

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

Ultrafast Laser Physics

UT RET ES RE CONTRACTO

Ursula Keller / Lukas Gallmann

ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch

Chapter 8: Passive modelocking: Q-switching instabilities

Eidgenössische Technische Hochschule Zürich

SESAM parameters

nonlinear parameters

 $F_{\rm sat}, \ \Delta R, \ \Delta R_{\rm ns}$

to overcome the stability condition for Qswitched mode locking (QML) threshold

Q-switched modelocking is avoided if...

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, JOSA B **16**, 46 (1999)

Eidgenössische Technische Hochschule Zürich

SESAM parameters

nonlinear parameters

 $F_{\rm sat}, \ \Delta R, \ \Delta R_{\rm ns}$

to overcome the stability condition for Qswitched mode locking (QML) threshold

$$F_p^2 > F_{\text{sat}} \cdot \Delta R \cdot F_{\text{sat,L}} \cdot \frac{A_{\text{eff,L}}}{A_{\text{eff,A}}}$$

 $F_{\rm p}$: intracavity fluence

 $F_{\rm sat}$: saturation fluence of the absorber

 ΔR : modulation depth

 $F_{\text{sat, L}}$: saturation fluence of the gain

A : area in gain medium and on absorber

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller, JOSA B **16**, 46-56 (1999)

Keep ΔR and F_{sat} small to avoid Q-switching instabilities

Eidgenössische Technische Hochschule Zürich

SESAM parameters

nonlinear parameters

 $F_{\rm sat}, \ \Delta R, \ \Delta R_{\rm ns}$

to overcome the stability condition for Qswitched mode locking (QML) threshold

$$F_p^2 > F_{\text{sat}} \cdot \Delta R \cdot F_{\text{sat,L}} \cdot \frac{A_{\text{eff,L}}}{A_{\text{eff,A}}}$$

Issues for high pulse repetition rates: $E_{p, GHz} \ 10^{-3}$ smaller than $E_{p, MHz}$

- $F_{\rm sat}$ ~ few tens of µJ/cm²
- $\Delta R < 1\%$ is required

Keep ΔR and F_{sat} small to avoid Q-switching instabilities

SESAM response with roll-over (inverse sat. absorption)

Inverse saturable absorption improves QML threshold

Simple stability condition, $F_2 \rightarrow \infty$

Modified stability condition

$$F_p^2 > F_{\text{sat}} \cdot \Delta R \cdot F_{\text{sat,L}} \cdot \frac{A_{\text{eff,L}}}{A_{\text{eff,A}}}$$

 F_P = intracavity fluence $F_{sat,L}$ = gain saturation fluence F_{sat} = absorber saturation fluence

C. Hönninger, et al., JOSA B 16, 46-56 (1999)

 A_A = beam size area on the absorber

T. R. Schibli, et al., Appl. Phys. B 70, S41-S49 (2000) R. Grange, et al., Appl. Phys. B 80, 151-158 (2005)

- Reduced QML threshold
- · Less need of minimization of the mode size in the gain medium

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo – Swiss Federal Institute of Technology Zurich

Measurement of SESAM parameters

MIN HER ER AN AUGUST

Haiml et al., Appl. Phys. B 79, 331-339 (2004)

Photodiode A: $\propto P_{in}$ Photodiode B: $\propto R \cdot P_{in}$ Reflectivity of the SESAM: $R = \frac{B}{A}$

Haiml et al., Appl. Phys. B 79, 331-339 (2004)

711

ETH Zurich

UD REAL BARNER

- Detectors must be able to measure voltages over at least four orders of magnitude with an accuracy of better than 0.1%
- Lock-in detection with two separate lock-in amplifiers (AOM needed for modulation of the incident beam)
- Required performance is close to the linearity limit of the lock-in amplifiers
- Complicated and expensive

ETH Zurich 📃 📕

Eidgenössische Technische Hochschule New measurement system Maas et al., Optics Express 16, 7571 (2008) chopper HR λ/2 BS modelocked laser Faraday PBS 3 PBS 1 PBS 2 SESAM L1 rotator PD attenuator reflectivity measurement ADC Amp

New measurement system: detector signal

Maas et al., *Optics Express* **16**, 7571 (2008)

- 1. Reference mirror signal
- 2. Both signals (ignore this)
- 3. SESAM signal
- 4. Both arms blocked → background signal

New measurement system: detector signal

Maas et al., *Optics Express* **16**, 7571 (2008)

Incident fluence:

Calculated from voltage A and pre-amplifier gain 5% accuracy is good enough \implies 5% inaccuracy of F_{sat}

New measurement system: calibration

Maas et al., *Optics Express* **16**, 7571 (2008)

Calibration is done with a HR instead of the SESAM:

Reflectivity should be 100% and flat, but

- extra lens in SESAM arm
- systematic errors

Introduction of a calibration function C(F)

The corrected nonlinear reflectivity is then:

 $R = C(F) \cdot \frac{B}{A}$

Laser Source: modelocked Yb:Lu₂O₃ thin disk laser 570 fs pulses, 65 MHz \Rightarrow induced absorption

Calibration function C(F): second order polynomial of log(F)

HR with correction: flatness of 0.055%

SESAM parameters: $F_{sat} = 54 \ \mu J/cm^2$, $\Delta R = 0.72\%$, $F_2 = 3.3 \ J/cm^2$