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General Goals 
Answer the following questions: 

 
How does one formulate  

nonperturbative problems  
in quantum mechanics? 

 
How does this differ from standard 

approaches in quantum mechanics? 
 

Have perturbative viewpoints 
created problems? 



OUTLINE 

• Limits on perturbation theory 
• Brief S matrix history 
• Derivation of S matrix (see also ETH Spring 2010 lectures) 
• Terminology:  Direct/Time-reversed;   Post/Prior;   In-

states/Out-states 
• Green’s function method (see Spring 2010 for more detail) 
• Symbolic methods: Lippmann-Schwinger equation 
• Perturbation expansion 
• Relativistic formalism (abbreviated; see Spring 2010) 
• T matrix 
• Nonperturbative Fermi Golden Rule 
• Gauge transformations (a basic result only; more later) 
• Misperceptions in the AMO community 
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LIMITS ON PERTURBATION THEORY 

Transition amplitudes for processes caused by an 
electromagnetic field cannot be expressed by perturbation 
theory if the field strength is too large. 
 
That is, there exists a radius of convergence for perturbation 
theory that is intensity-dependent. [HRR, J Math Phys 3, 387 
(1962)]. 
 
Textbooks  on quantum mechanics do not even discuss 
intensity limits on perturbation theory.  
 
Also: There exists confusion between “multiphoton” and 
“nonperturbative”. They are different concepts. 
 4 



5 

Multiphoton: 
If the energy requirements to meet threshold conditions for any given 
transition exceed the ħ energy of a single photon, then the minimum 
required photon order is greater than one. This will be a multiphoton 
process whether it is perturbative or not. 

Nonperturbative: 
If the intensity is larger than that at which a perturbation expansion is 
convergent, then perturbation theory will fail. This is sometimes difficult 
to determine, since perturbation theory can give a plausible-appearing 
result even if it is actually meaningless. 
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An elementary example of the hazards of ignoring a radius of convergence: The 
power series expansion of 1/(1-x) is a sum of positive terms for x   0, but the exact 
expression becomes negative. The radius of convergence of the series is |x| < 1. 
 
The blue line is the exact result; the red dashed line is the series summed to fourth 
order. 
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The mathematics of the radius of convergence of 
perturbation theory is messy, but the result for an upper limit 
is very simple and very physical: 
 
Perturbation theory fails before the first channel closing 
occurs. 
 
Must explain: 
• What is a channel closing? 
• Why does it depend on the field intensity? 

 
The answer to these questions requires a knowledge of the 
ponderomotive energy also known as  
ponderomotive potential  -- a more revealing name. 
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PONDEROMOTIVE POTENTIAL 

Consider atomic ionization in a strong laser field: 
 
At threshold, the photoelectron is free of the atom, but it must exist as a 
free, charged particle in the presence of a strong field to which it is 
coupled.  
 
At threshold, the kinetic energy of the photoelectron is zero, but if it 
migrates outside the laser field, the potential energy of the interaction 
of the free electron is converted to a kinetic energy. This is called the 
quiver energy because the electron will oscillate in the field. 
 
There is widespread confusion on this issue: many people think of the 
electron as “quivering” when it is first ionized. NOT TRUE! The field 
interaction energy is a potential energy that becomes manifest only 
when the particle leaves the field and potential energy is converted to 
kinetic energy. 
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Corollary: 
 
If the laser pulse is short, the field vanishes before the photoelectron 
can retrieve the ponderomotive energy. 
 
At 800 nm, this transfer might not be complete even at 1 ps. 
 
In femtosecond pulses (100 fs or less), none of the ponderomotive 
energy is returned to the photoelectron.  
 
Energy conservation at ionization requires a contribution of Up by the 
field at ionization to provide the required potential energy, but that 
amount of energy is not returned to the electron as the field turns off. 
The field itself is classical, and regarded as a limitless source or sink of 
photons.  
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Evidence for this is clear: if the laser pulse is short enough that there is 
not time for the conversion of potential energy into kinetic energy, then 
there is no recovery of the potential energy and photoelectron spectra 
can start at zero energy. If photoelectrons were “quivering” at the time 
of ionization, photoelectron spectra would show the quiver energy as 
the minimum of a spectrum. 
 
The potential energy of the interaction of a free charged particle in a 
plane-wave field is the ponderomotive energy Up . 
 
Up  is intensity-dependent:  
 

At threshold the field must supply binding energy EB (or IP or Ip ) + Up  
 
If n0 photons are required at some intensity, and intensity is increased 
so that n0 +1 becomes the minimum, this is a channel closing. 

24
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
 in atomic units; I = intensity. 
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Example: PHOTODETACHMENT OF H- BY 10 m LASER 

Upper limit for convergence of perturbation theory is the channel 
closing at 6 x 109 W/cm2 . (Focal averaging gives a smooth total rate curve.)  
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Were the process perturbative, the rate curve would increase as 
where  n0  is the lowest order allowed by energy conservation. This 
appears as a line of slope n0 in a log-log plot of rate vs. intensity. 
 
For photodetachment of a negative hydrogen ion by a 10 m laser:  
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Where .. is the ceiling function; the smallest integer containing the 
quantity within the  brackets. 
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• Even well below the intensity for channel closing, orders highest than 
the minimum possible order make important contributions. 

• The slope on this log-log plot never exceeds 7 even as channels close 
and the lowest order indexes up to 8, 9, 10, … 

• That is, the slope is never as large as 8 even when that is the lowest 
allowed order. 

• The process is nonperturbative throughout the intensity range 
shown; the first channel closing is only an upper limit on perturbation 
theory. The actual limit could be at a much lower intensity. 

Major qualitative features 
of this diagram: 
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Calculation of quantitative results is done with S-
matrix theory. 

 
Now we turn to S matrices: 
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BRIEF HISTORY OF S MATRICES 

Introduced for use in scattering problems; hence the letter S. 
 
J. A. Wheeler, Phys. Rev. 52, 1107 (1937). 
W. Heisenberg, Z. Physik 120, 513, 673 (1943). 
E. C. G. Stückelberg, Helv. Phys. Acta 17, 3 (1943); 18, 21, 195 (1945). 

In a search for a general nonperturbative formalism to use for strong-
field problems, it was shown that the S-matrix formalism can be 
employed for any quantum process: 
 free-free (scattering) 
 bound-free (ionization, photodetachment) 
 free-bound (recombination) 
 bound-bound (excitation, de-excitation) 
 
HRR, Phys. Rev. A 1, 803 (1970). 
(Note remarks by Kroll & Watson, 1973.) 
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RIGOROUS DERIVATION OF AN S MATRIX 

Basic requirement: The transition-causing interaction occurs only within 
a domain bounded in space and time. Example: transitions in the focus 
of a pulsed laser. 

Important properties of an S matrix as derived here:  
 It can be formulated entirely in terms of quantities measurable in 
the laboratory. 
 It does not require that dynamics be tracked over time. Equations of 
motion are incorporated in the S matrix. 
 There is no need for “adiabatic decoupling”. 
 It gives unambiguous rules for gauge transformations. 
 It can be applied to any process as long as the space-time domain of 
the interaction region is bounded. 
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The general problem is evoked of an atomic electron subjected to a 
pulsed, focused laser beam. This is a convenience, not a requirement. 

There will be a complete set of states {n} that satisfy the 
Schrödinger equation describing the atomic electron that may 
be undisturbed or in interaction with a laser beam: 

The outcome of any experiment will be measured by 
laboratory instruments that never experience a laser field. As 
far as the laboratory instruments are concerned, there is a 
complete set of states {n} that satisfy the Schrödinger 
equation describing an atomic electron that does NOT 
experience the laser field: 
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By hypothesis, the laser pulse is finite, so 

   0lim 0 


HtH
t

The two complete sets of  states and  states can be organized so that 
they correspond at t  - :  

     0lim 


tt nn
t

After the laser interaction has occurred, the only way for the laboratory 
instruments to discover what has happened is to form overlaps of all 
possible final f states with the state that began as a particular i state. 
This is the S matrix: 
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Subtract the amplitude that no transition has occurred. This is the 
transition amplitude: 
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This is now in the form of an exact differential: 
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An alternative form is especially useful for strong-field problems. Instead 
of making a one-to-one correspondence of  and  states at t  -  , 
do it at t  +   and then look for the probabilities that particular initial 
states could have led to this final result. The result is: 
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Footnotes: 
 
Using two sets of states : {}  and {} makes it unnecessary to consider 
how the interaction turns off at t    . 
That is, “adiabatic decoupling” is never necessary. 
 
It is also unnecessary  to use “time-development operators” or 
“propagators” to follow the progress in time of the system. Equations of 
motion are incorporated in the derivation of the transition amplitude. 
 
This approach is now standard in the atom-atom and atom-ion 
scattering community. 
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IN-STATES / OUT-STATES 

When   states are correlated with   states at t  -  they are called  
in-states and are designated  (+) . 
When   states are correlated with   states at t  +  they are called  
out-states and are designated  (-) . 
 
The two standard S matrices are often seen written as 
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TERMINOLOGY 

The two alternative forms are known as: 
 Direct-time 
 Time-reversed 
Or as: 
 Post 
 Prior 
Or as: 
 In-state 
 Out-state 
 
The last alternative is the most common, but it has the confusing 
terminology that in a simple scattering problem the in-state treatment 
will have outgoing spherical waves, and the out-state treatment will 
have incoming spherical waves. 
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A brief survey of 
elaborations and alternative 

approaches follows. 
 

(Verification of some of the steps are 
optional exercises for the listener.)  
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GREEN’S FUNCTION / GREEN’S OPERATOR METHOD 

Start with the same Schrödinger equations for  and   and the same 
definition of the S matrix as before. Then introduce the Green’s 
operators (or Green’s functions) defined by: 

They propagate solutions forward or backward in time: 

where  (x) is the standard unit step function 
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A formal solution of the complete Schrödinger equation 

is given by 

as can be verified by direct substitution. Then substitute (for example) the in-state 
solution into the S matrix:  

The properties have been used that 
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SYMBOLIC OPERATOR METHOD 
LIPPMANN-SCHWINGER EQUATION 

The symbolic operator method is a very extensive subject.  
A simple case will be treated here to give a sample of the techniques. 
 
Consider a Hamiltonian that is time-independent, so that there are 
energy eigenvalues. 
 
Operator forms for the Schrödinger equations are: 

The Green’s function can be written as an inverse operator: 
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The formal solution is 

The singularity in the inverse operation can be regularized by 
infinitesimal offsets. These distinguish the in- and out-states. 

This is the famous Lippmann-Schwinger equation. 
 
Lippmann & Schwinger, Phys Rev 79, 469 (1950). 
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The Lippmann-Schwinger equation is an implicit solution for  ()  
because it appears on both sides of the equation. This expression is 
generally used as a starting point for generating a perturbation 
expansion. That is, make the right side definite by using  in place of 
()  , then use the new approximation in place of ()  on the right-hand 
side, and so on … 
 
There is another procedure using the complete Green’s function G. 
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This is now an explicit solution for () . The price paid for this is the 
difficult-to-find complete Green’s function    

It is now elementary to develop a perturbation expansion by using the 
operator theorem 
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A proof of this expression is simple: (A+B) is distributive even though 1/(A+B) is not. 

With the substitutions 

The perturbation expansion is arrived at directly: 
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GENERAL APPRAISAL 

The symbolic methods disguise the actual complexity of the problem. 
When specific representations are introduced in place of the operators, 
much of the apparent simplicity vanishes. Nevertheless, the formal 
simplicity is an aid to understanding and insight. 
 
Alternatives to our S-matrix approach, used in some formal field theory 
and in particle physics, uses only the  solutions that have to approach 
free  solutions at t. This leads to the “adiabatic decoupling” 
problem, where it must be specified how the interaction-causing 
mechanism is turned on and off. 
 
The “operational” (or “observability” or “Machian”) definition of the S-
matrix formalism as derived here avoids the decoupling problem. The 
specific means by which the interaction is turned on or off is not 
observable and never enters the problem. 
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RETURN TO THE STRONG-FIELD PROBLEM 

Remark: High-energy FELs (100 eV, 1 keV, …) produce environments that can be 
treated with perturbation theory. They are not true strong-field problems. 

Nonperturbative methods will be used exclusively. 
 
There is a rationale for formulating everything relativistically, and then 
going to the nonrelativistic limit when it is justified. 
 
The reason for this point of view: 
When the laser fields are very strong, then properties of the laser field 
can be more important than properties of the target materials being 
studied. Photon fields propagate at the speed of light, which then 
argues for a fully relativistic treatment. 
[This point of view resolves the A2 (t) problem.] 
 
The formalism for this exists, but it has largely been ignored. 
It is mentioned here, but not developed. 
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RELATIVISTIC  S  MATRICES 

The Klein-Gordon (KG) equation applies to spin-zero particles rather 
than spin-1/2 particles like the electron or the nucleons. 
 
The KG equation is the relativistic extension of the Schrödinger 
equation. 
 
The Dirac equation applies to spin-1/2 particles and requires 4-
component spinors. 
 
The Dirac equation is the relativistic extension of the Pauli (or Pauli- 
Schrödinger) equation that uses 2-component spinors. 
 
See HRR, PRA 42, 1476 (1990) for derivation of the Klein-Gordon S matrix. 
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KLEIN-GORDON S MATRIX 

Only basic results are given here. If time permits, this topic will be developed more 
fully in a later lecture. A complete development is given in HRR, PRA 42, 1476 (1990). 

The KG equation (suggested in a footnote in the original Schrödinger 
paper) for a free particle in a plane-wave electromagnetic field A is: 

where  
,

x x



 



 
   

 

are, respectively, the contravariant and covariant differential operators.  

As used here, contra- and covariance refer to how quantities transform under 
coordinate transformations. 
 
Covariance is also used to mean that every element in an expression transforms the 
same way under a Lorentz transformation. For example, if  = p - eA is the kinetic 4-
momentum, each of the terms in the expression is a “Lorentz 4-vector”. The scalar 
product of two 4-vectors is a Lorentz scalar. The KG equation above is a covariant 
expression  because each of the terms is a Lorentz scalar. 
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If a static binding potential (for example, a Coulomb potential) is added 

covariance is lost. The KG equation can be written in two forms: 

In conventional perturbation theory,   F would  be regarded as small; in 
a strong-field theory,  A would be the small quantity. 

 
In the Strong-Field Approximation,  A  is dropped altogether: 
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DIRAC  S MATRIX 

A full discussion here requires a lot of introductory material. 
A complete description can be found in HRR, J. Opt. Soc. B 7, 574 (1990). 
 
The Dirac equation is: 

The Dirac S matrix is: 

The  and  functions are Dirac 4-spinors, and the   are the Dirac 
matrices. 

After this brief excursion into relativistic formalism,  
return to the nonrelativistic problem. 
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T MATRIX & FERMI’S GOLDEN RULE 

Start with the simplest case: nonrelativistic, time-independent. 
Use complete units. 
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This defines the T matrix in terms of (S-1).  
(V is an alternative notation for HI .) 



38 

(S-1)fi is a transition amplitude. The transition probability per unit time is 
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For transitions into a continuum of final states, the total transition rate is 
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where (E) is the density of final states. 
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The last result is Fermi’s Golden Rule, usually derived in a 
perturbation-theory context, where 

is the first-order perturbation-theory matrix element. 
 
Starting from the time-reversed matrix element, the relevant T matrix 
would be 

IMPORTANT: In both cases the complete T matrix contains one 
interacting  state and one non-interacting  state. 
 
A common error found in the literature is that the nonperturbative result 
is assumed to have an interacting  state in both locations in the matrix 
element. 
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FERMI’S GOLDEN RULE FOR THE TIME-DEPENDENT 
SINGLE-FREQUENCY MULTIPHOTON CASE 

The result is: 
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Total transition rate comes from integration over the final phase space. 
 
This structure, with “sideband” states spaced ħ apart is called Floquet 
behavior. 
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GAUGE TRANSFORMATIONS 

The S-matrix approach makes it obvious how a gauge transformation 
should be done. Starting with the form 

it is clear that I and HI  will change because they depend on how the 
field is represented, but f  does not depend on the field and will not 
change.  
 

In this form, or in the time-reversed form, there is always a state vector 
that is independent of the field. That is, there will be an element of the 
reference states {} in every matrix element. The gauge-transformed  S 
matrix is therefore 

A gauge transformation has a nontrivial effect on transition 
matrix elements. 
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MISPERCEPTIONS IN THE AMO COMMUNITY 

Since a 1952 paper by Willis Lamb there has been a conviction in a 
substantial (large majority?) part of the AMO community that the 
“length gauge” with the interaction –r  E is the fundamental gauge. This 
misconception persists to the present day, where lasers are the 
dominant source of electromagnetic fields. It should be clear that a 
vector field cannot adequately be represented by a scalar potential, but 
the mistake persists. 
 
Added to this basic mistake is the assumption (almost universally 
unrecognized) that any matrix element is automatically gauge-invariant: 
because a gauge transformation is assumed to have the form 

This is the property of a picture transformation, not a gauge 
transformation. 
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A look ahead … 
 
Gauge transformations, widely regarded as formalities that 
are inessential, become fundamental when strong fields are 
present. This is an essential consideration at low frequencies. 
 
The subject of gauges will be raised again with important new 
results that have not been discussed previously. 
 
Relativistic considerations become important at low 
frequencies, so relativistic topics will be revisited. 


