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DIPOLE APPROXIMATION
(LONG-WAVELENGTH APPROXIMATION)
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The dipole approximation [or electric-dipole approximation (EDA)] is used almost universally in 
Atomic, Molecular and Optical (AMO) Physics.

It is not generally recognized that its validity is limited by field intensity.

We start with the customary high-frequency limit on the EDA.

A plane wave field in general is a propagating field with trigonometric dependence on a phase 
factor                                                      where      is the unit vector in the propagation direction.

The important range of |r| is when the wave overlaps the atom, or |r|=O(1 a.u.).
Dependence of the phase on r can be neglected when |kr| << 1, or /c << 1, or  << 137.

(Fine-structure constant   = e2/ ħc in Gaussian units; so c = 1/  = 137.036 a.u.)

t – kr  t is called the dipole approximation or electric dipole 
approximation (EDA) or long-wavelength approximation (LWA).

,/2/c,  kkkrk ˆˆt  k̂



Dipole approximation, EDA, and LWA are not exactly the same thing, but that is usually ignored, 
and can be ignored here.

For more information, see:
HRR, PRA 22, 770 (1980)
HRR, PRA 29, 698 (1984)

There is also a low-frequency, intensity-dependent limit on the dipole 
approximation, first pointed out long ago [HRR, Prog. Quant. Elex. 
16, 1 (1992), Sect. 1.5], but ignored until a more emphatic recent 

publication: HRR, PRL 101, 043002 (2008); see also Erratum, PRL 101, 
159901 (E) (2008).
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LOW FREQUENCY LIMIT ON THE DIPOLE APPROXIMATION

The magnetic field B is the key to the low frequency limit.

In the dipole approximation, A(t,r)  A(t)   B = 0.

Usually, B = 0 is not considered a problem because of the Lorentz force expression:

Even though |B| = |F| for a plane wave (Gaussian units), it is usually assumed that |v|/ c << 1 
for nonrelativistic conditions, so the neglect of the magnetic field doesn’t matter.

RELATIVISTIC EFFECTS:

MAGNETIC EFFECTS:

For v/c <<1:

MAGNETIC EFFECTS HAVE AN EARLIER ONSET THAN RELATIVISTIC EFFECTS.
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EFFECT OF THE MAGNETIC FIELD OF A PLANE WAVE

For a plane-wave field of linear polarization, the electric field by itself causes (in the frame of 
reference in which the electron is at rest on average) an oscillation of amplitude 0 along the 
direction of the electric field, with frequency .
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The coupling of the electric and magnetic fields of a linearly polarized plane wave produces a 
figure-8 motion with the long axis in the electric field direction F and the short axis in the 
propagation direction k.  The component in the k direction has amplitude 0 and frequency 2.
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These expressions are nonrelativistic. The fully relativistic results are on the next slide.
Recall the definitions:  z=Up /, zf = 2Up /mc2
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Reference:  Sarachik & Schappert, PRD 1, 2738 (1970).
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CLASSICAL FREE ELECTRON IN A PLANE WAVE FIELD

Electron follows a figure-8 trajectory resulting from the combined action of the electric and 
magnetic fields.

α0 = amplitude along electric field direction
β0 = amplitude along direction of propagation 
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The figure-8 proportions shown correspond to the limiting case β0 / α0 = 0.177. 



CONSEQUENCES OF MAGNETIC FIELDS FOR THE DIPOLE APPROXIMATION

If the magnetic-field-induced “thickness” of the figure-8 is of the order of the size of the atom, 
then overlaps of the field-induced electron motion on the atom will be altered, and matrix-
element evaluations will thereby also change. 

Require 0 < 1 a.u., or z/2c < 1;  z= Up / ; Up = I / 42  I < 8c3

This is now a lower bound on the frequency for which the dipole approximation is valid.

Overall limits on the dipole approximation are shown on the next slide.

Taken together with the fact that a tunneling theory requires not only the dipole 
approximation, but also  << EB , tunneling theories are limited as shown on the following 

slide.
Reference: HRR, PRL 101, 043002 (2008)

[Note: tunneling is inherently a static-field or very-low-frequency phenomenon; it is explicitly for 
QSE fields. For example, a high-frequency ( > EB ) PW field can ionize with a single photon; it 
does not tunnel.]
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THE DIPOLE APPROXIMATION HAS UPPER AND LOWER FREQUENCY LIMITS
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TUNNELING THEORIES FOR LASER-INDUCED PROCESSES ARE LIMITED TO THE SHADED AREA
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We develop a general quantum transition amplitude based only on measurements 
made in the laboratory.

 This allows us to avoid any description of how a state evolves in time. We need not 
even mention adiabatic decoupling (an artificial procedure used in some formal S-
matrix theories to describe how fields stop interacting at large times).

 All time evolution is handled by incorporating the equations of motion (the 
Schrödinger equation) directly in the transition amplitude.

What emerges is the standard transition amplitude, but with a minimum of needless 
assumptions.

DERIVATION OF A GENERAL QUANTUM TRANSITION AMPLITUDE
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BRIEF HISTORY OF S MATRICES

Introduced for use in scattering problems; hence the letter S

J. A. Wheeler, Phys. Rev. 52, 1107 (1937).
W. Heisenberg, Z. Physik 120, 513, 673 (1943).
E. C. G. Stückelberg, Helv. Phys. Acta 17, 3 (1943); 18, 21, 195 (1945).

In a search for a general nonperturbative formalism to use for strong-field problems, it 
was shown that the S-matrix formalism can be employed for any quantum process:

free-free (scattering)
bound-free (ionization, photodetachment)
free-bound (recombination)
bound-bound (excitation, de-excitation)

HRR, Phys. Rev. A 1, 803 (1970).
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RIGOROUS DERIVATION OF AN S MATRIX

Basic requirement: The transition-causing interaction occurs only within a domain 
bounded in space and time.

(Example: transitions in the focus of a pulsed laser.)

Important properties of an S matrix as derived here: 

 It can be formulated entirely in terms of quantities measurable in 
the laboratory.
 It does not require that dynamics be tracked over time. Equations of 
motion are incorporated in the S matrix.
 There is no need for “adiabatic decoupling”.
 It gives unambiguous rules for gauge transformations.
 It can be applied to any process as long as the space-time domain of 
the interaction region is bounded.
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The general problem is evoked of an atomic electron subjected to a 
pulsed, focused laser beam. This is a convenience, not a requirement.

There will be a complete set of states {n} that satisfy the Schrödinger equation 
describing the atomic electron that may be undisturbed or in interaction with a laser 
beam:

 Hi t 

The outcome of any experiment will be measured by laboratory 
instruments that never experience a laser field. As far as the laboratory 
instruments are concerned, there is a complete set of states {n} that 
satisfy the Schrödinger equation describing an atomic electron that does 
NOT experience the laser field:

 0t Hi 
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Algebraic notation will be used for Hilbert space quantities rather than Dirac bra-ket
notation.

The correspondences and rules are:

 

        scalarcomplexc;u,v*cu,cvu,vccu,v

u,vuv,v(v)uu




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By hypothesis, the laser pulse is finite, so

   0lim 0 


HtH
t

We can organize the two complete sets of  states and  states so that they 
correspond at t  - :

     0lim 


tt nn
t

After the laser interaction has occurred, the only way for the laboratory instruments to 
discover what has happened is to form overlaps of all possible final f states with the 
state that began as a particular i state. This is the S matrix:
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We now have the form of a perfect differential:
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An alternative form is especially useful for strong-field problems. Instead of making a 
one-to-one correspondence of  and  states at t  -  , do it at t  +  and then 
look for the probabilities that particular initial states could have led to this final result.
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 iIffi HdtiM  



,

The end result of this procedure is the transition matrix element

The first form above is called the direct-time S matrix, and the second form is the time-reversed 
S matrix.

In general,  states are known exactly or can be simulated accurately (for example, by analytical 
Hartree-Fock procedures). It is the  states that present the problem because they represent 
conditions for an electron simultaneously subjected to the Coulomb attraction and to the laser 
field. No exact solutions are known.

If the initial state i is to be approximated, this is very difficult because the laser field (by 
hypothesis) is too strong to be treated perturbatively, and so is the Coulomb field because in an 
initial bound state the Coulomb field has a singularity at the origin.

For the final state f , the electron is unbound, and the laser field can be assumed to be more 
important than the Coulomb field. This identifies the time-reversed S matrix as the preferred 
form, and it will be employed exclusively hereafter.
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GAUGE TRANSFORMATIONS

Electromagnetic fields can be represented in terms of derivatives of vector potentials A(t,r)and 
scalar potentials (t,r).

These potentials are not unique; within specific constraints, one set of potentials can be 
exchanged for another that produce exactly the same electric and magnetic fields F, B.

The alteration from one set of potentials to another describing the same fields is called a 
gauge transformation.

Within perturbative AMO physics, gauges are not important, and are usually (and safely) 
ignored. It is normally a matter of calculational convenience to decide what gauge to employ.

In strong-field physics, gauges become very important; they are no 
longer a matter of indifference.

It will be necessary to explain why this occurs, and to identify the consequences of ignoring 
the effects of a change in gauge.

This matter has only recently been subjected to detailed study. Much of the AMO community is 
either unaware that gauge is important, or else reject the evidence.
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CONCISE OVERVIEW OF GAUGES

Every intermediate or advanced textbook on classical electrodynamics gives a treatment of this 
subject. Only those matters of direct importance to these lectures will be reviewed. 

The fields F and B are related to the potentials A and  as

AB
A

F 
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
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When substituted into the two source-free Maxwell equations, it is found that if the potentials 
satisfy the Lorentz condition
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remaining two Maxwell equations containing sources:
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where  is the density of electric charge and J is the current density. 
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If there are no sources:  = 0 and J = 0, then these equations have 
plane-wave (PW) solutions. Once formed, plane waves can propagate 

indefinitely without sources.

A quasistatic electric (QSE) field cannot exist without sources:   0.

PW and QSE fields are fundamentally different types of fields.

This difference will arise repeatedly in later work.
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GAUGE TRANSFORMATION

 

A'B

AA'A,B



  set0,

If  is a scalar function, then the gradient of  can be added to A without any change in the 
magnetic field:

If the Lorentz condition is to remain valid, then it is necessary that

t
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To maintain the wave equations for the vector and scalar potentials, it is necessary that
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


This is a gauge transformation. The new potentials A’, ’ give exactly the same fields as the 
original A,  .  The conclusion that any set of potentials meeting the constraints listed are as 
valid as any other set of potentials is called gauge invariance.
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EVIDENCE OF INCONSISTENCIES WITH STRICT GAUGE INVARIANCE

In support of gauge invariance, it is noted that Newton’s equations depend directly on forces, 
and the Lorentz force associated with electromagnetic fields is given explicitly in terms of the 
fields themselves:









 B

v
FFr

c
Lorentz qm 

It is generally shown in textbooks on classical mechanics that alternative formulations of 
mechanics infer Newton’s equations.

The inverse is not true. Newton’s equations do not infer Hamiltonian, Lagrangian, etc. forms of 
classical mechanics. “System functions” like the Hamiltonian or the Lagrangian depend directly 
on potentials, and it has never been found possible to express those potentials in terms of the 
fields except in a “non-local” way.

The inference, to be supported with much more evidence later, is that the potentials contain 
more information than the fields. That, in turn, suggests that the potentials are more 
fundamental than the fields.

This conclusion is in conflict with what (almost) all of the textbooks say.



23

GAUGE TRANSFORMATION OF THE TRANSITION AMPLITUDE

As already shown, in a gauge transformation:

unchangedH,

U','HH,'HH

c

1
',A'AA

0

t











II



It is clear and unambiguous that the states {n} and Hamiltonian H0 for the world of the 
laboratory instruments have nothing to do with the laser field. A change of gauge of the laser 
field can have no possible effect.

The transition amplitude changes as:

   

'

','',

fifi

iIffiiIffi

MM

HdtiMHdtiM



 








Gauge selection is unimportant in perturbation theory, and the general attitude that “all gauges 
are created equal” causes no problems.

In strong fields, gauge selection is fundamentally important.

where  is a scalar generating function that satisfies the homogeneous wave equation.
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EVIDENCE OF MORE PROBLEMS IN THE “CONVENTIONAL UNDERSTANDING” 

In numerous papers in the AMO community and in textbooks, the presumption is made that a 
gauge transformation is a unitary transformation; that is, a transformation generated by a 
unitary operator  U, defined by the properties:  UU† = U† U = 1, or U† = U-1  . Quantum states 
transform as  ’ = U , and quantum operators as O’ = UOU† = UOU-1 . The presumption is 
that transition matrix elements transform as

That is, it is presumed that all matrix elements are automatically gauge invariant.

This is absolutely not true!

The transformation just shown is a change of quantum picture.  It is not a gauge transformation.

Were the AMO assumption correct, there would be no value or purpose in enforcing gauge 
invariance.

Note:  in QED, gauge invariance is required, but it is not a universal gauge change; rather, it is a 
change to another transverse-field gauge.

         .H,UUUH,U''H,'H, ifi

1

ffif  IIII  



ANOTHER FUNDAMENTAL FEATURE OF STRONG FIELDS

Gauges become important in strong fields, but another basic concept from classical mechanics 
has to be altered.

In classical mechanics there is a simple theorem that any function of time alone:  f(t) can be 
added to a Hamiltonian or Lagrangian function without altering the physical problem in any way.

An even simpler example is that a constant can be added to H(q,p,t) or to L(q,    ,t) without 
consequence. (For example, a constant shift in the zero of energy.)

On these grounds, Davidovich was able to show that the first correction term to the SFA should 
cancel the leading term (a mathematical impossibility: power series are unique and no term can 
cancel a preceding term).

Milonni concluded that the ponderomotive energy can be ignored because Up depends on A2(t)
and so it can be discarded. However, the ponderomotive energy is physically very real, and 
causes channel closings, among other effects.

q

25

The simple and familiar principle about removal of f(t) from the Hamiltonian doesn’t 
seem to be valid here.  Why not??



CHANNEL CLOSING

There is a threshold order:  n  EB + Up implies there is a smallest order n0 that satisfies this 
condition.

As Up increases, n0   n0 + 1. This is a channel closing. Hence freely removing  A2(t) changes the 
apparent physics.

What is going on?

In quantum mechanics, the A2(t) – dependent   states are “pinned” to the A2(t) – independent 
 states. Hence A2(t) can NOT be removed in quantum mechanics.

This is a basic classical – quantum distinction.

It is a fundamental result that is not in  the literature.

26

The A2(t) term can also be removed by a gauge transformation. This is a different matter, since 
gauge invariance does “protect” basic measurables like total rates. The next slide shows two 

very similar-looking results from theories with and without removal of A2(t) .
However, physical interpretations are completely different!
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SFA from: HRR, JOSA B 13, 355 (1996)
HFA from Pont and Gavrila, PRL 65, 2362 (1990)

VELOCITY-GAUGE SFA AT HIGH FREQUENCY

Ionization of ground-state hydrogen,  = 2 a.u.
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The preceding slide shows many things that will be addressed in more detail later.

SFA = Strong-Field Approximation
HFA = High-Frequency Approximation

The fact that, as intensity increases, the transition probability eventually decreases is called 
stabilization.  This appears to be a near-universal phenomenon theoretically, but it has never 
been conclusively demonstrated in the laboratory.

Because of the high frequency ( = 2 a.u.), n0  = 1 at low intensities.

In the SFA , the maximum occurs when that channel closes, and n0   2.

In the HFA, A2(t) is removed by a gauge transformation, and there is no such thing as a channel 
closing. Stabilization must be ascribed to some other cause.

This example establishes an important basic concept:

PHYSICAL INTERPRETATIONS ARE GAUGE-DEPENDENT.

Not all aspects of a physical problem are preserved by a gauge transformation.

This is another subject that will require more attention later.
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SOME TERMINOLOGY FOR GAUGES

COULOMB GAUGE: This is the most widely used gauge in all of physics. It has a formal 
mathematical definition, but for our purposes a qualitative description is more useful.

The Coulomb gauge is that gauge in which a longitudinal field is described by a scalar potential 
alone, with no vector potential A; and a transverse field is described by a vector potential A
alone, with no scalar potential .

A longitudinal field is one where the direction of propagation lies along the direction of the 
electric field. It is typified by a quasistatic electric (QSE) field, such as that which exists between 
a pair of parallel capacitor plates with a slowly varying potential difference across them.
A static electric field (such as arises from a Coulomb center of attraction) is a longitudinal field.

A transverse field has the direction of propagation perpendicular to the direction of the electric 
field, so that kF=0. A plane-wave (PW) field is a pure transverse field. It has the unique property 
that it can propagate infinite distances in vacuum with a loss of intensity arising only from solid-
angle effects. Lasers produce transverse fields.
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The velocity gauge is a Coulomb gauge in which the dipole approximation is employed. That is, 
where A(t, r)  A(t) . It is called the velocity gauge because the Hamiltonian contains the 
quantity p – (1/c) A, which is the kinetic momentum (proportional to velocity ).

The length gauge (also called Göppert-Mayer gauge) is only used in the dipole approximation, 
and it expresses even transverse fields by a scalar potential. It is of the form  = rF.  It is called 
the length gauge because of the presence of r in the potential.
Reference: M. Göppert-Mayer, Ann. Phys. (Leipzig) 9, 273 (1931).

The length gauge can also be described as that gauge where a PW field is treated as if it were a 
QSE field.

The Lorentz gauge is that broad class of gauges where vector and scalar potentials satisfy the 
relation

which decouples the wave equations for  and A. Almost all gauges used in physics are Lorentz 
gauges, except for the length gauge.

When the scalar potential is either zero or independent of time, then a formal definition of the 
Coulomb gauge often encountered is 

,0
t









c

1
A

0 A
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STRONG-FIELD APPROXIMATION
WITHIN THE DIPOLE APPROXIMATION

Start with the time-reversed S matrix:

 iffi H,dtiM  I





For an ionization problem, i is an initial bound state. Two important facts:
1. i can be assumed to be known accurately
2. Most of the binding potential dependence in the problem is in i

f is an ionized or photodetached state. For very strong fields, it can then be assumed that the 
dominant effect on the free particle will be the laser field.

As a first estimate, this requires Up >> EB

An exact solution is known for the motion of a free charged particle in a very strong plane-wave 
field: the Volkov solution.

When f is replaced by f
V , this gives the Strong-Field Approximation.

 iV

f

SFA

fi H,dtiM  I





References: HRR, PRA 22, 1786 (1980);  PRA 42, 1476 (1990);  Prog. Quant. Elect. 16, 1 (1992).
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DIPOLE APPROXIMATION VOLKOV SOLUTION

Schrödinger equation:

  

2

t
2

1
i 








 tA-

c

1
 i

The Volkov solution is explicit to the Coulomb gauge; within the Coulomb gauge, plane-wave 
fields are represented by vector potentials with zero scalar potential. 

The Coulomb gauge within the dipole approximation is generally called the velocity gauge.

Another generic form for the Schrödinger equation:

 

     tt 2AA
2

2

0

0t

c2

1
i

c

1
H,

2

1
H

,HHi





I

I 

The dipole-approximation Volkov solution:

 

    VV

t
2/1V

t,pHtH

,pHdtiexpV





II

I




















  



2

p
-

2

rp
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With the last expression substituted:

  iV

f

SFA

fi ,t,pHdtiM I





Express the initial state wave function as a stationary state:

     tiEexprr,t iii  

The only spatial dependence in the Volkov function is exp( ipr) The Hilbert-space inner product 
is then simply a Fourier transform, spatial dependence is replaced by momentum dependence, 
and the Hilbert-space inner product is no longer in evidence.

      r,iexppˆ
ii  rp 

The matrix element is then

      .,pHdiexpt,pHtE
2

p
iexpdtpˆ

V

1
iM

t
i

2

i2/1

SFA

fi 






















 




 II
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INTERACTION HAMILTONIAN AND POLARIZATION STATES

To proceed further requires a knowledge of the interaction Hamiltonian and that, in turn, 
requires  a specification of the polarization state of the field. Only circular and linear polarization 
will be considered. Circular polarization is the simpler case.


