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NECESSITY FOR GOING BEYOND THE DIPOLE APPROXIMATION
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• It has already been shown that nonrelativistic dipole-approximation 
considerations fail as intensity increases and also as frequency 
decreases.
• The high-intensity, high-frequency case has the characteristic that 
multiple ionization will dominate, and single-active-electron (SAE) 
theories are not useful until one reaches inner shells.
• It is the low-frequency non-dipole regime that is now starting to be 
investigated (although for the wrong reasons in some cases, as in the 
“tunneling-limit papers”).
• One way to treat non-dipole, but still nonrelativistic problems is simply 
to introduce fully relativistic theories. A fully relativistic theory will be 
inclusive of all non-dipole as well as dipole-approximation effects.
• In the figure that follows, it is seen that both the 1988 experiments at 
10.6 m and the 2009-2010 experiments at 3.6 m are beyond the 
reach of tunneling theories. (VG theory works to some extent.)
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BASICS OF RELATIVISTIC CONVENTIONS

Fundamental postulate of special relativity: The velocity of light is the same in all 
Lorentz frames of reference. A “Lorentz frame of reference” is also called an “inertial 
frame of reference”; simply meaning a frame of reference in which the dynamics that 
will be developed are correct. For our purposes, it is adequate to refer to any 
terrestrial laboratory as an inertial frame of reference. 

A Lorentz transformation is any transformation to another frame of reference moving 
at constant velocity with respect to the initial frame. All such Lorentz frames obey the 
same relativistic dynamics.

The velocity of light is the same in all Lorentz frames:

22 2, ( ) 0,
d

c or c dt d
dt

r r

where r is a point on a “light front” – the locus of points at the front of a beam of light 
emanating from a light source; that is, all points corresponding to emission at a 
common time. 
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It is useful to introduce a 4-dimensional space

: ( , ), or : ( , )dx cdt d x ctr r

that satisfies the fundamental relativity postulate for a point on a light front. This 
amounts to defining a metric for the space; that is, a consistent system of measuring 
the distance between any 2 points. For a “light-like” interval:

22 2 0 2 1 2 2 2 3 2

2 0 2 2

( ) ( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) .

c dt d dx dx dx dx or

ds dx d constant Lorentz scalar

r

r

where this result is the same in any Lorentz frame. The quantity dx is a Lorentz vector 
in this space.

It is possible to have also “time-like” intervals and “space-like” intervals where (ds)2>0 
and (ds)2<0, respectively.

Of special note: the squared terminology (ds)2 no longer requires a positive result.
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METRIC TENSOR

In any space, there exists a squared differential length

2( ) ,  i j

ijds g dx dx ijg metric tensor

where the summation convention is used: if any index is repeated in a product, that 
signifies a summation over all values of that index. In this case, for example

.i j i j

ij ij

i j

g dx dx g dx dx

Familiar examples of the matrix representation of the metric tensor:
Rectangular coordinates: 1 0 0

0 1 0

0 0 1

ijg

Spherical coordinates:
1 2 3

1 0 0

0 0 ; , , sin

0 0 sin

ijg r dx dr dx rd dx r d

r
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For special relativity:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

g

The most common (but not universal) convention is to use i = 1,2,3;  = 0,1,2,3
When imaginary time is used: i = 1,2,3,4, where dx4 = icdt
(The imaginary time convention was once dominant; it is now almost dead.)

A scalar product is, in general, formed with the metric tensor. For any 4-vectors A , B

0 0

2 0 2 2

0 0

: ( , ); : ( , )

(A) ( ) ( )

A A B B

g A A A

A B g A B A B

A B

A

A B
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DUAL SPACE

It is convenient to define a dual space:

2

,

( ) .

dx g dx

ds dx dx

The convention in special relativity is
0 1 2 3

0 1 2 3

, , , ,  

, , ,

dx dct dx dx dx dy dx dz so that

dx dct dx dx dx dy dx dz

It is also conventional to call dx the contravariant vector, 
and dx the covariant vector.

An exercise for anyone with time to 
spare: If one has a 2-dimensional non-
orthogonal coordinate system x1, x2

There is a dual system x1, x2 such that, 
for any increment of length ds , it is true 
that (ds)2 = dxi dxi .

-

x2

x1

x1

x2
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THE RULES TO THIS POINT

contravariant vector: A covariant vector: A
contra- to co- conversion: A = g A co- to contra- conversion: A = g A
scalar product: A∙B = A B = A B
meaningless expressions:  sums over 2 co- or contravariant indices: A or A B
more than 2 appearances of the same index: A B C

Derivatives: Let a be a constant vector, and form the product a x . Then 

1,
, since 

0,
va x a x

x x

Hence  is covariant, so one can write  and 
x x x

For example: 
0 0 0 0

0

: ( , ), : ( , )

: ,

A A B B A B A B

A
A

x ct ct

A B A B

A
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COVARIANCE

A covariant expression is one in which every term has (the same) explicit tensor rank:
scalar (a quantity that is identical in all Lorentz frames); vector (contravariant or 
covariant);  second-rank tensor (2 contravariant indices, or 2 covariant indices, or 
mixed indices with contravariant first and covariant second, or vice versa).
In general, A A

The definition of a Lorentz vector is any quantity that has the same Lorentz 
transformation properties as  : ( , );x ct where x' L xr

Proper Time is time measured in a coordinate system in which a particle is at rest; 
that is dt = d when dr=0.
The time dilation factor = 1/(1-v2)1/2 (not derived here) means that dt = d is a 
longer time interval in any system moving at velocity v with respect to the rest system.

Covariant Velocity is
dx dx

u
d dt

Covariant momentum is ( )
dx dx

p mu m m
dt dt
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ENERGY – MOMENTUM 4-VECTOR

From relativistic classical mechanics:

2
2 2 2

2

2 2 2

: ,

   = ,

  =c=1.

E
p

c

E
p p relativistic invariant m c or

c

p p E m in "natural units"

p

p

p

In analogy to the nonrelativistic energy and momentum quantum operators:
0

0

ˆ : ( ,

ˆ : ( ,

p i i i or

p i i i in natural units

There is no need for the concepts of “rest mass” and “variable mass”, 
which come from associating the relativistic factor with the mass, 
where it does not belong.  The mass m is a Lorentz scalar, and the 
variable mass concept is needless and confusing.

This last expression is called the “mass shell” for the electron:  2 2 2E mp
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RELATIVISTIC EQUATIONS OF MOTION: KLEIN-GORDON

The Schrödinger equation has a first-order derivative in time and second-order 
derivatives in spatial coordinates. Relativistic equations of motion have to have the 
same orders in time and space.
1. The Dirac equation is first-order in time and space: it describes fermions.
2. The Klein-Gordon equation is second order in time and space: it describes bosons.
Klein-Gordon equation (1926):

2

2 2

2 2

0,  or, in "natural units" ( =1,c=1):

( ) 0

q
i A m c x

c

i qA m x

For free particles (A = 0), there are solutions for E m and for E -m.

For bosons (spin = 0), there is nothing to prevent spontaneous decay into negative 
energy states. This put the KG equation in bad repute until Pauli and Weisskopf (1934) 
showed that negative energy states of a (zero-spin) particle can be interpreted as 
positive energy states of the antiparticle.

Except as a convenience, there are no negative energy states; “hole 
theory” is unnecessary.
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NEGATIVE ENERGY STATES AND SECOND QUANTIZATION

The last comment, that hole theory is unnecessary, is usually directed only to the 
negative energy problem for bosons, where there is no Pauli Principle to prevent 
positive energy bosons from making spontaneous transitions into the negative energy 
continuum.  It applies equally well to fermions, and this was the original motivation for 
the Pauli & Weisskopf paper.
W. Pauli & V.F. Weisskopf, Helv. Phys. Acta 7, 709 (1934).

One still finds journal articles and textbooks that continue to state that all negative-
energy electron states have to be filled to prevent spontaneous decay. From this they 
deduce that every problem is a many-body problem, and they then make the further 
inference that a second-quantized theory is a requirement.
(Second-quantization the electromagnetic field is quantized, such that there exists a 
number operator for photons.) 

This is specifically unnecessary when the fields are weak (perturbation theory) and 
when the fields are very strong (as in high-field laser physics).
Z. Fried & J.H. Eberly, Phys. Rev. 136, B871 (1964).
J.H. Eberly & HRR, Phys. Rev. 145, 1035 (1966).
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SIMPLE DERIVATION OF THE DIRAC EQUATION

The KG equation could be derived simply from the mass-shell expression
2 2( )( ) .p p m or p qA p qA m with p i

Can one find a relativistic quantum equation that is first order in p ?
Consider first the free particle equation (A = 0), since it is easy to extend to the 
general case.
Problem: can we extract the square root of

2 ?p p m

This can’t de done directly, but try introducing a set of square matrices to accomplish 
this, and then find the necessary properties of the matrices. 

m p p p

The index is the Lorentz-space index: = 0,1,2,3. Each of the square matrices also 
has matrix indices that are normally omitted to avoid clutter.

.p p p
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To find the properties of the , square both sides and then symmetrize:
1

( )
2

p p p p p p p p

It cannot be assumed that and commute with each other, but this does not apply 
to the momentum operators.

1
( )

2

2 .

p p p p

g

The are the Dirac matrices: The superscript is a Lorentz index, so there are 4 Dirac 
matrices: 0 1 2 3, , , .

Each of these Dirac matrices has the indices of a Dirac matrix space:
The dimensionality of this space can be any even number 4.
These , indices are usually suppressed, and it is also generally possible to avoid 
using an explicit representation of these matrices. When necessary to use a 
representation, there is a standard generalization of the 2 X 2 Pauli spin matrices to a 
set of 4 X 4 matrices.
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The condition satisfied by the Dirac matrices is an anticommutator, defined in analogy 
to the familiar commutator of nonrelativistic quantum mechanics.

Commutator: [ , ] -

Anticommutator: { , }

A B AB BA

Recap: Found properties of matrices such that

, where{ , } 2p m g

This implies the free-particle Dirac equations

( ) 0 or ( ) 0p m p m

Both equations have the same physical content, but it is customary to employ the first.
With the operator form for the momentum, the free-particle Dirac equation is

( ) 0 or ( ) 0,

Lorentz-space indices =0,1,2,3; Dirac-space indices , =1,2,3,4

i m i m

Including interaction with a 4-vector potential A :

[ ( ) ] 0.i qA m
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DIRAC – PAULI REPRESENTATION OF THE DIRAC MATRICES

Explicit representations can often be avoided completely, but the standard Dirac-Pauli 
representation consists of 4 X 4 matrices composed of 2 X 2 Pauli matrices and the 
2 X 2 unit matrix:

1 2 3

0

0 1 0 1 0 1 0

1 0 0 0 1 0 1

0 00
or

0 00

i

i

i

i

i
1

1

1

A combination associated with electron spin is:

[ , ] ( )
2 2

i i

A combination that arises in the weak interactions (like beta decay) is:
5 0 1 2 3

5 i
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SECOND-ORDER DIRAC EQUATION

There were two forms of the Dirac equation following from m. If these two first-order 
operator expressions are multiplied, does the Klein-Gordon equation emerge?

2[ ( ) ] [ ( ) ] ( )( ) [ , ]
2 2

electromagnetic field tensor

q i
p qA m p qA m p qA p qA m F

F A A

Introduce the expression:

[ , ]
2

i

The second-order Dirac equation and the Klein-Gordon equation are:

2

2

[( )( ) ] 0
2

[( )( ) ] 0

q
p qA p qA m F

p qA p qA m

The extra term in the Dirac equation can be shown to be connected with the spin of 
the electron. Also, while is a scalar function, is a 4-component spinor, or column 
matrix. (There is a redundance in the components; only 2 are independent, whereas 
all 4 components are independent in the first-order Dirac equation.)



19

A NOTE ON THE ELECTROMAGNETIC FIELD TENSOR

: ( , )

;

0

0

0

0

x y z

x z y

y z x

z y x

A

F A A F g F g

E E E

E B B
F

E B B

E B B

A

The electromagnetic field tensor is the covariant expression of how the electric and 
magnetic fields E and B are formed from the scalar and vector potentials and A.

(To avoid any confusion between the electric field and the electromagnetic field tensor, the electric field is 
here expressed as E rather than the F used elsewhere.)

The electromagnetic Lorentz invariant of greatest interest in these lectures is formed 
from the scalar product of F with itself, summing over both Lorentz indices:

2 22( )F F B E
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LIMITING CASES OF THE SECOND-ORDER DIRAC EQUATION

If the 4-spinor is reduced to the 2-spinor (2) , the second-order Dirac equation is

2

(2)[( )( ) ] 0p qA p qA m iqF

The nonrelativistic limit of the second-order Dirac equation is

This is exactly the Pauli equation of nonrelativistic quantum mechanics with spin 
included. The last term is sometimes called the Stern-Gerlach term.

2

(2) (2)

1
[( ) ]

2 2

: ( , )

t

q
i i q q

m m

A

A B

A
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A NOTE ABOUT SPINORS

Spinors were introduced into physics by Paul Dirac for the description of spin-1/2 
particles. (They were developed independently by mathematicians.)

A spin-1/2 particle (such as an electron) has two independent states: spin-up and spin-
down. In “geometric space”, these two states are 180o apart.

However, in spinor space, these two states are orthogonal (independent) states, so 
they are 90o apart.

Hence a rotation of 720o in geometric space is necessary for a full rotation of 360o in 
spinor space.

† †

1 0
spin up:        spin down:         anti-parallel (180 )

0 1

0 1
(1 0) 0, (0 1) 0  orthogonal (90 )

1 0

o

o

u d u d

u d d u

Relativistic spinors describe both particles and antiparticles (positive and negative 
energy states), and require 4 components rather than 2.
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ELECTRON MASS SHELL

For a free electron:
2

2 2

2 2 2

( 1)

1

p p m c

E
E m

m m

p
p

constant

or

In a 2-dimensional space E/m, p/m, where one axis is taken to be in the direction of p, 
this is the equation of a hyperbola. This is the “mass shell” for the electron, envisioned 
to be in 4 dimensions.

For a free electron in a monochromatic plane-wave field, the mass shell is altered to

2
2

( )( ) (1 ); ; : ( , )
p

f f

U
p nk p nk m z z k

m
k

where n is an integer, k is the propagation 4-vector for the plane-wave field, and m2 zf is the 
“strong-field mass-shift”.

strong-field mass shift: HRR, J. Math. Phys. 3, 387 (1962); 
strong-field mass shell: HRR & J.H. Eberly, Phys. Rev. 151, 1058 (1966).
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THE VOLKOV ELECTRON

There are exact solutions of both the Klein-Gordon equation and the Dirac equation 
for an electron in a plane wave field. These solutions are often both called Volkov 
solutions because Volkov was the first to solve the Dirac problem. However, Gordon 
solved the KG problem earlier, and the Volkov solution now widely employed in the 
nonrelativistic, dipole-approximation form is actually more closely related to Gordon.

W. Gordon, Z. Phys. 40, 117 (1926).
D. M. Volkov, Z. Phys. 94, 250 (1935).

Both solutions share the mass-shell properties just exhibited. That is, both the Gordon 
and Volkov solutions describe an electron with n photons acting as if they were an 
inherent part of the electron, and with an apparent additional mass. Both effects can 
be large for strong fields.

2 2

exp ( ) '
2

, , ,

k x
scalar qA p q A

C ip x i d k x
p k p k

p x Et k x t A p p k Ep r k r A p p k

The scalar (spin-zero) Gordon solution is
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The spinor (spin-1/2) Volkov solution is

1 , ( ) 0.
2

spinor scalar
qk A

u u p m u
p k

where  is a spinor that satisfies 

The second term in the parentheses mixes spin states and particle and antiparticle 
states in an intensity-dependent way.

The relativistic SFA is based on the relativistic S-matrix transition amplitude

4 † 0( 1) ,spinor

fi f iS i d x qA

HRR, J. Opt. Soc. Am B 7, 574 (1990).
HRR, Prog. Quant. Electr. 16, 1 (1992).

To maintain a completely relativistic theory, the work to date has all involved the 
known solutions of the Dirac equation for the hydrogen atom as the initial field-free 
states i .

Examples of specific relativistic effects are shown in the following slides.
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i i

f

Laser Beam

(a) Nonrelativistic (b) Relativistic

f

From: HRR, Optics Express 8, 99 (2001)
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FINAL REMARK

The best environment for the exploration of relativistic effects is at low frequencies 
where single-active-electron (SAE) conditions exist even in the relativistic domain, and 
where saturation effects are largely absent.
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