
LIMITATIONS OF GAUGE INVARIANCE
and

CONSEQUENCES FOR LASER-INDUCED PROCESSES

1

This lecture is based on a talk given at the 
Joint Theoretical Colloquium of ETH Zurich and University of Zürich on 17 May 2010.



PREAMBLE

• Physical processes involving electromagnetic interactions depend 
entirely on the electric and magnetic fields that are present.
• These fields can be represented as derivatives of scalar and vector 
potential functions that are often mathematically convenient, but are 
actually only auxiliary quantities. (Each such set is called a gauge.)
• The potential functions are not unique. There are many sets of these 
functions corresponding to the same fields and thus to the same 
physical processes. (They are connected by gauge transformations.)
• The choice of which of the possible sets of potentials to use for a given 
problem is a matter of mathematical or conceptual convenience.
• Exactly the same considerations about the choice of gauge apply to 
both classical and quantum phenomena.

Not one of the above statements is entirely correct.
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Furthermore…
There is another set of statements that is accepted almost universally in 
the Atomic, Molecular, and Optical (AMO) physics community, and to 
some extent outside that community:

• A gauge transformation is a unitary transformation.
• Quantum transition amplitudes are manifestly gauge invariant.

Less universal, but also widespread:
• The most basic approach is to formulate all problems using a scalar 
potential. (Within the dipole approximation, this is called the length 
gauge.) If a different gauge is desired, this should be obtained through a 
gauge transformation from the length gauge.

All of the bulleted statements above are false.
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OUTLINE

• Review the rules for gauges and gauge transformations.
• Examine an elementary one-dimensional classical example to illustrate some of the 
problems to be explored.
• Show how conservation conditions can be changed by gauge transformations.
• Examine the essential differences between Newtonian mechanics and other 
formulations.
• Examples from strong-field physics. (Many gauge transformation difficulties are 
exacerbated by strong fields.)
• Exhibit an essential difference between the properties of classical and quantum 
gauge transformations.
• Show how the above demonstration solves some essential long-standing dilemmas in 
the foundations of strong-field physics.
• The above considerations infer the existence of a physical gauge. (This is still 
controversial and not essential.)
• Revisit the statements from the Preamble.
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ELECTROMAGNETIC POTENTIALS

Electric fields E and magnetic fields B can be written in terms of scalar 
potentials  vector potentials A through the connections (Gaussian 
units)

When substituted into Maxwell’s equations, and with the Lorentz 
condition

enforced in order to decouple the  and A equations, the result is the 
wave equations

where  is a charge density and J is a current density.
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FOOTNOTES ABOUT THE LORENTZ CONDITION

One of the senior participants in the Joint Theoretical Physics Colloquium expressed a dislike for 
the Lorentz condition.

I disagree, based on its necessity for decoupling the inhomogeneous wave equations for scalar 
and vector potentials. Arguments  based on approximations that relieve the necessity for strict 
adherence to the Lorentz condition become questionable when fields are strong.

There is a superficial discrepancy in the LG, where A = 0 and /t  0, but this is not essential 
because there is no wave equation for A from which to decouple. However, the fact that 
/t  0 IS important because the wave equation for  then requires a source density , 
whereas a plane wave does not require any sources. This just emphasizes the unphysical nature 
of the LG for description of PW phenomena.

There is a separate issue with the Coulomb gauge. It is stated in many textbooks (including 
Jackson) that a defining condition for the Coulomb gauge is that 
That condition, plus the constraint  = 0 , leads to the Lorentz condition being satisfied. 
However, there is no covariant (completely relativistic) equivalent for this, whereas the Lorentz 
condition in its full form does have a covariant statement.

= 0. A
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GAUGE TRANSFORMATION

If  is any scalar function that satisfies the homogeneous wave equation

then the gauge transformation

leaves the electric and magnetic fields unchanged.

LORENTZ FORCE

A particle of charge q, subjected to an electric field E and a magnetic field B while 
moving with velocity v will experience a force FLorentz :
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NEWTONIAN EQUATION OF MOTION

The trajectory of motion of a particle of charge q and mass m subjected 
to an electromagnetic field is given by the solution of the Newtonian 
equation of motion

The trajectory depends only on the force.
The force depends only on the fields E and B.
The fields are unchanged by a gauge transformation.
Therefore the solution of the problem is gauge invariant.

The analysis above has long been accepted as conclusive evidence for 
gauge invariance as a fundamental and unambiguous principle of 
electrodynamics.
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THERE ARE HINTS OF BASIC PROBLEMS

For example:

• The equations of quantum mechanics are all in terms of potentials and 
not fields. Many attempts have been made to write the Schrödinger 
equation directly in terms of E and B, but none have succeeded. All such 
attempts have yielded nonlocal formulations.

• In textbooks on classical mechanics it is common to find 
demonstrations that alternative formulations (Hamiltonian, Lagrangian, 
…, expressed in terms of potentials) can be shown to infer Newton’s 
equations, but not the converse.

• In strong-field physics, two gauges are in common use, and they can be 
shown to contradict each other in fundamental ways. 
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An elementary example illustrates basic problems with gauge invariance

A CHARGED PARTICLE IN A CONSTANT ELECTRIC FIELD
ONE-DIMENSIONAL TREATMENT

Classical electrostatics is a complete field in itself. It can be done 
exclusively with scalar potentials.

Elementary example: a particle of mass m and charge q in a constant 
electric field E0 .  This can be done in one dimension x. 

Hamiltonian:   H = p2/2m – qE0x

Hamilton’s equations: 

0qE
x

H
p;

m

p

p

H
x 









 
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These equations can be combined to give:    

This is Newton’s equation: (mass)(acceleration) = force

The solution is elementary; it is quadratic in time.

,qExm 0

Now a simple gauge transformation will be applied.
What has been done above corresponds to what is often called the 
length gauge, because the interaction term in the Hamiltonian has the 
form – E0x . The gauge transformation to be applied eliminates the 
scalar potential and introduces a one-dimensional version of a vector 
potential.  This is called the velocity gauge.

The gauge transformation has the generating function

 = - cE0x t
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GAUGE TRANSFORMATION
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Transformed Hamilton’s equations are:

0'' '
, ' 0
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p qE tH H
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 

These equations can be combined to give: 0qExm 

THE EQUATION OF MOTION IS AS BEFORE.

GAUGE INVARIANCE IS SATISFIED!
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GAUGE EQUIVALENT – BUT DIFFERENT

The most obvious difference is in the conservation of energy.
Written as H = kinetic energy + potential energy = T + V:

  0'V;t'T'H

ttanconsVTH





Evaluated with respective solutions:  T = T' as expected.

This must be so because kinetic energy is measurable in the laboratory 
and must be preserved by a gauge transformation.

HOWEVER:  V  V . THIS IS  A FUNDAMENTAL DIFFERENCE.

In the original gauge, potential energy is converted into kinetic energy. 
After the gauge transformation, kinetic energy grows as t2 with no 

source for this unlimited energy.



14

CONSERVATION PRINCIPLES

If the Hamiltonian (or Lagrangian) is independent of a particular generalized 
coordinate, then the conjugate generalized momentum is conserved. This applies in as 
many generalized coordinates as exist in the problem.

0 const.
H

p p
x


    



That is, introducing a gauge transformation 
makes it possible to alter conservation conditions.

In particular, if the Hamiltonian is independent of time, then energy is conserved, if H 
= H(t) explicitly, then energy is not conserved.
Compare: H = p2/2m – qE0x
with:  H’ = (1/2m)(p’ + qE0t)2

In general, if a particular Hamiltonian is independent of some generalized coordinate 
x, the conjugate momentum p is conserved; if the generating function for a gauge 
transformation introduces a dependence on x, then p is not conserved.
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NEWTONIAN MECHANICS DIFFERS FROM OTHER FORMULATIONS

It has just been seen that symmetries of the Hamiltonian (or Lagrangian) 
function provides information about conservation conditions.

H or L are system functions containing information that is not present in 
Newtonian mechanics; these system functions depend on potentials.

System functions cannot be written directly in terms of fields unless 
there is resort to nonlocal formalisms.

Conclusion: Potentials contain more information than do the fields.
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PHYSICAL GAUGE

Electrostatics can be formulated self-consistently with scalar potentials 
alone. Any gauge transformation will preserve the particle trajectory, 
but will introduce some unphysical feature such as the failure of energy 
conservation.  Implication: there exists a gauge that is entirely physical.

For electrostatics, the physical gauge is the gauge with only a scalar 
potential and no vector potential.

  0,  A = 0

Static (and quasistatic) fields are called longitudinal fields.
The electric field follows field lines from one plate of a parallel plate 
capacitor to the other. This can be viewed as the “propagation” of the 
electric field in a direction parallel to the polarization direction.

Any gauge transformation from the physical gauge introduces some 
feature(s) that are nonphysical, 

even though gauge invariance holds true.
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CAUTIONS ABOUT THE “PHYSICAL GAUGE” CONCEPT

The concept is: every gauge transformation induces some alteration in 
physical interpretation; therefore, there can be only one gauge that 
matches laboratory conditions in every respect.

This concept has been criticized on the grounds of an insufficiently 
precise definition of the “physical gauge”.

So far, the debate has engaged only a small number of qualified people. 
The long-term outcome is still in doubt.

Interim advice: unless you relish tough debates, avoid this concept for 
now. (Personally, I think it is a very useful idea, and I believe the issue 
was actually settled long ago: the physical gauge is the Coulomb gauge.)
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PLANE WAVES

A plane wave is a pure transverse field. 
The electric field vector is perpendicular to the propagation direction.

A true plane wave has also a magnetic field B, equal in magnitude to the 
electric field E (Gaussian units) with both fields forming a mutually 

orthogonal triad with the propagation vector k.

This is a vector field that requires a vector potential for its description.

Long experience in quantum electrodynamics, quantum field theory, 
elementary particle physics,… has shown that the 

PHYSICAL GAUGE IS THE RADIATION GAUGE:

 = 0,  A  0
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MIXED FIELDS

The physical gauge for a mixture of static and plane wave fields has been 
known for many years.

It is the Coulomb gauge. 
For present purposes it can be defined as that gauge wherein static 
electric fields are represented by scalar potentials and plane wave fields 
are represented by vector potentials.

For an atomic electron in a laser field:

 rVA
c

pH 









2
1

ˆ
2

1 

in atomic units (ħ=m=|e|=1), where V(r) is the binding potential.
In  the dipole approximation, where A = A(t), this gauge is often called 
the velocity gauge.
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STRONG-FIELD LASER PHYSICS

As laser capabilities have mushroomed in recent years, strong-field laser 
physics has become a field with large numbers of participants.

The field is characterized by the near-universal realization that 
perturbation theory does not work; and by near-universal 
misconceptions about gauges.

From a theory standpoint, there are 3 distinct approaches:
• Direct numerical solution of the Schrödinger equation.
• Analytical approximations in the length gauge.
• Analytical approximations in the velocity gauge.
With a few exceptions (significant but largely unexploited), all 
theoretical work is nonrelativistic and in the dipole approximation. 
Atomic units are used almost universally.
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ATOMIC UNITS

2

1; 1; 1, 1
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   

DIPOLE APPROXIMATION

Rather than dealing formally with a multipole expansion, the dipole 
approximation is regarded as implying 2 properties:

t t

= 0

   k r

B

This leads to two forms of the Schrödinger equation, where V(r) is the 
atomic binding potential:
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LENGTH GAUGE

There is a gauge transformation that replaces the vector potential for 
the applied field by the scalar potential for quasistatic electric field. 
(Maria Göppert-Mayer, 1931)

   21
ˆ

2
H p V r r E t   

This is a convenient gauge because both the Coulomb and the external 
fields are represented by scalar potentials that can simply be added.

It is the foundation for the tunneling theory of strong-field ionization. 
(Keldysh, Nikishov & Ritus, PPT, ADK)

Starting with a 1952 paper by Lamb, the length gauge has been 
regarded by many people in the AMO community as the “correct gauge” 
for the expression of atomic and molecular problems.
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LASER PHYSICS IN THE LENGTH GAUGE

The length gauge (LG) has been favored since both the atomic binding potential and 
the laser field potential are scalars that can be added directly to provide a picture of 
the laser field “tilting” the Coulomb attractive field to result in a finite potential barrier 
that can be penetrated by the bound electron in a quantum tunneling event. 

-10 -5 0 5 10

r

-1

0

1

V
(r

)

V(r) = -1/r - Er
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QUALITATIVE IMPLICATIONS OF THE LENGTH GAUGE

The interaction Hamiltonian in the LG is simply r ∙ E (t) .

This leads to simple implications.

The fact that this HI connects continuously to the static-electric-field 
case has been regarded not merely as an advantage, but has been 
treated as a requirement.
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QUALITATIVE IMPLICATIONS OF THE VELOCITY GAUGE

The solution of the Schrodinger equation in the VG connects 
continuously to the solution for an electron in a plane-wave field from 
the Dirac equation.

This provides direct information on conditions for:
• The boundary for the onset of non-dipole conditions: v/c effects.
• The boundary for the onset of relativistic conditions: (v/c)2 effects.

Important: The dipole approximation fails at high frequencies where k∙r
cannot be neglected, but it also fails at low frequencies where the 
coupling between electric and magnetic fields becomes important. This 
coupling can be visualized in terms of the motion of a free electron in a 
plane-wave field.

Footnote: This was a surprise for the Joint Theoretical Physics Colloquium. They knew only of k∙r
being neglected. That was a surprise to me. 



CLASSICAL FREE ELECTRON IN A PLANE WAVE FIELD

Electron follows a figure-8 trajectory resulting from the combined action 
of the electric and magnetic fields.

α0 = amplitude along electric field direction
β0 = amplitude along direction of propagation 
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DOMAINS FOR AN ELECTRON IN A PLANE-WAVE FIELD

Lasers produce plane-wave (PW) fields, not quasistatic (QSE) fields, so 
the beyond-dipole-approximation results in the VG have significance 
that the LG does not have.

Specifically, the limits of relativistic effects and magnetic field effects 
shown on the next slide have real laboratory significance.

Also shown is the upper limit on intensity for which perturbation theory 
is applicable. This follows from both a relativistic investigation [HRR, J. 
Math. Phys. 3, 387 (1962)] and a nonrelativistic investigation [HRR, Phys. 
Rev. A 22, 1786 (1980)].

Most of what follows here was a surprise for the Joint Theoretical Physics Colloquium, including 
intensity-dependent failure of the dipole approximation.
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VG-LG COMPARISON

It has just been seen that VG and LG behaviors are completely different 
when a broad view is taken.

Lasers produce plane waves, so the Coulomb gauge (VG in the dipole 
limit) is the physical gauge.
However, because of gauge invariance, the LG can nevertheless give 
correct results for calculation of explicit laboratory-measurable 
quantities.

The domain in which the LG (and all tunneling theories) can provide 
useful information is shown by the shaded area in the following slide 
from HRR, Phys. Rev. Lett 101, 043002 (2008).

Footnote: An important property of this limited zone for the usefulness of tunneling 
methods is that a tunneling analysis in itself gives no hint of its own limited 
applicability.  
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CONTRADICTIONS

Much success has been achieved with the length gauge in general and 
tunneling ionization in particular, but according to what has been 
shown, the length gauge contradicts the result that the physical gauge
is that gauge where transverse fields (laser fields) are represented by 
vector potentials A.

Since tunneling ionization employs a non-physical gauge, “laboratory 
measurables” will be predicted correctly, but there should exist physical 
inconsistencies such as the failure of energy conservation in the classical 
static field example.

What are the contradictions 
associated with tunneling?
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INCORRECT PREDICTIONS FROM TUNNELING THEORY

• A laser field is strong when the electric field is of the order of one 
atomic unit; that is, when the external field is of the order of magnitude 
of internal fields in the atom. (Already examined.)

• A single parameter – the Keldysh parameter γ – is sufficient for scaling.

• Weak fields can be characterized as in the multiphoton domain and 
strong fields are in the tunneling domain.

• A tunneling limit or classical limit will be approached at long 
wavelengths of the field.

• There are no evident upper and lower frequency limits on the dipole 
approximation.

• Higher harmonics are not produced by circularly polarized fields 
because the photoelectron “walks away” from the atom.
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KELDYSH GAMMA PARAMETER

PONDEROMOTIVE ENERGY

A charged particle in a plane-wave field has a minimal interaction energy with the 
field. That is, even a particle at rest on average has a minimal interaction energy with 
the field (sometimes called “quiver energy”). This is the ponderomotive energy Up .

Based on the tunneling concept, the following classification is nearly universal in the 
strong-field community:
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PROBLEMS ASSOCIATED WITH THE KELDYSH PARAMETER

If the binding energy is set at EB = 0.5 a.u. (ground-state hydrogen), then

2( / )I  

Plotted as I vs.  , this produces the following simple diagram that 
completely contradicts the “standard tunneling / multiphoton” 
classification. 
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A fixed value of  cannot distinguish “tunneling” from “multiphoton”.   = 0.1 is 
supposedly “tunneling”, but the right-hand end of this line is at 10 a.u. = 272 eV.
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ANOTHER DEFECT OF THE LG/TUNNELING VIEWPOINT

The limit  0 is regarded as the “tunneling limit”, which is identified 
as the static limit, which is unquestionably tunneling – if that were the 
correct limit.

However, the next figure shows that, viewed as a plane wave (i.e. a laser 
field),  0 is actually an extreme relativistic limit.
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The line at 2Up = mc2 is where the minimum interaction energy of an electron with the laser 
field is of the order of the rest energy of the electron. The left / upper corner of the graph is an 
extreme relativistic zone. Laser-induced ionization is not a static limit.



40

THE CAUSE OF THIS FUNDAMENTAL PROBLEM

The length gauge is NOT the physical gauge for laser-induced 
phenomena.

The Coulomb gauge IS the physical gauge.

The tunneling picture (LG picture) is completely erroneous when used 
outside the limited domain where there is a gauge equivalence to the 

Coulomb gauge (VG).

Within the gauge equivalence domain, the LG can give correct answers 
for physical measurables, but its qualitative inferences are seriously in 

error.

This simple error has led astray an entire community of 
very smart people.
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ANOTHER FUNDAMENTAL PROBLEM

The ponderomotive energy Up is a fundamental quantity in strong-field physics. (It 
does not appear in any finite order of perturbation theory – but that is a different 
interesting story.)

The ponderomotive energy can be such that 

p BU E

even within the domain where the dipole approximation is valid. 
In atomic units,

2
1

2
pU

c


A

where the angle bracket means a time average over a full period. Within the dipole 
approximation, 

2 2( ) ( )p pt U U t  A A
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The problem is that Up is absolutely basic in strong fields, it can be large, but there is 
an elementary theorem in classical mechanics that any  quantity that is solely a 
function of time can be removed from the Hamiltonian without consequences.
(This is obvious from the Hamilton equations of motion.)

If Up is removed, strong-field physics gives wrong answers. What is going on?

The answer to this paradox can be found in a classical – quantum distinction.
In classical physics, measurements are direct; in quantum physics, measurements are 
not made inside the interaction region, they are made outside that region. 

That means that measurements are indirect in quantum mechanics; if an f(t) function 
is removed inside the region it causes an unphysical shift with respect to the 
measuring instruments. If that shift is a function of the vector potential, it is 
meaningless to remove it for the measuring instruments, which know nothing of laser 
fields. Hence, it cannot be removed within the interaction region.
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RIGOROUS DERIVATION OF AN S MATRIX

Basic requirement: The transition-causing interaction occurs only within a domain 
bounded in space and time.

(Example: transitions in the focus of a pulsed laser.)

Important properties of an S matrix as derived here: 

 It can be formulated entirely in terms of quantities measurable in 
the laboratory.
 It does not require that dynamics be tracked over time. Equations of 
motion are incorporated in the S matrix.
 There is no need for “adiabatic decoupling”.
 It gives unambiguous rules for gauge transformations.
 It can be applied to any process as long as the space-time domain of 
the interaction region is bounded.
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The general problem is evoked of an atomic electron subjected to a 
pulsed, focused laser beam. This is a convenience, not a requirement.

There will be a complete set of states {n} that satisfy the Schrödinger equation 
describing the atomic electron that may be undisturbed or in interaction with a laser 
beam:

 Hi t 

The outcome of any experiment will be measured by laboratory 
instruments that never experience a laser field. As far as the laboratory 
instruments are concerned, there is a complete set of states {n} that 
satisfy the Schrödinger equation describing an atomic electron that does 
NOT experience the laser field:

 0t Hi 
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By hypothesis, the laser pulse is finite, so

   0lim 0 


HtH
t

We can organize the two complete sets of  states and  states so that they 
correspond at t  - :

     0lim 


tt nn
t

After the laser interaction has occurred, the only way for the laboratory instruments to 
discover what has happened is to form overlaps of all possible final f states with the 
state that began as a particular i state. This is the S matrix:

 if
t

fiS 


,lim

Subtract the amplitude that no transition has occurred:

     if
t

if
t

fifi SM 


,lim,lim1



We now have the form of a perfect differential:

 

    

   

     

     

 














































iffi

i0fi0ffi

i0fif0fi

0t0t

0t0t

itfiftfi

iffi

H,dtiM

HH,iH,idtM

HHi,,iHdtM

HHiHHi

iHHi

,,dtM

,
t

dtM















I

I

I

II

An alternative form is especially useful for strong-field problems. Instead of making a 
one-to-one correspondence of  and  states at t  -  , do it at t  +  and then 
look for the probabilities that particular initial states could have led to this final result.
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 iIffi HdtiM  



,

The end result of this alternative procedure is the transition matrix element

The first form above is called the direct-time S matrix, and the second form is the time-reversed 
S matrix.

In general,  states are known exactly or can be simulated accurately (for example, by analytical 
Hartree-Fock procedures). It is the  states that present the problem because they represent 
conditions for an electron simultaneously subjected to the Coulomb attraction and to the laser 
field. No exact solutions are known.

If the initial state i is to be approximated, this is very difficult because the laser field (by 
hypothesis) is too strong to be treated perturbatively, and so is the Coulomb field because in an 
initial bound state the Coulomb field has a singularity at the origin.

For the final state f , the electron is unbound, and the laser field can be assumed to be more 
important than the Coulomb field. This identifies the time-reversed S matrix as the preferred 
form, and it will be employed exclusively hereafter.
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GAUGE TRANSFORMATIONS ARE NOT UNITARY

It is widely known and easily shown that a gauge transformation applied to the 
Schrödinger equation gives the result

1( ) ' ( )t tH i U H i U     

where U is the unitary operator that generates the gauge transformation. Although it is true that

' U  

in order to have form invariance of the Schrödinger equation, the first equation above 
will not give the unitary transformation of operators 

1'O UOU 

if U is time-dependent.

The above is a rebuttal to the statement in the Preamble: 
• A gauge transformation is a unitary transformation.
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TRANSITION MATRIX ELEMENTS ARE NOT MANIFESTLY GAUGE INVARIANT

In AMO papers and textbooks, one commonly finds the statement that quantum 
transition amplitudes are manifestly gauge invariant. This is justified by the expression 

That is an expression for a change of quantum picture, not for a gauge transformation.

In a gauge transformation, field-dependent quantities change, the non-interacting 
reference states  do not change. In a gauge transformation

Demonstrating gauge invariance is nontrivial.

The above is a rebuttal to the statement in the Preamble: 
• Quantum transition amplitudes are manifestly gauge invariant.
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A FUNCTION OF TIME ONLY f(t), CAN BE REMOVED BY A GAUGE TRANSFORMATION

This is not the same as simply dropping a function of time. A gauge transformation 
should, under appropriate conditions, make it possible to calculate laboratory 
measurables.

The ponderomotive energy can be the cause of “channel closings”, and also the cause 
of “high-frequency stabilization”. These are physically important effects. A dilemma 
appears to remain.

The simplest case to consider is the stabilization matter. “Stabilization” is that property 
of strong-field phenomena where, beyond a certain field intensity, further increases in 
intensity lead to a decline in the transition rate rather than an increase.

The next figures [from HRR, J. Opt. Soc. Am. B 13, 355 (1996)] show the results of 
calculating with the SFA (Strong-Field Approximation) and the HFA (High Frequency 
Approximation). The stabilization occurs at about the same intensity with both  
methods, but A2 (t) is included in the SFA, and it has been removed by a gauge 
transformation in the HFA.
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The SFA includes A2 (t); the HFA has removed that term by a gauge transformation.
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EXPLANATION

Because the frequency is high ( >> EB ), the ionization process takes 
place at low intensities with a single photon. In the SFA, the stabilization 
occurs because the ponderomotive energy has become so large as a 
result of increasing the field strength that the single-photon channel has 
closed and at least two photons are required for ionization.

There are no channel closings in the HFA because A2 (t) has been 
removed by a gauge transformation. The physical explanation for why 
stabilization has occurred has changed (there is no simple explanation in 
the HFA), but gauge equivalence preserves the physical effect.

This is another example (beyond tunneling) where the physical 
explanation is dependent on the gauge even when gauge equivalence 

leads to the same predicted result.
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REVISIT ITEMS FROM THE PREAMBLE

• Physical processes involving electromagnetic interactions depend entirely on the electric and 
magnetic fields that are present.

Physical processes depend on potentials as well as fields. See the first example of the constant 
electric field.

• These fields can be represented as derivatives of scalar and vector potential functions that are 
often mathematically convenient, but are actually only auxiliary quantities. 

Potentials play a more fundamental role than just being “auxiliary quantities”.

• The potential functions are not unique. There are many sets of these functions corresponding 
to the same fields and thus to the same physical processes. 

Different gauges can correspond to the same fields, but not to the same physical processes. The 
stabilization example is very clear on this point.
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• The choice of which of the possible sets of potentials to use for a given problem is a matter of 
mathematical or conceptual convenience.

“Mathematical” perhaps. “Conceptual” no.

• Exactly the same considerations about the choice of gauge apply to both classical and quantum 
phenomena.

Quantum phenomena differ from classical in that laboratory measurements are indirect.

All of the questionable (although widely accepted) remarks in the Preamble have been 
addressed except the very last one: 
• The most basic approach is to formulate all problems using a scalar potential. (Within the 
dipole approximation, this is called the length gauge.) If a different gauge is desired, this should 
be obtained through a gauge transformation from the length gauge.

This is transparently false. It is not possible to infer the 4-vector A from a scalar potential .
Nevertheless, there is a considerable literature bearing some well-known names that accept this 
assertion.


