maximum of the temporal distribution. 
It has been stated as a general condition for applicability of K F R  methods to atomic 

photoionization that z~ > 1 must be satisfied. With the notion that multiple ionization is 
sequential, the attention has to be focused on the first ionization event to ascertain if Zl > 1 
is satisfied. For example, if zj < 1 for the intensity domain where single ionization occurs, but 
this increases to z~ > 1 for the domain where second ionization takes place, then the K F R  
method cannot reliably be applied, since the description of the second ionization depends 
upon the correct prior treatment of the first ionization event. 

4.4. Tunneling Limit  

When the laser frequency is very low, it is plausible to view the laser field as a quasistatic 
field which can cause ionization by depression of the Coulomb potential of the atomic 
nucleus, which then allows the initially bound electron to escape over the top of the depressed 
barrier. °14'1j5) A refinement of this same point of view envisions the possibility of the 
ionization occurring through 'barrier penetration' or 'tunneling' of the bound electron 
through the depressed barrier. (29'3~'59'6°'123'~*~) Unfortunately it has become commonplace in the 
current literature to refer to all photoionization environments in which ,71 > 1 (more 
commonly, the Keldysh factor ~ < l) as examples in which tunneling behavior occurs. This 
greatly oversimplifies some very sophisticated physics, much of which is incompletely 
explored. More will be said of  this below. 

At the very least, the z~ > 1 condition for tunneling must be supplemented by co ,~ 1. A 
graphic example of this need comes from investigations of stabilization (see Section 5.2), 
where high frequency environments exist where one nevertheless has z~ >> 1 or ~ <~ 1. When 
high frequencies exist, where a single photon can exceed the total ionization energy, the 
tunneling concept is clearly inapplicable. 

The barrier-suppression approximation, o'4:m represented in one dimension, is that the 
effective binding potential exercised by an atomic Coulomb potential due to a charge Ze, in 
the presence of  a static electric field of amplitude 8 is 

U(x  ) = - Ze2/x  - e gx. (180) 

This has a maximum at x = ( Z e / 8 )  ~/2, at which location the potential peaks at a value 

Urea x = --2(Ze3g) 1/2. (181) 

If  the electric field is strong enough so that [Um~ [ = EB, the no-field binding energy of the 
atom, then the electron is free to escape from the atom with no need for tunneling through 
a barrier. This electric field strength, from Eqn. (181) is 

8c,~t = E 2/4Ze 3, (182) 

and the laser intensity which gives rise to this field strength is 

I = (Io/Z 2) (Ea/Ro~ )4. (183) 

In Eqn. (183), Roo is the Rydberg energy, and Io is the laser intensity which corresponds to 
unity in atomic units. That is, I0 = 3.51 x 10~6W/cm 2. 

An interesting sidelight of this particular model is that it gives a very simple result for the 
z value (the non-perturbative intensity parameter) at which the ionization threshold will 
occur. With the subscript 'barrier' to represent this threshold value, one finds that 

Zbarrie r = E 4/[  128Z2(~Ico)3Roo ]. (184)  
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For example, if E 8 ~ Roo, the remarkably simple result is obtained that 

Zbarrier ~ (EB/ho~)s/(128Z2). (185) 

For the set of experiments done by the Rochester group at 1053 nm with the noble gases, 
the simple barrier model expressed above gives reasonably good predictions for threshold 
intensities for ionization. When carried further, and employed on a 'go, no-go' basis 
throughout the spatio-temporal distribution of a laser pulse, the predictions for total 
ionization yield are comparable in quality to the dynamical theories tested against the 
experiments.(, 15) 

The concept of quantum-mechanical tunneling through a potential barrier occurred early 
in the history of quantum mechanics. 045) The well-known Gamow factor for tunneling 
involves the negative exponential factor 

F~ = exp(GG); GG = -- 2nZZ'e2/hv (186) 

for the penetration of a nucleus of charge Ze through the Coulomb barrier of another nucleus 
of charge Z'e  with an initial relative velocity v. A related type of exponential behavior was 
found by Oppenheimer °'9"n°) for the ionization of an atom by a static electric field, with a 
tunneling factor of the form 

F0 = exp(G0); Go = - (2/3) [m(2EB)3]l/2/he~. (187) 

Theories by photoionization by laser fields produce the same factor as in Eqn. (187) when 
one considers large field strengths and low frequencies. (29'31'59'6°'123:44) Differences in the various 
theories arise to large extent in the so-called 'pre-factors' which multiply the F0 of Eqn. (187). 

A field frequency which is so low that h~o <~ EB will require very large field strength and 
very large photon orders to achieve photoionization. Theories which make some presump- 
tions from an early stage lead directly to the type of tunneling factor given in Eqn. (187). 
For example, the work of Keldysh ¢:9) is more generally formulated than a tunneling theory 
at the outset, but a large photon number approximation is introduced at an early stage, and 
so a tunneling type of result is obtained. On the other hand, although the SFA has a strong 
formal connection to the Keldysh theory, the use of the radiation gauge results in a theory 
more tractable analytically than the Keldysh theory, and it is possible to implement the theory 
fully in its general form. It is then found that a reduction to the tunneling limit is far from 
a simple matter. Explicitly exhibited multiphoton behavior remains a very pronounced feature 
of the SFA up to very high laser intensities and laser frequencies that are at least relatively 
low. The precise conditions which govern the transition to the tunneling regime have yet to 
be fully explicated, but it is clear that they are more subtle than simply zl >> 1. In Ref. 31 it 
is found that the strong-field limit of the fully formulated theory is couched in terms of z >> 1, 
which leads to a certain type of asymptotic form for the generalized Bessel functions that play 
so important a role in the theory. This introduces important simplifications, but it by no 
means implies the tunneling limit. 

To give just one example of the subtle difficulties which can arise, consider one of the 
limits °°  which must be taken in the SFA to arrive at the tunneling form of Eqn. (187). An 
exponential factor occurs which has the form 

G l = -- (2z/zl ) [(zl + 2)arcsinh(z i- 1/2) _ (zl + 1)1/2]. (188) 

The square bracket in Eqn. (188) is a function only of Zl, and it is a minor matter to show 
that zl >> 1 leads directly to 

Gl ,,~ -- 8z /3z ~/2, (189) 
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which is equivalent to Eqn. (187). However, this expression is exponentiated, and, for 
accuracy, one must require that the remainder term from the approximation that leads to 
Eqn. (189) will not be significant as an exponential factor. Equation (189) is accurate to a 
quantity of order 1/z~ in the square bracket. This is multiplied by the factor in Eqn. (189), 
so that one must demand a factor behaving as exp(z/z~/2) will not be important. This is now 
a condition that does not depend on zl alone. To require this to be unimportant is to require 
that (EB/hco) ~ z~/2, which may be a far more stringent demand on zl than simply z, ~> 1. This 
is by no means the end of the matter, since the exponential factor containing Eqn. (188) is 
multiplied by other quantities which exhibit important non-tunneling behavior even when 
Zl~>l. 

One can introduce a qualitative, but physically motivated caution about the presumption 
of tunneling behavior based only on the large magnitude of z~. For sufficiently large zf, a 
parameter independent of Zl, magnetic field effects will become important irrespective of the 
smallness of the frequency. This is a point established in Sections 1.3.6 and 1.4. It is 
manifested through the figure-eight motion of the electron in a strong field, where the 
proportions of the figure depend only on Zr, and are a consequence of the coupling of the 
magnetic field into the motion. However, the concept of tunneling becomes far more 
complicated under these circumstances, and the simple tunneling behavior of Eqn. (187), 
associated with the quasistatic electric field limit, will not be valid. 

The subject of 'tunneling', or, more accurately, the strong-field, low frequency limit, is 
presently inadequately understood. Much more work is needed. 

4.5. KFR Connections and Distinctions 
Enough has been said up to this point to now make clear how the several varieties of the 

KFR theory are related, and, perhaps more importantly, how they are different. A brief 
review of the fundamental characteristics of each serves this purpose. 

The Keldysh approximation, (29) although originally presented as a physically motivated 
Ansatz, can be understood on a formal basis. It is of the nature of a time-reversed S-matrix 
theory, as described in Section 4.3.1, and so it has the in-principle ability to describe 
accurately both the atomic properties and the strong-field behavior of photoionization. It is 
non-relativistic, and follows, not from Eqn. (142) of the SFA, but from the closely analogous 
G6ppert-Mayer gauge equivalent 

( S  - 1)~ "a = - i  ( - e d ~ ' r ) ¢ i ) .  (190)  

Now ~fGv(-) refers not to the non-relativistic limit of Eqn. (119) as given in Eqn. (144), but 
rather it refers to the significantly more complicated non-relativistic limit of the Grppert- 
Mayer Gordon-Volkov solution of Eqn. (122) (as rendered in the q~[-) form). The most 
important complication of Eqn. (122) is the extra exponential factor it possesses as a 
consequence of gauge transformation from the radiation gauge form. This significantly 
impedes mathematical analysis. As a consequence, Keldysh makes an early introduction of 
a large photon order limitation. The Keldysh approximation is thus normally employed as 
a tunneling method. Furthermore, it has been applied only to hydrogenic 1 s states. Because 
of the complexity of the G6ppert-Mayer Gordon-Volkov solution, it is not likely that the 
Keldysh approximation can be made relativistic on a practical basis. 

The Faisal theory, °°) on the face of it, seems to be very different from both the Keldysh 
and SFA theories. It is based on a direct-time S matrix and not on a time-reversed S matrix. 
It would thus seem to have lost the inherent advantages of the reversed-time S matrix for 
strong-field problems as described in Section 4.3.1. The treatment by Faisal of the direct-time 
S matrix of Eqn. (47) is unusual. Normally, it is only the completely interacting state ~I +) 
in this S matrix which requires approximation. In the Faisal theory, the state ~f, nominally 
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a positive energy Coulomb state, is approximated as a simple free-particle state for the 
electron. The fully interacting state ~I ÷) is subjected to a Kramers-Henneberger transform- 
ation (an independent discovery of Faisal°°)), as would seem to be appropriate for a 
strong-field theory. His subsequent treatment of this state, however, is then more simple than 
that pursued, for example, by Gavrila and co-workers34j'az~°°) After application of the 
Kramers-Henneberger to the ~ul+) state, Faisal replaces the space-translated state by the pure 
field-free atomic state as a leading approximation. 

By this point in the discussion, it is no longer possible to find any formal connection 
between the Faisal theory and either the Keldysh approximation or the SFA. The remarkable 
fact is that the analytical forms written down by Faisal as his end result ~3°) are identical to 
those of the SFA. O~) Either this confluence has a very deep meaning, yet unsurmised, or it 
is an analytical accident. 

In summary, the Keldysh approximation and the SFA are closely related. They are couched 
in terms of different gauges. The analytical distinctions that result from this have caused the 
Keldysh approximation in practice to be limited to large photon orders only (thus to the 
tunneling approximation), to hydrogenic ls states, and to the non-relativistic limit. The SFA 
is analytically more tractable, and has none of the listed limitations. Specifically, as will be 
emphasized in later discussion of applications, the SFA is applicable to both very low and 
very high frequencies, the ability to introduce any atomic state is central to its ability to match 
strong-field experiments, and it connects relativistic and non-relativistic domains seamlessly. 
The true meaning of the Faisal version of the K F R  is a mystery, but it shares the analytical 
form of the non-relativistic SFA, and so it shares those properties of the SFA. 

4.6. Alternative Interpretations 
An extensive development has been given here of S-matrix methods as they apply to 

strong-field photoionization. A consistent point of view has been adopted. The physical 
picture is that an atom, initially bound, is subjected to a strong laser field; this laser field 
causes a strong disturbance to the system, which may include ionization; the extent of this 
disruption is evaluated by comparison with a set of 'reference states' which do not experience 
interaction with the laser field. In short, the laser field is viewed as the influence which 
generates transitions in the system. This is not the only possible point of view. 

Reference 40 contains an exhaustive examination of the possible S matrices that might be 
written to describe strong-field photoionization. Two basic possibilities have been treated so 
far, based on the direct-time and the reversed-time S matrices when the interaction 
Hamiltonian is due to the laser field. However, the photoelectrons from a photoionization 
experiment are analyzed in a region separated not only from the laser field, but also from 
the atomic binding potential. It is then not unreasonable to construct an S matrix in which 
the reference states lack the atomic binding potential but contain the laser field (albeit 'turned 
off' at infinity via wave packet behavior), and then regard the atomic potential as the agency 
which causes the photoionization. It is concluded in Ref. 40 that only the direct-time S matrix 
of this formulation is adapted to strong-field treatment. This S matrix is 

(S 1)n = (i/h) . ( d t ( ~  -)Gv, - - Vq j ,~+) ), (191) 

where V is the atomic potential. As before, ~I +) is a state containing the complete interaction 
due both to the laser field and to the atomic binding, and #~-)cv is a state lacking the 
interaction causing the transition--in this case, V. Hence ~-)Gv is a Gordon-Volkov state, 
but the notation using ¢ is adopted to emphasize that the S matrix of Eqn. (191) is exactly 
of the type of Eqn. (47), only the transition-causing interaction is different. As always, the 
problem is the treatment of kv~+), since there is no exact solution. An expansion of ~I  +) in 
powers of V (which would lead to a perturbation series in V for Eqn. (191)) is not fruitful 
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since the initial bound state is heavily influenced by the binding and would be poorly 
represented by a Gordon-Volkov state or set of states. An expansion of ~I ÷) in powers of 
the laser interaction Hamiltonian HI gives as the leading term 

- -  1)f i  = -(i/h) fdt(¢  -,ov, r e , ) ,  (192) (s 

where t2b i has its earlier meaning of a bound state with no laser interaction. Equation (192) 
is not perturbative in either interaction since the expansion of ~I +) is in //i,  while the 
transition-causing interaction is V. 

Equation (192) is really not the leading term in a strong-field theory, since successive terms 
in the formal expansion of 7~I +) are in powers of HI, which is presumed to be a large influence. 
Nevertheless, Eqn. (192) can be transformed to the non-relativistic form of the SFA term. 
In other words, the leading non-relativistic SFA term is not in itself unique. It can be arrived 
at from more than one kind of theory. In fact, it is easily shown that the integration by parts 
of the SFA terms undertaken in Ref. 3 l, followed by the neglect of the 'surface term' as a 
zero distribution, actually constituted a transformation of the SFA result to the form of Eqn. 
(192). As shown in Section 4.3.4, this integration by parts is unnecessary, and the SFA term 
can be used directly. 

5. APPLICATIONS OF KELDYSH AND SFA THEORIES 

5.1. Above- Threshold Ionization (A T1) 

Above-threshold ionization has reference to the fact that strong-field photoionization can 
take place with the contribution of many photon orders above and including that which is 
the lowest allowed by conservation conditions. The lowest allowed photon order is itself 
altered by strong fields in that the laser field must supply the ponderomotive potential of a 
free electron in the laser field (31'61'62) in addition to the binding energy to separate it from the 
atom. In this section, as is common practice, this terminology will be applied to conventional 
strong-field photoionization experiments by visible or near-visible light, whether electron 
spectroscopy is done, or simply counting of ions. 

Numerous extensive reviews of the ATI phenomenon are available, and so no attempt at 
completeness will be made in this section. Attention will be focused primarily on the 
interaction between the experiments and KFR theoretical methods. 

5.1.1. Polarization comparisons. Multiphoton ionization is characterized by a loss of the 
superposition principle, so one cannot compute circular polarization amplitudes as a linear 
combination of linear polarization results, or vice versa. When first order perturbation theory 
is valid, there is no effect at all of the polarization state of the laser, and so, historically, great 
interest was aroused by the early two- and three-photon experiments 0~'147) that showed clear 
dependence on the polarization state. The circular polarization rates were found to be 
somewhat larger than for linear polarization, as was confirmed by perturbation theory 
calculations. (14s'149) Higher orders are very difficult to calculate, so an upper bound was 
found c~5°) for the ratio of circular to linear ionization rates, which became quite large as the 
photon order increased. This led to speculation that circular polarization would dominate 
linear at high orders. However, it was then shown °5~) that an upper bound demonstrated 
earlier was far from being a least upper bound, and that an improved estimate of the upper 
bound on circular/linear rates in fact became small as high orders were approached. 

This last result about circular/linear rate comparisons at high multiphoton order was 
refined several years later, when it was found t3~'t52) that the ratio was very sensitive to intensity, 
starting at small values (for high multipboton order) at the lower ranges of intensity, and 
rising strongly toward the neighborhood of unity at very high intensity. There matters stood 

JPQE 16/I--D 
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until experiments by Bucksbaum et a/ .  (136) confirmed the relatively small rate for high-order 
photoionization by circularly polarized light. Hippler et  al., 0°7) measured circular/linear ratios 
and found a strong upward trend with intensity of very much the same character predicted 
earlier.° 1:52) 

Other circular/linear polarization comparisons, ~6) done at large z and zt values, confirm 
many of the qualitative and quantitative predictions of both the Keldysh approximation (29) 
and the SFA. (31) Ionization yield ratios are not presented in this work, (6) but electron spectral 
distributions and angular distributions are as predicted. 

In physical terms, the behavior of circular/linear rates remains incompletely explained. To 
some extent one can understand the domination of the linear case at high orders on the basis 
of one of the two qualitative explanations that have been advanced. One {31) is that a larger 
phase space is available in the linear case because all circularly polarized photons have their 
angular momenta aligned along the direction of propagation, and so the only final states 
available are those states in the continuum that have angular momentum at least equal to 
the number of absorbed photons. By contrast, all angular momentum states are available in 
the linearly polarized case. An alternative explanation {136) is also angular-momentum related, 
and refers to the higher atomic potential barrier associated with the larger angular 
momentum. Overlap integrals for ionization are then concentrated at larger atomic radii, 
which decrease the transition amplitude. 

These lines of reasoning have not been sufficiently developed, and recent results indicate 
that the matter of polarization ratios is more complicated than previously realized. For 
example, the declining dominance of linear polarization over circular that is illustrated in 
Figs 3 and 4 may not persist as intensities continue to increase. The results of Fig. 3 were 
obtained in the 1970s at a time when computer capabilities were so limited that only very 
few intensity values were calculated. Much detail was missed thereby. Calculation of the 
generalized Bessel function of Eqn. (164) is especially demanding of computer time. The H -  
photodetachment problem represented in Fig. 3 (and in Ref. 31) has recently been 
recalculated with up-to-date computational algorithms at closely spaced intensity intervals, 
and on a far more capable computer than previously, with the outcome presented in Fig. 5. 
The presentation is similar to that of Fig. 3, with a somewhat extended intensity range. Over 
the common intensity range in z of 10 -3 to 10, it is seen that Fig. 3 is just a smoothed version 
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algorithms, and using a closely spaced grid in intensity. Note the presence of oscillations that are 
smoothed over in Fig. 3. The ratio of circular to linear rates for photodetachment of H-  appears 

to approach unity asymptotically. 

of Fig. 5. The circular-to-linear ratio approaches unity quite closely, but the ultimate 
asymptotic ratio remains to be established. The erratic oscillations arise from linear 
polarization, since circular polarization rates vary smoothly with intensity. The irregularity 
shown is no artifact. It occurs both with the completely-computed generalized Bessel function, 
and with much simplified asymptotic forms of it. 

The theoretical curves given in Figs 3 and 5 are for photodetachment of a negative ion. 
Figure 4 gives atomic ionization experimental results. Very recently, the stabilization problem 
treated in Section 5.2 has given rise to computations for atomic ionization in very strong fields 
with both circularly and linearly polarized lasers. In those results, the ratio of circular to linear 
ionization rates decline steadily with increasing intensity, quite unlike all of Figs 3 to 5. 
Clearly, much remains to be understood about this problem. 

5.1.2. Circular polarization. Although the first true ATI experiments were done with linear 
polarization, the experiments with circular polarization were largely done quite early, (1°7A36'153) 
with a later return almost exclusively to linear polarization. Notable exceptions exist36'113) 

One of the first detailed comparisons between theory and experiment related to circular 
polarization. The experimental electron spectrum of Bucksbaum et al. (~36) was matched 
against the SFA theory, (l]7,11s) viewing the peak laser intensity as the lone fitting parameter. 
Intensity measurements could not be done very precisely, but the best fit at z = 2.1, z~ = 0.40 
corresponds to 2.3 × 1013 W/cm 2, which is within the experimental accuracy of the stated 
intensity of 1.5 x 1013 W/cm 2. The comparison is shown in Fig. 6. 

For the relatively early era in which Fig. 6 was obtained, the agreement was considered 
quite good. The limitations of the SFA method when dealing with the lowest lying 
peaks(40.7s,117) has already been discussed in Section 4.3.2. This limitation comes about because 
the dominance of the laser's ponderomotive potential over the atom's binding energy that 
is the underlying approximation in both the Keldysh and SFA methods, is questionable for 
a very low energy peak in the electron spectrum. The lowest energy ionized electrons will be 
most heavily influenced in their final states by the atomic field. Circular polarization reduces 
the importance of this limitation by exhibiting an inherent suppression of the low end of the 
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FIG. 6. Experimental spectrum of photoelectrons from the multiphoton ionization of xenon with 
circularly polarized light of 1064 nm, obtained by Bucksbaum et al. (t36) Superimposed on the 
experimental results are the theoretical predictions of the SFA, shown by the horizontal bars. The 

figure is reproduced from Ref. 118. 

emitted electron spectrum. This is seen in Fig. 6. The no-field lowest order  o f  ionization 
arising f rom no >1 {EB/hco} is 11 for these experiments on the photoionizat ion o f  xenon with 
a laser o f  1064 nm wavelength. The suppression o f  the lowest orders associated with the 
ponderomot ive  potential,  giving rise to no = {EB/hco + z},  raises the lowest allowed order  to 
13. Nevertheless, Fig. 5 shows no contr ibut ion at order 13 and very little at order  14. Hence 
the SFA gives a reasonable prediction even though  zl ~ 0.4 places the experiment rather  
below the region o f  applicability o f  the SFA. 

Recently, Bucksbaum et al. (]13) have refined their earlier work  to take advantage  o f  the 
better labora tory  technique now available. They again compare  the SFA theory with 
experiment, taking account  o f  the spatial and temporal  distribution o f  the laser pulse. The 
ionized a tom again is xenon, but the wavelength is 616 nm. Their new results are shown in 
Fig. 7. W h a t  they find is that  agreement  is poor  for the first spectral peak, fairly good  for 
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FIG. 7. Detailed comparison of experimental and theoretical rate profiles for the first three spectral 
peaks in the multiphoton ionization of xenon by 616 nm laser pulses. The experiment was  
performed at the relatively low value of the bound-state intensity parameter z I ~ 0.16. Agreement 
is poor for the lowest peak and improves significantly for the next two peaks. The figure is a 

reproduction of Fig. 3 in Ref. 113. 
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TABLE 6. Values ofz and Zl for some representative experiments. The table represents peak laser 
intensity for the first ionization of the atom listed 
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Reference 2 (nm) Atom I (W/cm 2) z z 1 

102 532 helium 4 x 1013 2.3 0.4 
131 532 argon 2 × 1014 2.3 0.7 
124 586 argon 2 x 1014 3.1 0.8 
112 620 xenon 1014 1.8 0.6 
114 1053 argon 2 x 1015 170 26 
I 11 1064 krypton 4 x 1013 3.6 0.6 

6 10000 xenon 1014 9000 170 

the second peak, and excellent for the third peak. The value of  z is now about 0.5, and 
z~ ,~0.16. These intensity parameters are substantially smaller than in the first set of  
experiments, and no peak suppression at all is observed, since the no-field value of  
no = {EB/hco } corresponds to the lowest measured peak. To exercise proper care in evaluation 
of  these results, it should be noted (P. H. Bucksbaum, private communication) that there is 
arbitrariness along the ordinate in matching of the theory and the experiment, so that the 
remarkably good agreement at a photon order of nine might not be reliable. Nevertheless, 
only the lowest photon order shows poor agreement (as is always to be expected), the value 
ofz~ ~ 0.16 falls well below the nominal requirement ofz~ > 1, and no other theory has come 
close to satisfying such detailed scrutiny in confrontation with a relatively strong-field 
experiment. One might conclude that the agreement of  the SFA theory with experiment is 
remarkably good. This commentator finds perplexing the conclusion of  the authors that 
"[KFR] calculations do not agree with these new experimental results", and the absence of 
commentary by the authors on conditions of  applicability of  the K F R  method. 

5.1.3. Linear polarization. Most strong-field photoionization experiments have been 
done with linearly polarized lasers. These experiments will not be reviewed in depth. Rather 
the emphasis is on those experiments that have been compared or are properly comparable 
against theories of  the K F R  type. A fact of the utmost importance that receives inadequate 
attention is the condition z~ > 1 required for K F R  methods to apply. It is not always 
appreciated how strongly frequency-dependent this intensity parameter is. It is also necessary, 
when multiple ionization is observed, that the intensity domain in which the first of 
these ionizations occurs is the one to which the z~ criterion applies. The other point 
that will be stressed below is the importance of using an applicable atomic wave 
function in comparing theory and experiment, and not simply using the hydrogenic ls state 
universally. The SFA contains atomic information in an important way, as was stressed in 
Section 4.3.1. 

It is found that, with adequately large zt values, and with appropriate atomic information 
employed, the SFA gives good agreement with experiments/~38) The calculation is complete 
and direct. There are no adjustable parameters employed at any stage, and there are no ad 
hoc elements introduced anywhere in the development of  the theory. 

Table 6 lists a sampling of  experiments with peak laser intensities, wavelengths, and z and 
Zl values. No excimer laser experiments are listed, since the short wavelength generally leads 
to modest z~ values. (This limitation is no longer true for the latest technology.) The order 
of  listing is from short wavelength to long, so that the dates of the experiments are quite 
randomly ordered. 

The intensities selected are associated only with the first ionization state and not with higher 
multiplicities. This is done because of  the generally accepted notion that the dominant mode 
of  ionization is sequential, with n-fold ionization occurring as a consequence of  ionization 
of  the ion of  charge n - 1. Since z~ values tend to be higher for more extensively stripped 
ions, the limiting conditions for applicability of  the SFA must be sought in the first stage of  
ionization. 
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FIG. 8. Comparison of the SFA theory with experiments by Augst et al. (It4'llS) for helium 
photoionized by a laser of 2 = 1053 nm to both He + and He 2÷ final states. The ion detector 
saturates in the neighborhood of 2000 ions." 14.~ 15) The horizontal bar shown in the figure measures 
the experimental uncertainty in peak laser intensity. Data shown in Refs 114, 115 for He 2+ for 10 
ions or fewer are contaminated (D. D. Meyerhofer, private communication) and have been omitted 

from this figure. 

In all cases, z is greater than unity, and there is no question that every experiment listed 
is in a non-perturbative regime. The zi values are the primary focus here. Most of  the 
experiments have relatively small values of this parameter. The ones that have zt >> 1 are either 
relatively recent (Ref. 114), using new technology, or represent a very long wavelength 
(Ref. 6). 

The experimental results of Ref. 6 are compared in that source with both the Keldysh 
approximation and the SFA. Agreement is stated to be excellent. The other set of  experiments 
listed in Table 6 with z >> 1 is that of the Rochester group (Ref. 114). Matching of  the SFA 
theory to those experiments has recently been done. °38) Results for two of  the atoms are 
shown. Helium comparisons are given in Fig. 8, and argon in Fig. 9. 

It is emphasized that the SFA has not previously been systematically compared with 
experiments under appropriate conditions. By this is meant both that one must have z~ > 1, 
and also that a suitable wave function has been used. The He results in Fig. 8 simply use 
a hydrogenic ls function, and so there is nothing novel in that. In fact, Augst e t  al.  remark °'5) 
on the excellent agreement obtained for He with the SFA method. The comparison for Ar 
in Fig. 9 is done with a 3p single-particle wave function constructed as described in Section 
4.3.5. This makes a major difference in the fitting. Different wave functions produce 
quantitative results that can be orders of magnitude different, and will show 'kinks' or 
inflections at varying points depending on the choice. The agreement shown in Figs 8 and 
9 is excellent, even without considering the various qualifications that must be stated. 
Experimental intensities may be off by a factor of two in either direction, ('15) the ion collector 
saturates at about 2000-3000, 4(115) and data relating to 10 ions or less for helium is 
contaminated and not considered reliable. 5 There is also an unspecified amount of  uncertainty 
in the stipulation of the parameters which define the shape of  the laser pulse. In addition, 

4D. D. Meyerhofer, private communication. 
5D. D. Meyerhofer, private communication. 
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FIG. 9. Comparison of theory and the experiments of Augst et  al. ¢H4"~5~ for argon ionized to Ar + 
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prevents calculation of higher charge states detected in the experiments. 

overall efficiency of the detection system is not incorporated in the results and is not specified 
by the experimentalists. From the theoretical side, there is the limitation of the wave function 
to an uncorrelated state, established by the plausible, but nevertheless ad hoc procedure 
described in Section 4.3.5. There is also the fact that, although the peak laser intensity has 
zt >> 1, that is true only at the uppermost end of the intensity curve, and even then only in 
the very core of the laser pulse. That is, even in the presence of the seemingly large peak value 
of zl represented in Table 6, much of the calculation actually relates to much smaller z~ values. 

Only two of the atoms represented in the Rochester experiments are reproduced here, but 
all have been calculated, ~138~ and theory and experiment are in good agreement (with the 
caveats already listed) in every case. This is remarkable in that previous efforts to match 
theory and experiment have attained reasonable agreement only when some adjustable 
parameter is included (for example, the adjustable multiplicative factors attached to the 
Keldysh approximation in Refs 109, 124, 131), or ad hoc corrections are introduced. More 
is said of this below. 

5.1.4. Ad hoc corrections. It has been emphasized above that the SFA is formally derived 
from a complete relativistic theory. There are no Ansatzen employed. Nevertheless, the SFA 
depends on the dominance in the final state of the ponderomotive potential associated with 
the laser field over the Coulomb potential associated with the atom. Several investigators have 
attempted to ease the conditions of applicability by introducing ad hoc corrections to the 
Gordon-Volkov solutions to represent residual effects of the Coulomb field on the unbound 
electron. The first such correction was suggested by Keldysh. ~29~ 

An ambitious effort along these lines was made by Sz6ke, ~24~ with the most detailed 
explication given in the Perry dissertation. 0°9~ The basic step is to alter the momentum 
conservation conditions by introduction of an ad hoc modification intended to represent an 
asymptotic effect of the binding energy even after the electron has receded to large distances 
from the atom. One may question the formal basis for this procedure (which includes the 
notion--mentioned again in Section 6.3--that both initial and final states should include laser 
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field effects °°9) in contrast to the basic Eqn. (47) and (49)), but application of  the method to 
data-matching had good success. 0°9'124'13D AS shown in Table 6, the peak Zl values for the 
experiments were slightly less than unity. This means that most of the z~ values in the 
experiment are even less than that, and so the unadorned K F R  method might not be expected 
to be especially accurate. The Sz6ke method does better than KFR. However, the Coulomb 
correction modifies the form of  the SFA. One expects that when z~ truly is large, that this 
modification will be inappropriate since it is not of  the type suggested by formal Coulomb 
corrections to the SFA. In fact, when the Sz6ke correction is applied to the Rochester data, ~ 15) 
with zt > 20, the results are much poorer than one obtains with K F R  techniques, even without 
proper wave function information in the SFA. 

An interesting application of Coulomb corrections arises in the case of elliptical polariz- 
ation. Bashkansky et al. extended analytically the K F R  circular/linear polarization results to 
the more general elliptical case, 054) and then explored experimentally the angular distribution 
of the emitted electrons. They found rather good agreement with the predictions of  the theory. 
However, they had presumed in the experimental arrangements that symmetry would exist 
about both principal polarization axes, and later discovered (1") that there was only one axis 
of symmetry, not two. These authors gave a qualitative explanation for the breaking of  the 
symmetry in terms of  an interaction of the emergent photoelectron with the potential of  the 
remnant ion. This was confirmed in work by Basile et  al., (155) who apply an ad hoc Coulomb 
correction to the Gordon-Volkov solution, in the presence of a generalization to elliptical 
polarization. (This otherwise interesting paper is marred by ancillary remarks about gauge 
transformations which reveal self-contradictory statements on the subject, at variance with 
the general principles set down in Section 2.3, as well as with the accepted concept that the 
Keldysh and SFA formulations vary only by a simple difference in the gauge employed.) 

The experiments which measured the asymmetry in the photoelectron angular distri- 
butions t~54) were done at 1064 and 532 nm with the noble gases at peak laser intensities from 
1013 to 4 × 1013 W / c m  2. Corresponding peak z~ values are in the range of 0.01 to 0.3. These 
are very much pre-KFR intensities. It would be important to have experiments done at K F R  
values (zt > 1) to see if the adhoc Coulomb correction continues to be effective, or if it exhibits 
the same limitation as the Sz/Ske Coulomb correction applied to total ionization rates. 

5.2. Stabilization 

5.2.1. Introduction. In perturbation theory, multiphoton transition rates due to electro- 
magnetic interactions increase with the intensity I as I", where n is the photon order of  the 
interaction. In non-perturbative theories, the rate increase proceeds more slowly than I" at 
high intensities. There has been no general rule found about whether the transition rate will 
level off asymptotically with increasing intensity, or whether there will be an eventual decline. 
The answer would appear to be problem-dependent. The first instance of  an increase in 
transition rate followed by an actual decline was reported (39) over twenty years ago for the 
case of  multiphoton induced emission from a metastable excited state. For  multiphoton 
ionization, the early explicit demonstration of  a roll-off in rate ~3~) has been followed in recent 
years by a flurry of  activity showing the tendency to eventual decline in rate following a 
maximum. This phenomenon has come to be known as stabilization. A variety of  analytical 
and numerical techniques have now been employed to explore the phenomenon of  atomic 
stabilizatio n.(~8'  ~ 33.156-167) 

Diverse physical interpretations are invoked to understand the origins of the stabilization 
phenomenon. The interpretation depends on the analytical technique employed. For  example, 
those methods based on the Kramers-Henneberger (KH) transformation (37'3s) to an acceler- 
ated frame of  reference find that critical elements in the understanding of the stabilization 
process revolve around the apparently dichotomous nature of  the atomic potential that arises 
in the KH approach.  (4t'a2,46,l°°J59,165) Interference effects among high-lying atomic states are at 
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FIG. 10. Results computed by the SFA for multiphoton detachment of H-  by a circularly polarized 
laser of 10.6/~m. Although the highest intensity shown (1016 W/em 2, z = 106, zt = 3 x 105, z r = 0.45) 

is so high as to correspond to relativistic conditions, there is no evidence of stabilization. 

the heart of the stabilization phenomenon as treated by Fedorov et aL (44"156-158'162'164) As will 
be discussed below, the SFA points to a multiphoton threshold as the proximate cause of 
stabilization. 

The exploration of the stabilization phenomenon is currently a focus of much activity. Its 
relevance to the present article is that it is associated with very strong fields, and that its 
domain of occurrence matches quite neatly the domain of applicability of the SFA. The 
predictions of the SFA with respect to stabilization will now be explored. 

5.2.2. Stabilization within the SFA. It is generally recognized that stabilization is not a 
necessary feature of ionization in very strong fields. For example, Fig. 10 shows the transition 
rate for circular polarization for photodetachment of a negative hydrogen ion, plotted as a 
function of z, the non-perturbative intensity parameter. A value of z of about 0.1 constitutes 
the approximate limit of perturbation theory, so the intensity domain shown in the figure 
extends seven orders of magnitude beyond that limit. It is seen that the curve is leveling off, 
but there is no decline such as would characterize stabilization. However, stabilization 
investigations have focused not on negative ions, but on the hydrogen atom. Hence, the 
analog of Fig. 10 for the hydrogen atom will be presented. 

The theory for the hydrogen atom is already present in Eqn. (165). For an initial ls state 
of hydrogen, this can be simplified to the form 

dW= 4_ (EB "~3/2 ~.~ ( l ' l  - -  Z - -  EB/hOg)'/2(j.)2, (193) 
nT0 \hoJ J .0 (n - z )  2 

where z0 is the atomic unit of time, given by To = h/2R~ = 2.419 x 10 -17 S. The other 
quantities have been previously defined (e.g., EB is the binding energy and z is the 
non-perturbative intensity parameter). For circular polarization, the quantity J, is the 
ordinary Bessel function J, (z ~/2~), where ~ is given in Eqn. (161). For linear polarization, J, 
is the generalized Bessel function J,(z~/2=,-z/2), where = is defined in Eqn. (163). The 
minimum photon order no, defined as 

no = {EB/ho9 + z}, (194) 
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FIG. I l. Transition rates calculated by the SFA for photoionization of the ground state of 
hydrogen by circularly polarized radiation over a wide range of frequencies. The stabilization 

phenomenon is clearly exhibited for all frequencies. 

was given earlier as part of Eqn. (161). It is repeated here because of its importance in the 
forthcoming discussion. 

Total transition rates, including a sum over all orders of photons and an integration over 
solid angle, have been calculated for circular polarization over a range of frequencies from 
co = 1/128 to co = 8, in atomic units. The results are shown in Fig. 11. The stabilization 
phenomenon is clearly exhibited. 

The low intensity cutoff of the curves in Fig. 11 is governed by the applicability of the SFA 
as determined by the condition z~ > 1. As can be seen, this means that most of the 
pre-stabilization region is omitted for frequencies close to co = 1. This is a consequence of 
the strong-field character of the SFA method. 

The termination of the curves in Fig. 11 at high intensity is governed by the desire to 
use the non-relativistic Eqn. (193), and not have to resort to relativistic results. The 
onset of relativistic effects is related to the intensity parameter z~ of Section 1.3.5 and 
Eqns (14), (15). When zf is of order unity, then the potential energy of the electron in 
the laser field is of the same order as the rest energy of the electron, mC. Relativistic 
effects should be expected in such a case. This is confirmed by explicit calculation in 
Ref. 36. 

Applicability of  the SFA has, so far, been couched in terms of the basic requirement 
z~ > 1. However, more can be said. The SFA will be accurate if most of the photo- 
electrons emitted have energies comparable to or exceeding the binding energy of the 
atom, which is 13.6eV in this case. For example, consider the case co = 1/8 in Fig. 11. 
The stabilization point--i.e., the intensity at which the rate is maximal--occurs at 
z~ = 10, where the minimum photon order is 25. Ionization with a circularly polarized 
laser has a spectral distribution which peaks at relatively large photon orders, and the 
lowest photon orders do not contribute importantly for intense fields at low fre- 
quency. For this particular case, the peak of the photoelectron spectrum is at a photon 
order of 43, where the energy of  the emitted electron is about 64eV (or 133eV upon 
recovery of the ponderomotive energy after emergence from the laser pulse). The 
spectrum drops to 1% of the peak value at order 31 (where the energy is 23 eV) at the 
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FIG. 12. Transition rates predicted by the SFA for photoionization of the ground state of hydrogen 
by a linearly polarized laser. Computational demands are much more stringent than for the circular 
polarization results in Fig. 11, and only three frequencies are shown. The stabilization phenomenon 

is not so well defined as in Fig. 11. 

low energy end, and at order 66 (where the energy is 142 eV) at the high energy end. All of 
these energies are sufficiently greater than the ionization energy of 13.6eV that the SFA 
should be very accurate. 

At the high intensity limit of the transition rate curve for to = 1/8 (selected at zf = 1), the 
value of zl is so large that the physical premises of the SFA are approaching exactness, The 
number of photons contributing to the process when zl ~ 37,000 (which is true at the end 
point of the to = 1/8 example) ranges from about 142,500 to about 152,200 with most of the 
contribution arising from n ~ 2z ,~, 147,300. (30 A frequency of to = 1/8 corresponds to a 
photon energy of about 3.4 eV, so an electron ionized from ground state hydrogen under these 
circumstances has an energy of approximately the rnC energy of 511 keV. One should use 
relativistic forms here (where zf = 1), but the basic point is that the photon energy absorbed 
by the photoelectron is about 1.5 x 105 times the binding energy of 13.6 eV, so that the effect 
of this binding on the emergent electron is minuscule. This is true over the entire electron 
spectrum. 

Photoionization by linearly polarized laser light is far more difficult to compute than is the 
circular polarization case of Fig. 11, and the results turn out to be much more diverse as a 
function of frequency. Equation (193) is again the expression to be evaluated, with the sum 
over photon orders and the integral over solid angle accomplished. For linear polarization, 
however, J ,  in Eqn. (193) is the generalized Bessel function of two variables °°  of Eqn. (164), 
which presents a profoundly more difficult computational challenge than the ordinary Bessel 
function. Computer-imposed limits dictate a more limited exposition of  results for linear 
polarization than were presented for circular polarization. 

The analog of Fig. 11 for circular polarization is Fig. 12 for linear polarization, but with 
only three frequencies shown instead of the six of Fig. 11. Furthermore, the high-intensity 
limit is no longer the zf = 1 cutoff of Fig. 11, but is now taken to be zf = 0.04. This is because 
of the computer time demands for the higher ranges of intensity with linear polarization. A 
characteristic which distinguishes the linear from the circular polarization case is the 
irregularity, or 'chaotic' behavior of the linear polarization results in some intensity and 
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FIG. 13. The intensity as measured by z~ at which the maximum transition rate occurs for 
multiphoton ionization of ground state hydrogen by a circularly polarized laser, as a function of 

laser frequency. 

frequency domains. This has not previously been much commented upon, largely because it 
is not manifested unless the computations are done on a fine grid in angle and intensity. 
Chaotic behavior of the linear polarization results is one of many important properties which 
changes at co = 1. For  co > 1, the transition rates behave smoothly until the critical 
stabilization intensity is surpassed. Then the chaotic behavior sets in, more strongly for higher 
frequencies than for low. On the other hand, the co = 1/8 case shows small-scale irregularities 
throughout the full intensity domain, present below as well as above the critical stabilization 
intensity. 

Stabilization behavior appears in these linear polarization computations, but so weakly as 
to make strongly questionable their accessibility to experimental observation. 

The location of  the stabilization intensity as a function of  frequency is an important 
outcome of  the computations for several reasons. One is to verify the basic SFA applicability 
condition of  z~ > 1. This has actually already been accounted for in the plotting of  Figs 11 
and 12, since the curves commence at z~ = 1. A plot of  the z, values at the stabilization points 
is very revealing, as shown in Fig. 13, which gives this information for circular polarization. 
This figure makes manifest that, apart from the neighborhood of  co = 1, the region of validity 
of the SFA encompasses the development of  the stabilization phenomenon, from rising to 
decreasing rates as the intensity increases. 

The most striking feature of  Fig. 13 is the radical change in behavior which occurs at co ~ 1. 
This gives every indication that the physical nature of  the stabilization process is altered at 
co ~ 1. That  is the subject of  the next section. 

5.2.3. Physical causes of stabilization from the SFA viewpoint. High frequency stabilization 
is the easier case to analyze. An examination of  the curves for co = 2, 8 in Fig. 11 shows a 
simple linear rise to a rather sharp peak, followed by a strong decline marked by some 
irregularities. The pattern is the same for all co > 1 curves that have been calculated. The 
linear rise from low intensity is a simple consequence of the single-photon character of  the 
ionization process at lower ranges of intensity due to the fact that the ionization energy of 
hydrogen in a field-free region is EB = 1/2 in atomic units. However, Eqn. (194) shows that 
the ponderomotive potential alters that single-photon threshold condition. (Recall that 
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FIG. 14. Circular polarization stabilization points as in Fig. 13 for high frequencies (o~ i> 1). 
Calculations with the SFA are shown by the + signs, the work of Pont and Gavrila from Ref. 

42 is shown by the x marks, and the continuous curve is the prediction of Eqn. (195). 

z = Up~h09.) The peak in each of  the 09 > 1 curves correspond closely to the intensity where 
the minimum photon order indexes upwards from no = 1 to no = 2. From Eqn. (194), this first 
step upward from a one-photon minimum to a two-photon minimum occurs where 
Es /h09  + z  = 1. When this is expressed as a condition on Zl, where z~ = 2 z h 0 9 / E B ,  the 
prediction for the location of  the critical intensity is 

z,  = 2(h09/EB - 1) (195) 

when 09 is greater than unity (in atomic units). 
Figure 14 shows the SFA results which correspond to 09 > 1 (given by the + marks), along 

with the smooth curve representing Eqn. (195). Also shown are the critical intensities found 
by Pont and Gavrila (42) (shown by the x marks), all of  which correspond to 09 > 1. The 
agreement with Eqn. (195) in all cases is excellent for both types of  theories, especially for 
the larger values of  09. The agreement is impressive in view of  the contrast between the 
Kramers-Henneberger technique of  Pont and Gavrila and the SFA. 

The Kramers-Henneberger (KH) transformation underlies much of  the work done on the 
stabilization problem. This transformation leads to approximations which are valid only at 
high frequencies. The SFA method has the ability to encompass both the Keldysh and K H  
domains of  validity. 

For  09 < 1, the situation is different, as seen in Fig. 13. Equation (195) has no relevance 
to 09 < 1, where the critical z, for stabilization falls with increasing frequency rather than 
rising as in Eqn. (195). This difference between 09 > 1 and 09 < 1 is reinforced by Fig. 1 1, 
which shows no direct evidence for a photon threshold associated with the stabilization point. 
Thresholds occur, of  course, for 09 < 1; but they represent a progress from some no > 1 to 
the next larger no, they are not connected with any alteration of  the smoothness of  the curve, 
and they are not associated with the maximum in the transition rate. 

To understand this difference in behavior with frequency domain, the following simple 
calculation is instructive. The number of  photons contained in the laser beam within the 
volume occupied by the undisturbed atom is 

n,, = ( 4 n / 3 ) a ~ p ,  (196) 
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where a0 is the Bohr radius, p is the photon density, and na is the number of photons present 
in the atomic volume. However, according to the condition of Eqn. (194) on the minimum 
number of photons required for ionization, one must have 

no > z = Up/hen. (197) 

The requirement that the photons available within the atomic volume should equal or exceed 
the number required for ionization gives, from a combination of Eqns (196) and (197), the 
condition in atomic units that 09 > 1. Hence one may regard ionization under conditions 
where 09 < 1 as one in which there is a shortage of nearby photons. The ionization process 
requires photons from a larger (possibly much larger) volume of the laser beam than is 
available within the immediate vicinity of the atom to be ionized. This 'photon availability' 
concept would lead one to expect photoionization to be progressively more difficult as the 
frequency declines below ~o = 1, which is the general character of the actual behavior as 
shown in Fig. 13. 

In the introductory remarks on stabilization in Section 5.2.1, it was noted that the physical 
interpretation of the stabilization phenomenon depends on the analytical technique em- 
ployed. It has just been observed in Fig. 14 that the KH method and the SFA predict the 
same stabilization points while relying on very different physical insights. This can be carried 
a step further by noting the strong-field level-interference interpretation of stabilization. That 
point of view allows for stabilization in the hydrogen atom, but not in a system bound by 
a short-range potential, where only one or a few bound levels may exist. One may ask how 
such a situation appears in the framework of the SFA. The reader is referred to the qualitative 
introduction to the SFA in Section 4.3.1, where it was pointed out that the beauty of the 
method is that the time-reversed S matrix places all of the essential strong-field ionization 
information into the unperturbed initial atomic wave function ~i- Thus it is the analytical 
structure of ~i which determines whether stabilization will or will not occur. The wave 
function used in the calculation of the negative-ion photodetachment results of Fig. 10 is of 
the form of e-~'/r, which is associated with a delta-function-like potential, and has only one 
bound state. Figure 10 shows no stabilization. Figure 11 comes from a hydrogenic Is wave 
function, which is one of an infinite family of bound-state functions representing the Coulomb 
bound states. Figure 11 shows stabilization. The SFA method gives the same qualitative 
outcome as the level-interference scheme, but by very different means. 

5.3. Relativistic Effects 

5.3.1. Introduction. This section is, of necessity, incomplete and preliminary. Whereas 
experiments have already been done in which relativistic effects should be present (see 
Sections 1.3.5, 1.3.7, 1.4, and especially Tables 3 and 4), no laboratory study has focused on 
this matter. The theoretical situation is not much farther advanced than the experimental side. 
There have been few theoretical relativistic treatments of photoionization. Two of these 
theoretical papers ~7s'132) have been concerned with formal developments, whereas only one O6) 
presents a calculational algorithm with practical numerical applications thereof. That work 
will be reviewed in the next section. 

The algorithm developed in Ref. 36 is only for the case of a circularly polarized laser, since 
that is analytically simpler than other polarization states. Nevertheless, the analytic complex- 
ity of the result is considerable. One may appraise it to be an order of magnitude more 
involved than the corresponding non-relativistic expression. 

5.3.2. Circular polarization results. The differential transition rate has been explicitly found 
for a circularly polarized laser field as given by the four-vector potential 

A~,(x ) = (a/2)(E~e-~.x + E~.e~.X), (198) 
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where k ~ is the propagation four-vector, and the polarization vector E v is 

~ = 2 - 1 / 2 ( 0  ' .~1 __ i .~z) .  (199) 

As is usual in relativistic work, the 'natural units' with h = c = 1 are used, and the x, y, z 
spatial coordinates are renamed x~ , x2 ,  x 3. Equation (199) implies that the direction of  
propogation of the laser field is taken to be along the ~3 direction. The Dirac relativistic 
formalism of Eqn. (138) is applied to the photoionization of  ground state hydrogen by 
substituting for the initial state ~i the known ls solution of the Dirac equation <74's2) for the 
Coulomb potential of nuclear charge Ze .  The result so obtained is then entirely of Dirac form, 
and is stated in closed analytical form. The expression is averaged over initial spin states of 
the atomic electron, and summed over final spin states of the photoelectron. 

The result thus arrived at is 

d W = 2m 2(ea)5 Y' p__ (UA + UB + Uc) (200) 
d O  n ( Z / a o )  3 ~ m [1 + (pao/Z)~] ' '  

where, from the energy conservation condition, the momentum parameter p is 

p = ( n o  - ~1o9 - EB)l/2(2m + n o  -- ~Io9 -- Erj) 1/2. (201) 

Numerous special symbols remain to be defined. The factor (ea)  ~ in Eqn. (200) can be 
replaced by (ea)2 = 2m2zf ,  where zr is exactly the free-electron intensity parameter of Section 
1.3.5, expressed now in terms of the amplitude a of the vector potential of  Eqn. (198). The 
quantity a0 is the customary Bohr radius, p is 

p = p - (n - r/)k, (202) 

and ~/is 

e2a 2 

~l 4p . k  ' (203) 

where n is the photon order and k ~ is the propagation four-vector of the laser field. The 
dimensionless quantities UA, UB, UC in Eqn. (200) are 

m p a  ° 2 2 
(204) 

u .  = -(~ol2m)n~'(paolZ)~[J,(¢)] ~ x { ( ~ , p a o / Z ) ~  ~ - 2 ~ ( m a o / Z )  

× [ (e /m)  + (n - ,1)(o~/,n) - 2(p/m) cos e ] ~ ' ~  + p ~ } ,  (205) 
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UC -~- - -  ~ [ J n  (~)]2 ~ 2 4 ~ 2  

m (  E-p--cOsOm 

+2y(f lmao)(~-~)2(PcosO--(n--rl)w)~l13V'+f12(~--~)23v'21.  (206) 

Further definitions now required are 

(1 + r ) [ r  (r)122 ~(~-,~ [1 + (pao/Zy] ~-~ 
= r ( 1  + 2r)  (pao/Z)6 , (207) 

q / =  sin X + (pao/Z) cos ~ ,  (208) 

~e" = y(pao/Z) cos ~ - [1 + (1 + 7)(pao/Z) 2] sin ~r, (209) 

= ~ arctan(pao/Z), (210) 

7 = (1 -- Z2~2) L/2, (211) 

eap 
= 21/2p "k sin O. (212) 

In Eqn. (211), ~ is the usual fine structure constant, and the angle O in Eqns (204), (205), 
(206) and (212) is the angle of spherical polar coordinates as measured to the direction of 
photoelectron emission from the direction of laser propagation as the polar axis. The energy 
E which appears is the relativistic energy, related to the momentum by 

E 2 =p2 + m 2. (213) 

The set of Eqns (200)-(212) reduces ¢36) in the non-relativistic limit exactly to the circular 
polarization version of Eqn. (193). 

There is an energy conservation condition associated with the set of Eqns (200)-(212), 
which is 

E = 1 + o~[n - EB -- z / (E - p  cos O)], (214) 

when the further notational simplification is introduced that E, EB, p, and co are all expressed 
in units of m, the electron mass. It is seen that this equation is implicit, since E and p both 
appear on the right-hand side of the equation, and E, p are related as in Eqn. (213). An explicit 
analytical statement of the energy conservation condition requires the solution of a difficult 
quartic equation. It is easier to solve Eqn. (214) numerically as a function of n and O. The 
solution of Eqn. (214) is quite straightforward until very large values of the intensity 
parameter z are reached. Then, for example, for a particular n value, energy conservation can 
be satisfied for some values of O, but not for others. There is a threshold value of n for which 
E >/1, and that threshold may acquire a dependence on O when z is very large. 

A number of calculated examples of the above relativistic solution are given in Refs 36 and 
40. One is reproduced here as Fig. 15. This shows the angular distribution in both relativistic 
and non-relativistic cases of photoelectrons ionized from ground state hydrogen by a laser 
of wavelength 1.06 #m at an intensity z = l& (1.1 x 1017 W/cm2). There is a substantial shift 
of the angular distribution forward from the waist direction. 

5.4. Qualitative Features of Strong Fields with Circular Polarization 

5.4.1. Non-relativistic case. Some important qualitative insights can be obtained very 
simply because of the relative analytical simplicity of circular polarization results. Consider 
the general result for circular polarization in Eqn. (160), or its hydrogenic ls counterpart in 
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FIG. 15. Relativistic and non-relativistic angular distributions of photoelectrons ionized from the 
ground state of hydrogen by a circularly polarized laser with 2 =l .06/zm at z=104 
(1,2 x 1017 W/~'n2). The angle is measured from the direction of propagation of the beam. The 
non-relativistic distribution is symmetric about 90 ° , and the relativistic distribution is displaced 

forward by an amount given approximately by Eqn. (220) or (221). 

Eqn. (193). Angular dependence is entirely within the argument of the Bessel function, which 
may be written as J,(() ,  where n is the photon order, and ( = zI/2•, with y given in Eqn. (161) 
as 

= 2(n - z - EB) l/2 sin 0. (215) 

For high intensity, z >> 1, the threshold photon order constraint in Eqn. (161) of  n o i> z + EB 
means that n will always be large. It is elementary to show that ( < n always, and so one may 
use the elementary qualitative asymptotic form 

J , ( ~ )  ~ (~ /2 ) ! /n  !. (216) 

This means that the magnitude of J,  will be greatest for the largest possible value of ~, and 
will decline rapidly as ~ departs from that value. Hence non-relativistic, circular polarization 
photoionization peaks at 0 = n/2 and falls off symmetrically to both sides of that value. For 
any such peak, i.e., for 0 = n/2 and for fixed n, Eqn. (193) achieves a maximum value as a 
function of  z when z = (n - Ee)/2. For sufficiently large z, then z >> EB and hence also n >> EB. 
Hence the result is obtained that spectra peak at 

n = 2z + EB ~ 2Z. (217) 

Equation (217) is well verified by experimentsJ 6) 
5.4.2. R e l a t i v i s t i c  case .  Relativistic and non-relativistic angular distributions are of almost 

identical shapes. They differ in that the relativistic distribution is shifted forward. The reason 
for the forward displacement is that photon orders are so large that the absorbed photon 
momentum becomes important. This effect can be quantitatively estimated by noting that 
energy conservation conditions reflect the fact that an energy nhco is absorbed from the 
photon field, of which an energy zho~ is required to provide the classical oscillatory motion 
of the particle in the field, as discussed in Sections 1.3.3 and 1.3.6. This leaves (n - z)ho~ for 
the directed kinetic energy of the photoelectron. The non-relativistic result 0 = ~/2 can be 

J"~E 16/I--E 
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used to say that, to first approximation, all of the photoelectron momentum is transverse and 
given by 

p± ,~ [2m(n - z - eB)og] in ~ [2m(n - z)o9] 1/2, (218) 

where we revert to the relativistic practice of setting h = c = 1. There is, however, a relativistic 
forward momentum coming from the fact that (n - z) forward-directed photons contribute 
to the directed momentum of the photoelectron, or 

Pll ~ (n - z)o9. (219) 

The forward angular displacement of the peak is then 

0d = arctan(p ii/P ±) ~ arctan[(n - z )o9/2m ]1/2 ~ arctan(zo9/2m )L/2, (220) 

where the last result comes from using Eqn. (217). An alternative expression for Eqn. (220) 
comes from the connection zo9/2m = zf/4, where zf is the free-electron intensity parameter of 
Section 1.3.5. Equation (220) then takes the extremely simple form 

0 d ~ arctan(z ~/2/2). (221) 

This prediction agrees accurately with all detailed calculations done to date, including the 
results of Fig. 15. 

5.5. Very-High-Order  and Very-Strong-Field  Applications 

Equation (217) obtained above makes possible very direct appraisals of the dominant 
photon orders which contribute strong-field, circular-polarization photoionization. The three 
state-of-the-art laser systems listed in Table 4 have peak z values of about 104, 105, and 104, 
respectively. Hence the dominant photon orders which will contribute are about twice those 
numbers. No such simple result as Eqn. (217) is known for linear polarization, but a rough 
estimate remains possible. Because of the threshold condition 

no = {z + EBIho9} > z, (222) 

the simple inequality n > z always hold. In practical calculations at very high intensities, the 
most prominent peaks in a spectrum of photoelectrons produced by a strong laser field of 
linear polarization are those at the lowest end, followed by a very extended spectrum that 
declines only gradually until a rather abrupt final roll-off that generally occurs as n ~ 2z. (This 
is thus quite unlike the shape of the circular polarization spectrum where the maximum is 
at n ~ 2z, with a rather symmetrical distribution about that value.) For either polarization, 
n ~ 2z gives the correct order of magnitude for the strong-field photon order to be expected, 
and that number is seen from Table 4 to be impressively large. 

Still essentially unexamined is the matter of ionization from Rydberg states by very low 
frequency radiation. Numbers as large as those mentioned above can occur in this case as 
well, as some preliminary calculations along these lines indicate. °37) In this connection, it is 
appropriate to mention experiments reported by Gallagher, ~5°) who employs two low-intensity 
lasers to excite an atom to a Rydberg state, from which it is ionized by, microwaves. The 
energy of the emergent photoelectrons is so far above threshold that about 3 x 105 microwave 
photons must be absorbed. 

In anticipation of the examination of ionization from Rydberg states by the SFA, one 
complicating feature immediately comes to the fore. It is customary in dealing with Rydberg 
states to use a scaled frequency defined by COo - n~o9(au), and a scaled electric field given by 
Eo =- ngE(au), where no is the principal quantum number. However, the non-relativistic SFA 
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depends on two intensity parameters, z and zz, whose expressions in terms of these scaled 
quantities are 

n0E02 
z = 4a~03 , (223) 

z I = (E0/og0) 2. (224) 

The SFA 'scaling' is more complicated than simple Rydberg scaling, and incompatible with 
it. In other words, the prediction of the SFA method is that the customary Rydberg scaling 
will not hold for very strong fields. 

6. CRITICAL COMMENTARY ON THE KFR METHOD 

6.1. Internal Consistency 

The Keldysh theory and its KFR successors have caused some puzzlement in the atomic, 
molecular, and optical (AMO) physics community. They are non-perturbative techniques, 
designed from the outset to accommodate strong fields. In no sense do they constitute a 
continuous evolution of techniques long familiar in AMO physics. Practitioners in the field 
have manifested their discomfort with this situation by attempting to test the KFR theory 
against more conventional concepts, or seeking to find comparative tests against either 
experiments or against theories that have evolved continuously from standard techniques. 
Some of these efforts will be reviewed. 

A well-known formal challenge to the validity of the Keldysh approximation comes from 
Autunes-Neto and Davidovich3168) After various manipulations, they conclude that the 
Keldysh approximation is internally inconsistent. This line of thought was taken up by 
Milonni, °69,17°) who arrives at the result that the Keldysh approximation is a weak-field theory, 
not a strong-field theory. Mittleman returns to the theme that the Keldysh approximation 
is internally inconsistent. (~7~) 

These criticisms were examined by the present author, with the conclusion ~78) that the 
putative shortcomings of the KFR work did not have their origins in the KFR method, but 
rather in the improper application of a technique employed in common by all the 
above-mentioned critics. That technique is to apply a contact transformation to remove from 
a matrix element an exponentiated purely time-dependent function. It is a procedure common 
in AMO physics. It is shown here that the structure of the Keldysh approximation and the 
SFA make it plain why a contact transformation in the spirit of Autunes-Neto et al. cannot 
be applied to those strong-field formulations. 

The basic premise of the KFR critics can be understood from an expression like Eqn. (49) 
for a transition matrix element. Consider the non-relativistic case when ~ - )  in Eqn. (4a) is 
approximated by a Gordon-Volkov solution, that is, 

MSFA.NR = (~V~-)cv, HI ~i). (225) 

The ~-)~v solution is shown in Eqn. (144). The entire factor 

F(t) = exp(i/h) dzH~ (p, z) (226) 

is a function of time alone, where HI(p, ~) is defined by Eqns (145) and (147). That is, 

F(t) = exp[g(t)l, (227) 

and when the absolute square of Eqn. (225) is taken for substitution into the Fermi golden 
rule for the transition probability, then all contribution from F(t) vanishes. This is the basic 
reasoning behind the conclusion that a contact transformation, as given by Eqn. (226), will 
not alter transition probabilities. 
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Some warning signs are already in clear evidence that this procedure has problems. First 
is the fact that Eqn. (226) contains the entirety of field dependence from the Gordon-Volkov 
solution, and not only the effect of  the A 2 term, which is the term the K F R  critics have seized 
upon. The same reasoning applies to the entire field-dependent phase of  the non-relativistic 
Gordon-Volkov solution. Carrying their logic one step further reduces Eqn. (225) to a 
quantity which has nothing at all to do with the laser field. The next warning sign is the 
comparison with the relativistic case, and the physical expectation that relativistic and 
non-relativistic calculations should interface smoothly. When the relativistic Gordon-Volkov 
solution is employed for kv~-)ov, then Eqn. (226) is unambiguously a function of  both t and 
r, and there can be no thought of a contact transformation. This is true of  A s, so one may 
examine that. The magnitude of  the A s contribution to the energy is given directly by the 
ponderomotive potential. A practical case in point is a laser field of  1 #m at 1016 W/cm 2, which 
is currently to be found in the laboratory, and is not relativistic ( z ~ 4  x 10-3). The 
ponderomotive potential is about 103 eV. The A 2 term, present relativistically in excess of a 
keV, suddenly appears to vanish non-relativistically when a contact transformation is applied. 
Something is wrong. 

To all these danger signs, one can add other fundamental difficulties that confront the 
conclusions of the critics. These include the correct tunneling limit that emerges from the 
K F R  method (Milonni finds the K F R  method to be weak-field in nature), the prediction of  
stabilization (unambiguously a strong-field effect), and the unmatched numerical accuracy of  
K F R  predictions of  very strong-field experiments (Mittleman speaks of  errors of factors of  
109.( 175 ) 

The resolution of  the problem is straightforward. It can be approached in several ways. 
One is to note that the familiar form of the Fermi golden rule is not valid for strong fields. 
The golden rule was derived originally (173) with perturbation theory in mind. The S-matrix 
theory developed in Section 2.3 expressly does not use the Fermi golden rule. Transition rates 
are found ab initio. Most particularly, the S matrix contains not only the matrix element of  
Eqn. (225), it always contains as well an integration over time, as shown in Eqn. (47) or (49). 
If one extracts an A s term from either 7-'I +) in Eqn. (47) or from ~ - )  in Eqn. (49), the 
energy-conserving delta function is correspondingly altered. The extraction of A s is then 
clearly impermissible. 

An alternative, but equivalent, viewpoint is that the removal of  a purely time-dependent 
exponential factor from ~ by a contact transformation shifts the zero from which energies 
are measured in that state. On the other hand, • contains no A 2 term, is not subjected to 
a contact transformation, and so its energy continues to be measured from the pre-transform- 
ation zero of energy. Transition amplitudes are measured by comparison of ~ and ~. The 
inconsistency introduced by the contact transformation is clear. The error is major because 
of  the large possible magnitude of  the ponderomotive potential. 

Yet another, but still equivalent, view of  the inconsistency is suggested by an argument that 
Mittleman advances °7~) in support of  his introduction of  a contact transformation. He 
remarks that one can shift a Lagrangian by a total-time-derivative term without altering the 
dynamics of  the system. One can use this argument to alter by removal of A 2 the Lagrangian 
(and Hamiltonian) H 0 + H~ which describes ~. However, ~ is directly confronted with • in 
the basic S matrix 

Sa = lim (~f, ~i)- 

The state ¢5 is governed by H 0, which does not contain A 2. The situation is as described above. 
The total-time-derivative shift changes the zero of  energy related to ~, while not doing so 
for ¢~. The inconsistency is evident. 

An interesting footnote to the above is reviewed here. The problems described above can 
be seen from a new perspective by a fresh look at the Fermi golden rule. Such a rule can be 
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generalized (78) to the Floquet problem, (~74) in a non-relativistic, dipole-approximation, mono- 
chromatic application. Floquet behavior (17s-177) is such that a state in interaction with a field 
possesses sidebands spaced at integer multiples of hco about the unperturbed energy. For 
comparison with the generalization, the simple Fermi golden rule is stated first. For stationary 
states such that both 4) and qJ have the form 

• f(r, t) = ~bf(r)exp(- iEft /h) ,  ~i (r, t) = I~i(r)exp(- iE i t /h),  (228) 

then the S matrix 

(S 1)fi - ( i / h )  .1 dt(~r, - = V~Vi(÷) ) (229) 

gives rise to the transition rate 

w = (2~z/h )6 (el - E i )l Tfi 12, (230) 

where the T matrix Tfi is simply 

Tfi = (~f, VI]¢i). (231) 

Equation (230) is a statement of the golden rule. However, when qJ~+) exhibits Floquet 
behavior, then (see Appendix B of Ref. 78) the S matrix can be written 

(S - 1)~ = -21ri ~ ~i(Er- Ei - nho9 + zhog)T~ n), (232) 

and the golden rule generalizes to 

w = (2n/h) ~ 6 (E r - Ei - nho9 + zhog)l T~ ") 12. (233) 
n 

The nho~ term in the delta function refers to transitions between Floquet sideband states in 
this time-dependent problem, but the term zh(o is just the ponderomotive potential, since z 
is defined by Eqn. (6). The A 2 term is no longer in the separate T~ "), it is now in the overall 
energy conservation condition. 

6.2. One-Dimensional Behavior 

When a problem presents great difficulties in a fully formulated theory, a common practice 
in physics is to simplify the premises. One traditional example of such reductionism is to 
employ a one dimensional model as a way of gaining insight into a problem which is 
forbidding in three dimensions. This has been done with strong-field photoionization. See 
Ref. 55 for an extensive review of one-dimensional numerical methods. 

The reduction to one dimension has been imposed also upon the K F R  method, with 
unexpected results. 07s-~s°) When the energy spectrum of emitted electrons in an ATI process 
is examined with a one-dimensional K F R  method, the spectrum acquires a ragged, almost 
random appearance which is quite unlike observed spectra, and also unlike spectra calculated 
by direct integration of the one-dimensional Schrrdinger equation. Various conclusions have 
been drawn from this failure of reasonable behavior in the one-dimensional KFR,  but none 
of the authors take note of the fact that the one-dimensional K F R  spectra are also totally 
unlike the three-dimensional K F R  spectra, and the three-dimensional K F R  results do, in fact, 
resemble both experiments and direct numerical integration of the Schrrdinger equation. The 
resolution of this conundrum is direct. (~a~) When one calculates the angular distributiop of 
emitted photoelectrons in a three-dimensional K F R  theory, the emission in the exact forward 
direction changes significantly from one spectral peak to another, even though the total 
emission of electrons when integrated over all angles varies in the expected smooth fashion. 
The one-dimensional K F R  theory retains only information from the forward direction. It is 
shown °~) that emission in the forward direction has no correspondence with the total 
emission probability. This explains the anomaly. Three-dimensional K F R  is predictive, while 
one-dimensional K F R  makes no sense. The K F R  method is inherently three-dimensional. 
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6.3. Insights from Critical Commentary 

The remarks of the critics of the K F R  method can be understood in the fashion shown 
above, but constructive lessons can be found in the criticisms. For example, the conviction 
that one can carry out a contact transformation without further inspection of the premises 
behind such a move is reinforced by several features commonly accepted in the AMO 
community. One derives from the long dependence on perturbation theory. When the 
problem of an atom in a laser field is treated directly by perturbation theory, at no finite order 
does the A s term appear in exponentiated form. Yet that is a characteristic overtly displayed 
by the non-perturbative Gordon-Volkov solution. Already mentioned is the common 
acceptance of the Fermi golden rule in its familiar form. 

Another difference between standard AMO practices and the strong-field S-matrix 
approach exemplified here is the emphasis placed upon application of boundary conditions 
in the S-matrix method. As shown in Eqn. (38), the S matrix is based on a comparison of 
a fully interacting state with the non-interacting state that normally characterizes the system 
in the spatio-temporal domain where measurements are made. This leads to an expression 
like Eqn. (47), where the transition amplitude confronts one state of type V with another of 
type 4. However, it is common practice in AMO physics to write a transition matrix element 
with both initial and final states of the same type. In lowest order perturbation theory, both 
states are of the non-interacting • type, but it is common for authors to simply make both 
states of ~u type when formulating a theory intended to go beyond perturbation theory. 
Matrix elements expressed as (~f, HI kui) are commonly to be found in the literature. Thus 
the presumption follows that if an A 2 term is removed from ~ui by a contact transformation, 
this will be balanced by a removal of a corresponding A 2 term from ~u r, and so the inconsistent 
energy assignments described in Section 6.1 will not happen. The resolution of this problem 
is simply to explore from first principles how one arrives at a transition amplitude, as has 
been done in this article. For boundary conditions to be found in all current multiphoton 
ionization experiments, the applicable S matrices are those mixing • and ~u states as in Eqns 
(47) and (49). 

In connection with the last point just made, an interesting object lesson comes from the 
numerical methods of Kulander348'~s2 t84) His technique is to solve the Schr6dinger equation 
numerically for the atom in the presence of the laser field, and to follow an electron to the 
outer boundaries of his numerical experiment. When the electron crosses that boundary, and 
so departs from both the atom and the laser field, it is counted as ionized. This qualitative 
description matches exactly the content of Eqn. (47). A fully interacting state ~I +) is followed 
until it finally ends up as some particular non-interacting state ~f. Effectively, Kulander's 
matrix element is of the type (~r, H1 ~ui). 

A further interesting point comes from the contrast between the one-dimensional and 
three-dimensional treatment of the K F R  method. The transparent conclusion is that the 
three-dimensional treatment makes sense and the one-dimensional does not. Certainly this 
is expected from a relativistic treatment, where the figure-eight behavior of the electron in 
a strong field is fundamental, but it persists in the non-relativistic, dipole-approximation limit. 
This contrast does not exist in direct numerical solution of the equations of motion, as the 
work of Eberly and collaborators (55) has shown. This needs to be understood more fully, but 
the interim conclusion is that the SFA is a fundementally relativistic formalism which retains 
some of those inherent characteristics even when applied non-relativistically. 

Finally, there is the phenomenon noted in Section 5.2.3 on the physical interpretation of 
the stabilization phenomenon. The physical insight one gains from an analysis of a problem 
will be couched in terms strongly influenced by the character of the analytical technique. 
Thus, when an investigator speaks of what 'really happens physically', his perceptions depend 
on the analytical context of his method. This will be very different for Keldysh and SFA 
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methods than for other techniques. Stabilization appears to have one 'cause' in the 
SFA, and a different 'cause' in (for example) KH approaches. This is all part of the 
frequently painful adjustments involved in a change of paradigm, as so cogently described 
by Kuhn. °) 

7. APPRAISAL AND OUTLOOK 

In Section 1.2 of this article, reference was made to some of the qualitative changes to 
conventional quantum optics that are associated with the very strong field environment. This 
can now be taken to be the closing theme as well. 

As is evident from the formal structure of the SFA which has been the principal focus of 
the developments reported here, it may seem that there are more formal similarities between 
the SFA and the standard techniques of high energy physics (as explicated, for example, in 
Ref. 74) than there are to the usual methods of quantum optics. There is one very good reason 
for this, related to the importance attached to the use of relativistic methods to underlie the 
theory. The SFA is a formalism which treats atomic ionization in a context where the 
interaction energy of the ionized electron with the laser field exceeds the binding interaction 
of the atom. That is, the laser field dominates the atomic potential. A laser-dominated 
interaction, however, may be expected to be fundamentally relativistic just as Maxwell's 
equations are fundamentally relativistic. (An interesting historical sidelight is that Einstein 
claimed that he was not aware of the Michelson-Morley experiment at the time he formulated 
his special theory of relativity. Einstein's motivation for the special theory came from the 
desire to reformulate Newtonian mechanics to share the same Lorentz symmetry exhibited 
by the Maxwell equations.) By contrast to this situation, the structure of quantum optics (and 
all of atomic physics) is governed by the dominance of the binding potential of the atom. 
It not only underlies perturbation theory, but it explains the pervasiveness of the electric 
dipole approximation. A plane-wave electromagnetic field has equal magnitudes of electric 
and magnetic components, but their consequences are, of course, vastly unequal throughout 
the field of quantum optics. This is easily understood both on the basis of the long wavelength 
of the typical laser as compared to the atomic size, and also on the basis of the smallness 
of the v/c ratio causing the electric Lorentz force on an electron to greatly exceed the magnetic 
Lorentz force. This comfortable situation breaks down in very strong fields, as has been seen 
in Sections 1.5 and 4.2.3. 

Despite the emphasis above on the 'dominance' of the laser field over the atomic field for 
a sufficiently strong laser, it still remains true that the singularity at the origin of the Coulomb 
potential can never be overcome. This is a theoretician's way of saying that the identity of 
the atom persists no matter how strong the field. The recent work on stabilization just 
reinforces this view. 

A brief list will now be given of some broadly defined areas in strong-laser physics where 
much interesting work remains to be done. In some instances, our present knowledge is scant 
almost to the vanishing point. There is no pretence to completeness in this list. The selection 
of items is motivated by the relevance to applicability of the techniques reviewed in this paper, 
and by those topics associated with major changes in the mode of thinking customary in 
quantum optics. 

The emphasis in the preceding paragraphs suggests relativistic effects as a start. Experimen- 
tally, this area is essentially a blank, although one can predict that this deficit will be overcome 
more quickly than that on the theoretical side of the ledger. The list here is open-ended. It 
is not known whether there are important spin effects, whether polarized-electron experiments 
are worth doing, and so on. Ignorance also shrouds the influence of relativity on the 
stabilization phenomenon as well as on spectral or angular distribution characteristics. Yet 
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little of this can be done until the development of a linear polarization theory in parallel to 
the circular polarization results summarized in Section 5.3.2. 

Relativistic effects reflect as well on the opening up of potentially important pair production 
channels in competition with photoionization. 6 

The stabilization phenomenon per se, now the subject of so much theoretical activity, is 
far from fully understood. Is there stabilization for low frequencies, as the above-reported 
results suggest for circular polarization, or is it present at high frequencies only, as some 
investigators conclude? Why does linear polarization appear so different from circular, as is 
indicated in Section 5.27 Another question refers to the need for wave-packet behavior to have 
stabilization occur at all. Some commentators are convinced it is necessary; in the S-matrix 
approach it appears not to be. This may be settled earlier than some other questions. What 
are the SFA predictions for stabilization of higher-lying levels in hydrogen, and what are the 
consequences of exploring other than initial S states? 

A theoretical activity not yet attempted, but certainly possible, is the treatment of harmonic 
production by SFA methods. 7 It is not known whether such techniques would possess 
advantages. They very well might, especially in view of the transparently available relativistic 
extensions. 

The entire subject of quantum manifestations of chaos is very active. Some of the results 
shown in this article suggest such behavior in regions not previously examined. Many other 
suggestive-looking results have also been obtained, but their interpretation and possible 
implications have not been pursued. 

A long-standing problem that has received inadequate theoretical attention is to explain 
in detail the complicated photoelectron spectra obtained from very strong few-femtosecond 
laser pulses. Again, the SFA should be a suitable technique, especially if developed from a 
true a priori wave packet theory instead of the theory expounded above, in which 
monochromatic results are later superposed to represent space-time distributions. The true 
wave-packet theory is available because the Gordon-Volkov solution is known in such form. 

The entire subject of very-strong-field laser-assisted and microwave-assisted processes is 
very large and very promising. It is also difficult for the theoretician. A few theoreticians and 
experimentalists have been laboring in this area for some time. It is due for considerable 
expansion. 
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