
NONRELATIVISTIC
STRONG-FIELD APPROXIMATION (SFA)

Note: “SFA” will automatically be taken to mean Coulomb gauge (relativistic or non-dipole) or VG 
(nonrelativistic, dipole-approximation). If LG is intended (rarely), it will be explicitly identified.

Start with the time-reversed S matrix (temporarily introduce the “hat” to distinguish 
operators from eigenvalues):

Approximate the fully interacting final state by a Volkov solution:

Within the matrix element, the interaction Hamiltonian operator 

has the Volkov solution as an eigenvector:
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The transition amplitude is in a compact form:

For the sake of simplicity, one detail of S-matrix theory has been overlooked.
Because of the time-reversed nature of the S matrix, the “in-state” that was used for 
the Volkov solution should actually be replaced by an “out-state”.
(The final answer is actually unchanged if we ignore this distinction.)
Rather than using a Volkov solution that proceeds from t  - to the “current” or 
“laboratory time” t , it is necessary to trace the Volkov solution backwards from 
t  + to the laboratory time t. This amounts to the replacement of
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When the initial atomic state is written in stationary-state form, it becomes possible to 
separate space and time parts.
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This gives the bound-state wave function in momentum space:

Remaining factors constitute the time-dependent part.

This will turn out to be a very important feature of the SFA. 
The momentum-space wave function of the initial atomic state 

plays a vital role in the final result.  
This property gives basic information about photoelectron 
momentum distributions that is not to be found in the LG.
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All spatial dependence comes from          and from exp(ipr ) in the Volkov function. i r



EXAMPLE: CIRCULAR POLARIZATION

There is an efficient way to do this that maintains a normalized amplitude:
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If the laser field propagates in the direction of the z axis, then
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where          are unit vectors in the directions of the x and y axes.
The interaction term is

where the phase angle  is defined such that  is real and
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The Volkov exponential contains a trigonometric function. 
This is a sure indicator of Bessel function behavior.
The generating function for Bessel functions can be introduced in the form

The time-dependent factor in the S matrix now has the form
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A common exponential factor can be achieved if the origin of the sum over the infinite 
range of the n index is shifted by 1. The result is
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A Bessel function recursion relation can now be used to give a common Bessel 
function factor:
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The time integral is now
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The energy Ei is for an initial bound state, so it is negative.  It can be replaced by a 
positive quantity, sometimes called ionization potential and represented either by IP
or by Ip .  The preferred notation here is the binding energy EB .
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In words, the conservation condition is:

kinetic energy of the photoelectron = energy supplied by n photons
minus energy required to overcome the binding energy

minus energy required for interaction energy of the free electron with the field

A basically important point, almost never mentioned in laser physics, is 
that the need to supply ponderomotive energy to maintain a physical 
free electron immersed in a strong plane-wave field, cannot be found in 
any finite order of perturbation theory.

See:
J. H. Eberly and HRR, Phys. Rev. 145, 1035 (1966).
HRR and J. H. Eberly, Phys. Rev. 151, 1058 (1966).
The first paper deduced the result from the finite exact sum of an infinite series of 
divergent Feynman diagrams.
The second paper (actually the first chronologically)  showed the result by direct 
analytical means as a finite mass renormalization. This, in turn, was the outcome of 
the mass-shift effect explored in two HRR papers of 1962.
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CIRCULAR POLARIZATION S MATRIX AND TRANSITION RATE

Substitution of the result of the time-dependent factor into the full S-matrix expression gives
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SFA|2 , transition rate is 
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The total transition rate requires an integration over the phase space of all possible 
final states, divided by (2πħ)3, the volume of a unit cell in the phase space.

where  is the solid angle into which the photoelectron is emitted.
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DIFFERENTIAL TRANSITION RATE FOR CIRCULAR POLARIZATION
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0
cir is the classical radius of the circular orbit of an electron in a circularly polarized 

field, as expressed in several ways. The angle  is the angle in which the photoelectron 
is emitted with respect to the propagation vector of the laser field.

There is a lower limit on the sum over n that follows from the necessity that the final 
kinetic energy has to be a positive number.
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where the square bracket means the “smallest integer containing” the quantity in the 
bracket.
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The delta function can be used to perform the integration over p. This can be done 
using the relation
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The final result for the total ionization (or photodetachment) rate by a circularly 
polarized laser field is
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This is an analytically simple result that gives remarkably good 
agreement with experimental measurements.
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VALIDITY CONDITIONS FOR THE SFA FOR CIRCULAR POLARIZATION

The analytical nature of the approximation is elementary:

   , ,    exact exact SFA Volkov

fi f I i fi f I iM H M H

The statement amounts to saying that the effects of the laser field on the detached 
electron dominate the residual effects of the binding potential.

In quantum mechanics, everything is judged in terms of energies and not in terms of 
field strengths. H = T + V and all that kind of thing. That is, the Schrödinger equation is 
an energy equation. SFA validity is assured if

p BU E

In practical application, it seems to be sufficient to require only

in order to obtain accurate spectra.

See U. Mohideen et al., Phys. Rev. Lett. 71, 509 (1993).
HRR, Phys. Rev. A 54, R1765 (1996).

p BU E
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From: HRR, Phys. Rev. A 76, 033404 (2007). 
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What the preceding slide shows is that the SFA for circular polarization is sufficiently 
accurate that it could be used to measure the actual peak intensity of the laser to 
within better accuracy than other means.

Part (c) is the best fit. 
Part (a) assumes 5% less peak intensity and part (b) assumes 5% more peak intensity 
than the best-fit intensity.  The differences are clear.

All calculations are  done with a Gaussian time profile of intensity, and with the spatial 
intensity profile of a Gaussian laser focus.  (This is generally called “focal averaging”.)

Depletion effects are fully accounted for.
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ANOTHER PROPERTY OF CIRCULAR POLARIZATION SPECTRA

In the Mohideen helium experiments, the peak Up is 78.5 eV, the peak in the spectrum 
is at 61.9 eV, or at about 80% of Up .

In a single-intensity calculation, the high-intensity case would have the peak at Up .
The reason for the difference is that at the peak intensity for which the actual 
experiment was done, less-than-maximum intensities in the focal distribution account 
for a significant part of the total.

The SFA accounts accurately for the focal averaging effect. Mohideen et al. made their 
own attempt to fit the data using a single intensity, and were unable to find a 
satisfactory fit.

An important point to make here is that the peak of the spectrum occurs 
at an energy >> EB .  This difference is sufficient to justify the SFA 
without regard to other criteria.  Consider the next case from one of the 
earliest ATI experiments.
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EVALUATION OF THE BUCKSBAUM EXPERIMENT AND CALCULATION

Wavelength:  = 1064 nm;  Peak intensity = 2.3e13 W/cm2 ;  Xenon: EB = 12.13 eV

This amounts to Up = 2.43 eV  Up << EB

That is, the SFA should NOT be applicable.

Also, Keldysh = 1.58.  According to tunneling terminology, this is in the “multiphoton 
domain”, so how is it that a “Strong-Field Approximation” works so well?

The peak in the spectrum occurs at 20 eV, and this is large as compared 
to the binding energy of 12.13 eV.

Hence the SFA validity criterion of Up >> EB is not a rigorous limit.
An energetic spectrum serves as well.

However, this is not so effective with linear polarization.
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SFA FOR LINEAR POLARIZATION

The vector potential for linear polarization can be taken to be
2

0 cos , 1   A A t

An important difference between circular and linear polarization comes from A2 .
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There now exists a double-frequency term cos2t that did not exist for circular 
polarization.  This is the dipole-approximation residuum of the figure-8 motion of a 
free electron in a plane-wave field. For each wave period, there are two lobes 
generated in the figure-8, and these come from the non-dipole generalization of A2 .

Proceeding as in the circular polarization case, the transition amplitude is
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GENERALIZED BESSEL FUNCTION

Now the Volkov exponential contains trigonometric functions of t and 2t.
This leads to the generalized Bessel function, with the generating function
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The generalized Bessel function Jn (u,v) first arose in the 1962 papers of HRR; it was 
then used also by Nikishov and Ritus in 1964. Functional properties were systematized 
in the paper HRR, Phys. Rev. A 22, 1786 (1980). See Appendices B-D. See also 
Appendix J  in Krainov, Reiss, Smirnov, “Radiative Processes in Atomic Physics” (Wiley, 
NY, 1997); published online 2005.

Dattoli and Torre in Frascati have since studied it in great detail, have found further 
generalizations, and have found precursors in the mathematical literature of the 19th century.

These functions are difficult, but always occur with Volkov solutions for linear polarization.
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MORE LINEAR POLARIZATION SFA

Following the same procedures as with circular polarization, the total transition rate 
(that is, after integration over final phase space) is:
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The quantity 0
lin is the classical amplitude of oscillation of a free electron in a linearly 

polarized plane-wave field.
The analogy of this result to the circular polarization case is very close.

Will give an example of application to spectra; then develop the method for calculating 
momentum distributions; and then give some details about how depletion effects are 
taken into consideration.
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