MORE RESULTS FROM THE FIRST PPT PAPER

There 15 a section on a one-dimensional model that will be skipped apart from quahtative
remarks.

PPT assume a turn-on of the “alternating” field at a specific time t;. This requires
a non-standard form for how the Green’s function 15 employved. They later let {; — —oc,
which restores the usual expression for the Green’s function. There 13 no evident reason for
this other than it 1s often done this way 1n textbooks using perturbation theory.

PPT then introduce a momentum representation for their Green’s function, using the LG
momentum p. However. they then suddenly express everything in terms of the VG canonical

(or generalized) momentum 7, where

T(t)=p— Al(t).



IMPORTANT:
In the LG, there 13 no vector potential — no difference between the canonical momentum

m and the kinetic momentum p. In the VG, the canonical momentum 1s the total momentum,

including the momentum of the electromagnetic field

q
cold — — A,
Pricla i

1n full, Gaussian units, where g 13 the charge of a particle in the field. The kinetic momentum
of the particle 13
Prinetic = Protal — Pricid = H—%ﬁ-
In a.u.. where g for an electron 18 ¢ = —1, and re-ordering terms,

q 1
T = Prinetic + _A = Prinetic — _A-
[ (S

PPT use electromagnetic units without the 1/c factor.



IMPLICATION:
By doing a Fourier transform in terms of p (which 1s both canonical and kinetic momentum

in the LG) and then introducing 7, PPT have effectively introduced a factor
exp (ir-A),

which 15 the gauge transformation factor between the LG and the VG.
PPT are now 1n the velocity gauge.

They introduce a specific form for the field

f(t)=Fcoswt —

s1n Wi

A(t)=—F
"

(reverting to one dimension and the PPT electromagnetic conventions).



ASSUMPTIONS:

* PPT regard the turn-on time ty; — —oc¢ as an assumption. There 15 no harm 1n this.

* The 1nitial-state wave function 1s taken to be a non-interacting bound-state wave func-
tion. This 1s widely regarded (1.e. by many others besides PPT) as an assumption, but the
rigorous S-matrx derivation makes 1t clear that this 15 a necessity 1if the time-reversed form
13 used - which appears to be the case here.

* PPT state that the mean time of tonization is assumed to be much larger than atomic
times.

THIS LAST REMARK IS OF SPECIAL INTEREST HERE. START A
DISCUSSION OF THIS MATTER NOW,



HOW LONG DOES IT TAKE TO IONIZE AN ATOM?

The Heisenberg Uncertainty Principle relates to canonically conjugate variables. In full

units:
AxAp > /2,
AtAE > k2.
Suppose
AF =FEg.

the binding energy of an electron in an atom. Then the corresponding At is the time during
which it is uncertain whether or not ionization has taken place. This can be regarded as the

time required to ionize the atom.
i

— _EEB !

To be specific, suppose E's 13 the binding energy of ground-state hydrogen. and now express

At

quantities n au. That s, Eg =1/2au._ =1

1 -
At —— —lau =24 % 107 sec
2 x (1/2)



HOW LONG DOES IT TAKE TO TUNNEL THROUGH A BARRIER?

A defimition of the Keldysh gamma parameter 1s

tunnehng time

TR — p
wave period

Suppose 7 = 1. and A = 200nm.

A 8x100"m _ 15
— =- : = 2.7 x 107" zec = 1UUa.u.
¢ 3 x10%n/s

wave period = 7 =
tunneling time = vx x wave period == 100a.u.

CONCLUSION:
TIME TO IONIZE = 1 a.u.
TUNNELING TIME = LIFE TIME = 100 a.u.

TUNNELING TIME 100
TIME TO IONIZE




NUCLEAR ANALOG

Decay of uranium-238 by tunneling through a Coulomb barrer:
oy Urse —gg. Thiss +5 Hes

Half life = 4.47 x 10%years = 1.4 x 107 sec = 5.8 x 10¥a.u.

Binding energy == 5 MeV == 1.8 x 10°a.u. = time to decay = 1/ (2E5) = 2.Tz10 %a.u.
TIME TO DECAY = 3 x 10~¢ a.u.
TUNNELING TIME = LIFE TIME = 6 x 10¥ a.u.

TUNNELING TIME

— &} a4
TIME TO DECAY = <10

In other words, an alpha decay occurs only once in 10'7 sec. but when the decay happens, it

occurs within 1022 sec.

G. Gamow, Z. Phys. 51, 204 (1928); 52, 495 (1928).



IONIZATION TIME AND TUNNELING TIME ARE TWO DIFFERENT CONCEPTS
lonization occurs on a quantum time scale.

If the period of a laser field can be considered a classical time, then atomic tunneling
occurs on a classical time scale.

(Quantum vs. classical is unambiguous in the alpha-decay example.)
PPT recognize this distinction. Most authors do not.

See HRR, PRA 75, 013413 (2007).



MORE PPT
STILL IN THE ONE-DIMENSIONAL PROBLEM

lonization probabilities are arrived at by using a guantum current at large times.

R S Y- L g
iz, t) =% (11[_.- - 1Ir'—) :

They are ztill in the VG. They achieve a form 1n which the probability of iomization can be
viewed as the sum of probabilities with the absorption of n photons, where the lowest order

in the sum 1z

e 1 Ep 1217 1 -
1y = — | 1 ~ | = ~ =L | =—(Ep+1}).
TF_E-.-.J( +2*:r;f) w ( EEH) |'.|.i|: B+ )

Thiz 1z 1dentical to the threshold condition 1n the SFA: The field has to supply an energy
greater than or egual to the sum of the binding energy and the ponderomotive energy.
To proceed further, they azsume

w % Epn.

(already assumed earlier), use a zaddle-point approximation, and find a result for a transition

rate
2 F,
w (F,w) = exp [—EFDF II’?]I] Riw, 7).
where g () and R(w,v) are complicated functicns, with R (w, ) coniaining the sum over
photon ordera.

The SFA 1n the VG does NOT have the tunneling exponential.



THREE-DIMENSIONAL CASE
PHOTODETACHMENT FROM A NEGATIVE ION
WHERE THE ELECTRON I5 BOUND IN A SHORT-RANGE POTENTIAL

1
T (r,t) = —1 f dtrfdarﬂ[r: t:r ) Hr () (2, ),
—_—
where & (r, &', #') 1z the Velkev propagator as transformed from the VG to the LG, This

amounts to the nzertion of the gauge-transformation factor
exp [ir - A (t]]
inte the VG Velkev sclution. The Volkov propagator [Green's function) in the LG is

G(r.t:r'.¢) = ”f ”f.fpe-.:p{ I (£) £ — 7 (¢) 1] — L[dw -.—]}

T{t)=p— Alt)
t

At)=— dt'F (')



ESSENTIAL PROPERTIES OF THE VOLKOV SOLUTION

Properly zspeaking, the Volkov solution existz only 1n a relativiatic form.

¢ A plane-wave field deacribes a wave propagating at the speed of light; hence relativity

13 Necessary.

¢ The Volkov zclution describez a free particle; there are no bound: on 1ts motion; the

dipole approxamation 13 not applicable.

The Volkov selution exists naturally in the Coulomb gauge:

=10
A(rt) = Agecos (wt—k-r)

el k

The last condition establizhes the identiiy of a
PW (plane wave| as a transverse field:
THE ELECTRIC (AND MAGNETIC) FIELDS ARE PERPENDICULAR TO
THE DIRECTION OF PROPAGATION



DIPOLE APPROXIMATION VOLKOV SOLUTION
IN THE LENGTH GAUGE

In the LG:
Hr=r-F.

¢ There 13 only one non-trivial spatial direction 1n the problem: the direction of F.

» Because wi—k-r — wf in the dipele apprexamation, there 12 no propagation direction

k.

¢ The only zclution of the Schrédinger equation for an ozecillatory field in the LG 13 the

solution for a QSE field.

THE ONLY WAY TOQ INTRODUCE EVEN A DIPOLE-APPROXIMATION VOLKOV
SOQLUTION
INTQ THE LG S5E I§ TO GAUGE-TRANSFORM THE VOLKOV SOLUTION FROM
THE VG.

THEN THE VOLKOV SOLUTION IS IN A LG SE IN TERMS OF
A VECTOR POTENTIAL.

THERE I5 NO VECTOR POTENTIAL IN THE LG.



A BASIC DILEMMA

There 13 no Volkov aolution in the LG.

A DIPOLE APPROXIMATION Volkov sclution can be gauge-transformed from the
VG,

This Velkov soclution 12 1n terms of a vector potential frem o diyfferent gouge.

The vector potemilal must be removed to avoid a meaningless mixed-gauge represen-

tation.

T
A[f}z_f drF (7).

—

The vector potential has been replaced by an integral of the electric field over all earlier

times.

THE VOLKOV SOLUTION IN THE LG CAN BEE FOUND
ONLY AS A NONLOCAL SOLUTION.



CONSEQUENCES

¢ No gauge equivalence of any kind exists if the dipole approximation 12 not satisfied.

¢ Even within the dipole approximation, cther apprexamations do not have the zame

meaning 1n the two gaugeas.
¢ The tunneling exponential persistz in the LG; 1t 12 not present 1in the VG.
¢ The above rezult has not been generally recognized, which leads 1o hopelezs confuzion.

# An example: the literature abounds with articles and reviews that make no distinction
between the 5FA and tunneling, or see no difference 1n the fundamentally distinet K.
F. R methods.

e One (of many) major results of this failure to distinguizh methods iz that a standard

of excellence widely employed 12 whether the w — 0 goesz 1o a static result; THIS IS
A FALSE CRITERIOMN.

The last-named problem afflicts mest Investigators 1n the field.



TUNNELING THEORIES FOR LASER-INDUCED PROCESSES ARE LIMITED TO THE SHADED AREA
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KELDYS5H APPROXIMATION

L. V. Keldysh, JETP 47, 1045 (1964) [Sov. Phys. JETP 20, 1307 (1965)).

Keldysh 1z famous 1n solid state physics. This 1z his enly paper on strong-field phenomena.

The early {1964 and on) Soviet efforiz in strong fields were relativizstic, and all used the
Dirac-Veolkov solution, following HRR (1962,

LG and the dipole approximation are commeonplace n solid-state physics, so0 Keldysh

uzed both while retaiming the Veolkov sclution.

Starting matrix element:
My = f & r¥ 7" (r.t)r- Fd,(r)
= (5", Hpdy) .
Thiz 13 exactly ke the 5FA matrix element, but done mn the LG.

Keldyvsh was unaware of 5-matrix methodsz, and made two mustaken interpretationa:
* He describes this matrix element as a “direct” transition to the continuum (a
perturbation-theorists attitude).

* He regards the uze of an unperturbed initial stiate az an approximation, assuming that

he has neglected a Stark shift.



