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Saddle-point approximation and steepest-descent approximation are alternative names
tor the same method. In strong-field work, most people seem to prefer “saddle-point”, so

we shall use that, abbreviated as SPA.

SPA refers to an approximate integration method that makes use of the properties of
functions 1n the complex plane, even if the integral to be performed 1z real-valued. A few

basic concepts 1n complex analysis are necessary:



o An analytic funection 13 one that can be expressed as a convergent power series; or,
equivalently, a function that 12 infinitely differentiable. Most functions encountered n
physics are analytic functions. Examples: exponential, trigonometric, Bessel, Legen-
dre,...and most other transcendental functions. Counter-examples are simple algebraic

functions with a simple-pole singulanty, ke 1/ (1 — z) or an essential singularity like

Jz

o A holomorphic function 1s a function that 1s analytic in the complex plane. This implies
some non-obvious special properties. Specifically, a holomorphic function cannot have
any extrema (minima or maxima) in the finite complex plane. Extrema can exist only

at infimty.

e The Cauchy theorem states that any integral of a holomorphie funetion 1n a closed path
gives zero. An alternative statement 1s that a path integral of a holomorphic function

between any two points in a complex plane 1s independent of the path connecting those

j{f{:} dz=0,
/:Gf (== [ ;f{:}dz_

two points.



From the Cauchy Theorem:

Integral around the closed circuit = 0.



If a and b are both on the real axis, and the path of integration is
also real, then the real-axis path can be deformed to any contour C
without changing the value of the integral, if f(z) is analytic in the
enclosed region.

j:dxf (x)= L dzf (z)

There might be a way to choose the contour C that is advantageous for
evaluation of the integral.



ABSENCE OF EXTREMA

A holomorphie function cannot have an extremum. As stated for a maximum, this means
that there 1z no point 1n the complex plane that 1s higher than nearby points in the sense that
there 15 no point from which a departure in every direction will lead to a smaller magnmitude

of the function. A completely analogous statement holds for the absence of a mimimum.

HOWEVER, SADDLE POINTS CAN EXIST.

A saddle point 1z such that there exist paths where a maximum of the function exists
along those paths. There will exast a particular path along which the descent from the
maximum is steepest. Perpendicular to such a path 15 another path where a minimum
of the function exists along that path, and such that along that path the ascent from

the minimum is steepest.






PROBLENMS SUITED TO THE SADDLE-POINT METHOD

The saddle point method is suited to the evaluation of integrals that contain in the

integrand an exponential function containing a large parameter. For instance:

b
f derexp[nf(z)], mnreal, n>1

Saddle points exist when x is continued into the complex plane, and there are points where
d ,. :
—f(z)=f"(2z)=0.
Let such a point be designated as z5. A power series expansion of around the point zp gives
) Iy 3 L
F(2)=f(20) + 5 (2= 20)* " (20) + .

since the first-derivative term vanishes. The integral becomes
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since the very large value of 17 means that only the points nearest to the saddle point
contribute.and the contour C' is a detormed contour starting with the original real path

from the limits a, b and deforming the path to pass through those saddle points that can be



One must now find that path through the saddle point where (z — E[}}z f" (zg) is real and
(z—20)" f" () < 0,

which signifies a maximum. The large value of 7 means that the Gaussian fall-off from the
maximum value will occur within a very short interval, so that one can simply extend the
limits of integration to +00, which yields the well-known Gaussian integral
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where the substitution

y' = —g (z—20)% f" (20)

has been made, and one keeps in mind that the path of steepest descent is such that y?* is
real and positive. The value of the Gaussian integral is just

IR
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so the final result of the integration is
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saddle points



HOW TO FIND AN APPROPRIATE PATH

The distortion of the path from the original range of the integration to a final one, where
the vicinity of the saddle points provide the only significant contribution, is specific to each
particular problem.

There are reasonable rules for doing this selection. It is not mysterious.

The key is to examine the behavior of the integrand as the imaginary part of the variable

goes to OO.

An example will suffice to illustrate the general procedure.
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FIG. 1. Path of integration for evaluation of the
asymptotic generalized Bessel function.



PROCEDURE FOR THIS EXAMPLE

In this case the saddle points are on the real axis. That is not usual, but the procedure

is independent of that.

Original range of the integration:

[_?l_? _|_?T]
With z = z 4 1y,

r

r=-—m y— —0C
r=—-m/2 y— +0o0
nflz) - -0 ¢ z=0y— —00

r=+71/2, y— 400

T =+4m, y— —0C



The selection of path is:

e From the endpoint of the integration at x = —, follow a path parallel to the imaginary

axis to y — —o0

e Follow the path of steepest descent from 3. starting at y — —o00 through the saddle

point 63
e Continue on the path of steepest descent through 63 to y — +00 and x = —7/2

e Follow the path of steepest descent from 6,4, starting at y — + — o0 through the saddle

point 64
e Continue on the path of steepest descent through 64 to y — —0o0 and x =0

e Follow the path of steepest descent from ;. starting at y — —o0 through the saddle

point 6,



e Continue on the path of steepest descent through 6; to y — +o00 and x = +m/2

e Follow the path of steepest descent from fs. starting at y — + — o0 through the saddle

point 6,

e Continue on the path of steepest descent through 6 to y — —o0 and z = +

e From y — —o0, follow a path parallel to the imaginary axis to the endpoint of the

integration at x = 4+

Through periodicity of the integrand in this case, the paths to y — —o0 along £ = —7
and r = +7 exactly cancel.
All other segments of the deformed path pass through saddle points. so that the vicinity

ot the saddle points is always dominant



SIGNIFICANCE OF THE SADDLE POINT METHOD FOR STRONG FIELD PHYSICS

In nonperturbative treatments of strong-field phenomena, almost all of the physics is
contained in exponentials. Furthermore, the existence ot a strong field usually results in the
presence of a large multiplier in the exponential. These two phenomena lead to the nearly
universal recourse to saddle-point methods in nonperturbative analytical approximations

applied to strong-field problems.



