Semiconductor disk lasers and SESAMs: material and design optimization

Ursula Keller

Department of Physics, Institute for Quantum Electronics, ETH Zurich, Switzerland

Compound Semiconductor Week 2021 (CSW-2021) Online Conference, May 9-13, 2021 Plenary Talk, 10. May 2021, 3 pm

an wall an a shares

Acknowledgements, near-IR effort ETHzürich UN OF BIL OF LEASE

Jacob Nürnberg (2020)

Cesare Alfieri (2018)

Dominik Waldburger (2018)

Aline Mayer (2018)

Sandro Link (2017)

Christian

Mario Mangold (2015) Zaugg (2014)

Alexander Klenner (2015)

Dr. Bauke Tilma (2015)

Oliver Sieber (2013)

Valentin Wittwer (2012)

Martin Hoffmann (2011)

Südmeyer

(2011)

Benjamin Rudin (2010)

Dr. Matthias Golling

Deran Maas (2008)

Aude-Reine **Bellancourt** (2009)

EHzürich

Acknowledgements, long-wavelength effort (> 2 µm)

Jonas Heidrich

Marco Gaulke

Dr. Ajanta Barh

Dr. Matthias Golling Dr. Özgür Alaydin

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme grant agreement No 787097

FIRST cleanroom facility at ETH Zurich

Jltrafast Laser Physics —

\Box

1.

SESAM, VECSEL and MIXSEL basic device structure

- 2. Dual-comb modelocking and application demonstration
- 3. III-V semiconductor material
- 4. MIXSEL and SESAM modelocked VECSEL
- 5. Long wavelength SESAMs (> 2µm)
- 6. Outlook

Passively modelocked lasers

ETHzürich

Innovation: before and after

acousto-optic modelocker needs RF power and water cooling

ETH zürich

SESAM modelocker

Ultrafast Laser Physics

ETH zürich

ETHzurich Optically pumped VECSEL

VECSEL (Vertical External-Cavity Surface-Emitting Laser) #1

- gain structure (low gain)
- output coupler (a few percent)
- high-Q cavity
- low noise

External cavity:

- intracavity frequency doubling
- modelocking
- single mode operation (TEM₀₀)

Diode-pumped semiconductor laser:

- bandgap engineering
- high level of integration
- wafer scale technology
- power scaling

^{#1} Kuznetsov et al., IEEE Photonics Technology Letters **9**, 1063 (1997)

ETHzürich cw optically pumped VECSEL

OP-VECSEL = **O**ptically **P**umped **V**ertical-**E**xternal-**C**avity **S**urface-**E**mitting Semiconductor **L**aser

M. Kuznetsov et al., IEEE Photon. Technol. Lett. 9, 1063 (1997)

 Semiconductor gain structure with reduced thickness (≈ 10 µm)

IEEE JQE 38, 1268 (2002)

- Pump: high power diode bar
- External cavity for diffraction-limited output

EHzürich

Ultrafast VECSELs: Modelocking with SESAMs

Review article for VECSELs: U. Keller and A. C. Tropper, *Physics Reports* **429**, Nr. 2, pp. 67-120, 2006

1. SESAM, VECSEL and MIXSEL basic device structure

- 2. Dual-comb modelocking and application demonstration
- 3. III-V semiconductor material
- 4. MIXSEL and SESAM modelocked VECSEL
- 5. Long wavelength SESAMs (> 2µm)
- 6. Outlook

ETHzürich

optical frequency [THz]

ETHzürich

Dual-Comb MIXSEL

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, U. Keller, *Opt. Express* **23**, 5521 (2015). S. M. Link, A. Klenner, U. Keller , *Opt. Express* **24**, 1889 (2016): SESAM decouples noise stabilization

Ultrafast Laser Physics —	

Dual-comb spectroscopy with dual-comb 968-nm MIXSEL

S. M. Link, D. J. H. C. Maas, D. Waldburger, U. Keller, "Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser", Science 356, 1164-1168 (16 Jun 2017)

Iltrafast Laser Physics —

Dual-comb spectroscopy with dual-comb 1.03-µm MIXSEL

J. Nürnberg*, C. G. E. Alfieri*, Z. Chen, D. Waldburger, N. Picqué, U. Keller, Optics Express 27, 3190 (2019)

ETHzuric Dual-comb ranging with free-running lasers

Heats MIXSEL BC1 BC2 OC	^{Nin} 4 ^{Ch} i₀ 1028 nm 3 nm ≈390 fs	dual-coi $\lambda = 1050 \text{ nm}$ 980-nm put R = 500 mm 1050 nm 6.9 nm $\approx 175 \text{ fs}$	nb output $\tau = 175 \text{ fs}$ DM DM CC	
	Dual-comb MIXS	SEL	Dual-comb Yb:CaF ₂	
Update rate $(= \Delta f_{rep})$	51 kHz		952 Hz	
Ambiguity range (f _{rep})	55 mm (2.7 GHz)		≈ 1 m (136.5 MHz)	
Precision	1.4 µm		0.5 μm	
Theoretical ext. ambiguity range	2.8 km		157 km	
Application	Short range but fast		Long range but slower	
	Industrial and manufacturing		Satellite and spacecraft links	

J. Nürnberg, et al. "Dual-comb ranging with frequency combs from single cavity free-running laser oscillators" *Optics Express* **29** (16) 24910, 2021

Endour Picosecond MIXSEL noise characterization

MIXSEL: >645 mW output power, 14.3 ps pulses, 2 GHz pulse reprate

- **127 fs** timing jitter free-running [100 Hz, 100 MHz]
- **31 fs** timing jitter stabilized [100 Hz, 100 MHz]
- < 0.15% amplitude noise [1 Hz, 10 MHz]

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, U. Keller, *IEEE Photonics Journal* **6**, 1500309 (2014)

Endour Picosecond MIXSEL noise characterization

Mario Mangold (2015)

MIXSEL: >645 mW output power, 14.3 ps pulses, 2 GHz pulse reprate

- 127 fs timing jitter free-running integrated over [100 Hz, 100 MHz]
- Pulse repetition rate 2 GHz -> 0.5 ns between the pulses = 1/ (2 GHz)
- 127 fs / 0.5 ns ≈ 2.5 10⁻⁴ comb line spacing variations, integrated over 1/ (100 Hz) = 10 ms!

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, U. Keller, *IEEE Photonics Journal* **6**, 1500309 (2014)

Endzurich MIXSEL frequency comb stabilization

Research Article

Vol. 27, No. 3 | 4 Feb 2019 | OPTICS EXPRESS 1786

Optics EXPRESS

Optics Express 27, 1786 (2019)

Tightly locked optical frequency comb from a semiconductor disk laser

D. WALDBURGER,^{1,*} A. S. MAYER,¹ C. G. E. ALFIER,¹ J. NÜRNBERG,¹ A. R. JOHNSON,² X. JI,³ A. KLENNER,² Y. OKAWACHI,² M. LIPSON,³ A. L. GAETA,² AND U. KELLER¹

Dominik Waldburger (2018) Aline Mayer (2018)

¹Department of Physics, Institute for Quantum Electronics, ETH Zurich, Auguste-Piccard-Hof 1, 8093 Zürich, Switzerland ²Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA ³Department of Electrical Engineering, Columbia University, New York, New York 10027, USA

*dominikw@phys.ethz.ch

122-fs pulses &160-mW

No additional amplification and pulse compression with Silicon nitride waveguide

Ultrafast Laser Physic:

– ETH zürich

- 1. SESAM, VECSEL and MIXSEL basic device structure
- 2. Dual-comb modelocking and application demonstration

3. III-V semiconductor material

- 4. MIXSEL and SESAM modelocked VECSEL
- 5. Long wavelength SESAMs (> 2µm)
- 6. Outlook

ETHZU VECSELS: cw spectral coverage (Mircea Guina, 2017)

- 2-2.8 μ m GalnAs**Sb** / AlGaAs**Sb**
- 1.5 µm InGaAs / InGaAsP
- 1.2-1.5 µm AlGaInAs / InP (fused)
- 1.2-1.3 μ m Galn**N**As / GaAs
- 1-1.3 µm InAs QDs
- 0.9-1.18 µm InGaAs / GaAs
- 850-870 nm GaAs / AlGaAs
- 700-750 nm InP QDs
- 640-690 nm InGaP / AlGaInP
- Frequency-doubled VECSELs have been reported throughout the visible and into the UV

M. Guina et al., "Optically pumped VECSELs: review of technology and progress" *J. Phys. D: Appl. Phys.* **50**, 383001 (2017)

SDLs = semiconductor disk lasers

ETHzürich

- GaAs/AIAs Distributed Bragg Reflectors (DBR) with near-perfect lattice match
- Low-temperature (LT) MBE grown for faster absorbers and strain-relaxed structures
- LT InGaAs SESAMs used up to 1.5 μm

LT grown SESAMs to reduce absorber recovery time

Absorption

February 1, 1993 / Vol. 18, No. 3 / OPTICS LETTERS 217

Self-starting and self-Q-switching dynamics of passively mode-locked Nd:YLF and Nd:YAG lasers

U. Keller, T. H. Chiu, and J. F. Ferguson

AT&T Bell Laboratories, Crawfords Corner Road, Holmdel, New Jersey 07733

Received August 12, 1992

The semiconductor antiresonant Fabry-Perot saturable absorber (A-FPSA) has a bitemporal absorption response with a slow time component that is due to carrier recombination and a fast time component that is due to intraband thermalization. We demonstrate that the slow component provides the self-starting mechanism and without significant Kerr lens contribution the fast component is necessary for steady-state pulse formation in passively cw mode-locked solid-state lasers. The carrier lifetime of the bitemporal A-FPSA was varied by

the molecular-beam-epitaxy growth temperature to characterize its inf switching dynamics of cw mode-locked Nd:YLF and Nd:YAG lasers. reflector of the A-FPSA can be adjusted to optimize the self-starting perfo of cw mode-locked solid-state lasers.

Adjustable parameter:

absorber recovery time

More on LT MBE growth and ion implantation to reduce recovery time of SESAMs:

Appl. Phys. Lett., vol. 74, 3134-3136, 1999 Appl. Phys. Lett., vol. 74, pp. 1269-1271, 1999 Physica B: Condensed Matter, vol. 273-274, pp. 733-736, 1999^{100 fs}

Appl. Phys. Lett., vol. 75, pp. 1437-1439, 1999 Appl. Phys. Lett., vol. 74, pp. 1993-1995, 1999

Basic SESAM Parameters

Guidelines how to measure these parameters:

M. Haiml, R. Grange, U. Keller, *Appl. Phys. B* **79**, 331, 2004 with improved accuracy: D. J. H. Maas, et al., *Optics Express* **16**, 7571, 2008

Recovery time: how short?

Depends on laser parameter. Soliton modelocking helps.

Endzin Low temperature MBE growth: LT GaAs

Inverse saturable absorption (ISA) ETHzürich

Fluence on absorber at maximum reflectivity and damage:

$$F_0 \approx \sqrt{\Delta R \cdot F_{sat,A} \cdot F_2}$$

R. Grange et al, Appl. Phys. B 80, 151, 2005

C. J. Saraceno et al, IEEE JSTQE 18, 29-41, 2012

 $F_d \propto \sqrt{F_2}$

Reflectivity decreases with shorter pulses: two photon absorption

= inverse saturable absorption

$$R_{ISA}(F_{\rm p}) = R_{P}(F_{\rm p}) - \frac{F_{\rm p}}{F_{\rm 2}}$$

- F_2 is the inverse slope of the roll over
- The smaller F_2 , the stronger is the roll-over

ETHzürich Inverse saturable absorption (ISA)

SESAM reflectivity for a pulse fluence F_{p}

Reflectivity decreases with shorter pulses: two photon absorption

Fluence on absorber at maximum reflectivity and damage:

$$F_0 \approx \sqrt{\Delta R \cdot F_{sat,A} \cdot F_2}$$

R. Grange et al, Appl. Phys. B 80, 151, 2005

 $F_d \propto \sqrt{F_2}$

inverse saturable absorption $R_{\text{rest}}(F) = R_{p}(F) - \frac{F_{p}}{F_{p}}$

the roll-over

$$_{SA}(F_{p}) = \frac{R_{p}(F_{p})}{F_{2}} - \frac{1}{F_{2}}$$

- *F*₂ is the inverse slope of the roll over
- The smaller F₂, the stronger is the roll-over

C. J. Saraceno et al, *IEEE JSTQE* **18**, 29-41, 2012

Strain compensation for InGaAs SESAM & MIXSEL

Two-photon absorption (TPA) losses $\propto \frac{\beta_{TPA}}{\tau_{pulse}}$

Large-bandgap AIAsP for strain-compensation for InGaAs SESAMs and MIXSELs:

For example allowed for 139-fs MIXSEL

C. G. E. Alfieri^{*}, D. Waldburger^{*}, J. Nürnberg, M. Golling, U. Keller, "Sub-150-fs from a broadband MIXSEL", *Opt. Letters* **44**, 25 (2019)

C. G. E. Alfieri, A. Diebold, F. Emaury, E. Gini, C. J. Saraceno, U. Keller. Opt. Express 24, 27587-27599 (2016)

Dominik Cesare Waldburger Alfieri (2018) (2018)

ETHzürich Antiresonant versus Resonant

antiresonant SESAM

Very often need low saturation fluence F_{sat}

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, U. Keller "Semiconductor saturable absorber mirror structure with low saturation fluence" *Appl. Phys. B*, vol. 81, Nr. 1, pp. 27-32, 2005

Antiresonant versus Resonant

ETHzürich

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, U. Keller "Semiconductor saturable absorber mirror structure with low saturation fluence" *Appl. Phys. B*, vol. 81, Nr. 1, pp. 27-32, 2005

- **1. SESAM, VECSEL and MIXSEL basic device structure**
- 2. Dual-comb modelocking and application demonstration
- 3. III-V semiconductor material
- 4. MIXSEL and SESAM modelocked VECSEL
- 5. Long wavelength SESAMs (> 2µm)
- 6. Outlook

3-GHz pulse repetition rate: cavity length of ≈ 5 cm

Semiconductor disk lasers

MIXSEL

ETHzürich

modelocked integrated external-cavity surface-emitting laser

D. J. H. C. Maas et al., Appl. Phys. B 88, 493, 2007

absorber Lopeosities

ETH zürich

Low saturation fluence

Low saturation fluence $F_{sat,a}$ of saturable absorber

requirement for stable modelocking

QW-SESAMs: $A_a < A_g$

 More difficult for MIXSEL integration!

low $F_{\mathrm{sat,a}}$

SESAM

ETHzurich Antiresonant versus Resonant

Increase field enhancement by resonant design^{#1}

Modulation depth increases

^{#1} Spühler et al., Appl. Phys. B **81**, 27-32 (2005)

Towards Absorber Integration: Quantum Dots (QDs)

QDs absorbers offer more growth parameters than QWs absorbers

QD size and size distribution

determine absorption spectrum

Deran Maas (2008)

➡ determines modulation depth

QD growth

- Stranski-Krastanov growth on MBE
- InAs on GaAs substrate
- In ML coverage determines density

Self-assembled QD formation:

$\Delta R\,$ can be tuned with dot density, while $F_{\rm sat}$ stays constant!

EHzürich

First MIXSEL demonstration: 35 ps, 40 mW, 2.8 GHz

Resonant design

Sections:

- 30 pair bottom mirror for the laser
- 1 layer of self-assembled InAs QD
- DBR to increase field in absorber
- 9 pair mirror for the pump
- active region with 7 InGaAs QWs
- AR coating

MIXSEL chip as grown cavity length 54 mm

etalon

T=0.35%, R=60 mm

D. J. H. C. Maas et al., Applied Physics B 88, 493-497 (2007)

heat sink

QD-SESAM annealing benefits: lower F_{sat}

Optics Express 16, 18646 (2008)

Deran Maas (2008)

 \rightarrow *F*_{sat} decreased by annealing and $\Delta R \approx$ constant

Antiresonant MIXSEL Design

Advantages

- less variations in absorber enhancement
- reduced GDD for shorter pulses
- Iess sensitive to growth errors

Requirement

- QDs with strong saturation
- study on QD-growth parameters optimization of growth temperature and post-growth annealing

A.-R. Bellancourt, Y. Barbarin, D. J. H. C. Maas, M. Shafiei, M. Hoffmann, M. Golling, T. Südmeyer, U. Keller, OE, 17, 12, (2009) D. J. H. C. Maas, A. R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, U. Keller, OE, 16, 23, (2008)

ETHzürich

High Power MIXSEL

Average power	6.4 W
Center wavelength	959.1 nm
Pulse duration	28.1 ps
FWHM spectral width	0.15 nm

- optical pumping 36.7 W at 808 nm
- pump / laser spot radius: ≈215 µm
- cavity length: 60.8 mm ⇒ 2.47 GHz
- fluence on the MIXSEL : 252 µJ/cm²

highest average power from an ultrafast semiconductor laser Optics Express 18, 27582 (2010)

Benjamin

B. Rudin, V.J. Wittwer, D.J.H.C. Maas, M. Hoffmann, O.D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, U. Keller, OE 18, 27582 (2010)

Ultrafast Laser Physics —

ETHzürich

Pulse Shortening

LT AIAs defects more robust with annealing

Saturable absorber

M. Mangold et al., Opt. Express 21, 24904 (2013)

- Single LT InGaAs quantum well
- Embedded in LT AIAs
- Grown by molecular beam epitaxy (MBE)
- Low-temperature grown (< 300° C)
- Operated close to the **bandedge**

Absorbers for integration	InGaAs QWs	InAs QDs
Low saturation fluence	+	+
Fast recovery dynamics	+	-
Simple fabrication	+	-
Non-saturable losses	+	+
Temperature sensitivity	-	+
Design freedom	-	+

ETT AIAs defects more robust with annealing

Lattice parameter changes and point defect reactions in low temperature electron irradiated AIAs

In AIAs defects are rather fixed at their positions and cannot be easily moved by annealing.

A. Gaber, H. Zillgen, P. Ehrhart, P. Partyka, and R. S. Averbackale Research Letter

Open Access

CrossMark

Journal of Applied Physics 82, 5348 (1997)

Jiang et al. Nanoscale Research Letters (2018) 13:301 Nanoscale Research Letters https://doi.org/10.1186/s11671-018-2719-7

NANO EXPRESS

First-Principles Study of Point Defects in GaAs/AlAs Superlattice: the Phase Stability and the Effects on the Band Structure and Carrier Mobility

are energetically more favorable than vacancy and interstitial defects in GaAs/AIAs superlattices

Ming Jiang¹, Haiyan Xiao^{1*}, Shuming Peng², Liang Qiao¹, Guixia Yang², Zijiang Liu³ and Xiaotao Zu¹

ETHzürich 2013 First femtosecond MIXSEL

Endzurich Repetition-rate scaling of MIXSEL

M. Mangold et al., Opt. Express 22, pp. 6099 (2014)

ETHzurich Femtosecond 100-GHz MIXSEL

Pulse duration:	570 fs
Average output power:	127 mW
Repetition rate:	101.2 GHz
Av. mode power (-30 dB):	7.5 mW

M. Mangold et al., Opt. Express 22, pp. 6099 (2014)

World-record 100-fs 100-mW 1.63-GHz VECSEL

96 fs D. Waldburger et ate 1.63 GHz

D. Waldburger et al., Optica 3, 844-852 (2016)

139-fs MIXSEL at 1.03 µm

Opt. Letters 44, 25 (2019)

Design optimization

- ⇒ Quaternary GaAs/AlGaAsP DBR
 - \Rightarrow Ga to decrease oxidation
 - \Rightarrow P for strain compensation
- ⇒ Strain-compensated absorber
- ⇒ Large-bandgap AIAsP straincompensation for the active region:
 - \Rightarrow Reduced TPA losses
 - ⇒ Optimized pump absorption
 - ⇒ Better carrier confinement
 - ⇒ No spectral filtering (broad gain)

⇒ Dielectric IBS top coating (GDD):

- ⇒ Precise layer thickness
- ⇒ Protection against oxidation
- ⇒ Reduced TPA losses

Itrafast Laser Physics

139-fs MIXSEL at 1.03 µm

Opt. Letters 44, 25 (2019)

center wavelength [nm]	1033
bandwidth [nm]	13
pulse duration [fs]	139
average output power [mW]	30
pulse repetition rate [GHz]	2.73
Dual-comb operation	\checkmark

- ✓ <u>13 nm of FWHM bandwidth</u> (prev. 7.4 nm)
- ✓ Central wavelength tuned to C_2H_2
- ✓ First sub-150-fs MIXSEL
- ✓ Sufficient output power for spectroscopy
- ✓ Sufficient resolution for spectroscopy
- ✓ Turn-key for hundreds of hours

C. G. E. Alfieri*, D. Waldburger*, J. Nürnberg, M. Golling, U. Keller, "Sub-150-fs from a broadband MIXSEL", Opt. Letters 44, 25 (2019)

- High quality InGaAs quantum dots (QDs)
- Radiative recombination is enhanced with high hole density in QDs with modulation doping (using p-typed δ -doping)
- Low saturation fluence <10 µJ/cm²

T. Finke, J. Nürnberg, V. Sichkovskyi, M. Golling, U. Keller, J. P. Reithmaier, "Temperature resistant fast In_xGa_{1-x}As/GaAs quantum dot saturable absorber for epitaxial integration into semiconductor surface emitting lasers" *Optics Express*, vol. 28, No. 14, pp. 20954-20965, 2020

- 1. SESAM, VECSEL and MIXSEL basic device structure
- 2. Dual-comb modelocking and application demonstration
- 3. III-V semiconductor material
- 4. MIXSEL and SESAM modelocked VECSEL
- 5. Long wavelength SESAMs (> 2µm)

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme grant agreement No 787097

Alaydin

Dr. Matthias Golling

Iltrafast Laser Physics

started 1. Jan. 2019

Fraunhofer-Institut for Applied Solid State Physics Tullastrasse 72, D-79108 Freiburg, Germany Introduction type-I diode (GaSb) QCL ICL, cascaded type-II (GaSb) GaSb-based diode laser: cascaded type-I (GaSb) VECSEL (GaSb) ■2 – 3 µm VECSEL (II-VI) ★ ■ up to 2 W with poor beam quality VCSEL (GaSb) 100 Tm fiber **QCLs** for $\lambda > 3.5 \mu m$ - Cr:ZnSe fiber pumped ■ICT, Interband cascaded type-II 10 Cascaded type-I Output Power [W] ■1W at 3 µm 1 GaSb-based VECSEL Up to 17 W CW @ RT 0,1 High beam quality 0,01 ■II-VI-based VECSEL 0 ■3 – 5 µm 0.001 Electrically pumped VCSEL ■GaSb, type-I, type-II 1E-4 2,5 3,0 3.5 ■2 – 4 µm 2.0 4.0 Tm fiber laser / Cr:ZnSe, Tm-fiber pumped Wavelength [µm]

Invited Talk SPIE PW 2019

PW 2019, M. Rattunde

🗾 Fraunhofer

8

ETHzurich Long-wavelength SESAMs (> 2 µm)

- GaSb Substrate, GaSb/AIAsSb DBR
- InGaSb saturable absorbers (exploring both type I and type II structures)
- 2.07-µm SESAMs demonstrated, Phys. Status Solidi C 9, No. 2, 294–297 (2012)

ETHzürich

0

0

1

2

2.4-µm type-I InGaSb SESAM

Sech² fit

3

Pump power (W)

-Ideal TL

Dr. Ajanta Barh

Soliton modelocking with transform-limited pulses SESAM only starts and stabilizes modelocking! 4 mm YAG gives negative GDD (-1300 fs²) ZnS gain crystal gives positive SPM

250-MHz Cr:ZnS laser:

A. Barh et al., Optics Express, 29, 5934 (2021) 5% output coupler, 0.8 W (1 W) average output power with 79 fs (120 fs) pulses, peak power 39 kW (32 kW)

2-GHz Cr:ZnS laser (CLEO postdeadline paper): 3% output coupler, 0.8 W average output power with 157 fs pulses at 2.04 GHz, peak power 2.5 kW

100

5

•

End zu Long-wavelength SESAM characterization

Wavelength range for device unter test (DUT): 1.9 μ m to 3 μ m

J. Heidrich, M. Gaulke, B. O. Alaydin, M. Golling, A. Barh, U. Keller,

Full optical SESAM characterization methods in the 1.9 to 3-µm wavelength regime, Opt. Express 29, 6647 (2021)

 10^{3}

Marco Gaulke

ETHzürich

- SESAM = Distributed Bragg reflector (DBR) + QW absorber section
- 20 pair AIAs_{0.08}Sb_{0.92}/GaSb DBR growth with molecular beam epitaxy at 525 °C

2-µm InGaSb SESAM

• 11.5 nm thick $In_{0.26}Ga_{0.74}Sb$ quantum wells (type I) grown at 455 °C

			Measured with 100-ts pulses:			
	QWs	F_{Sat} (µJ/	cm²) Δ <i>R</i> (%)	$\Delta R_{ m ns}$ (%)	<i>F</i> ₂ (mJ/c	$(cm^2) \int_{100}^{101} \frac{101}{100} \frac{101}{$
SESAM 1	2	5	1	0.18	70.6	
SESAM 2	3	2.9	1.8	0.15	50.8	2, 90
SESAM 3	4	2.6	2.4	0.23	29.	and a state of the state of the

Recovery times fit with a bi-exponential decay r

$$\Delta R(\tau) = A \ e^{-\tau/\tau_1} + (1 - A) \ e^{-\tau/\tau_2}$$

	SESAM 1	SESAM 2	SESAM
Weighting factor A (%)	71	71	74
$ au_1$ (ps)	0.56	0.73	0.47
$ au_2$ (ps)	16	32	20

SESAM-modelocked Ho-YAG thin-disk laser

- 40.5 W output power
 - Sub-ps pulses at 2.09 µm

ETH zürich

2.4-µm InGaSb/GaSb SESAM

General remark

ETHzürich

- Structure is all-semiconductor, monolithic growth
- Absorber section: Quantum-well layers

CB

10

12

14

16

2.4-µm type-I InGaSb SESAM

Type-I

Par Thi

con Stra Spe cov (µm ETHzürich

2.4-µm InGaSb/GaSb SESAM

			Nonlinear
SESAM	Type-I	Type-II	100
Modulation depth ∆R	1.59 %	4.78 %	(%) λιι ΔR
Saturation fluence Fsat	10.51 µJ/cm ²	3.13 µJ/cm ²	98 97 97 97
Non-saturable loss ∆R_{ns}	0.8 %	0.5 %	96 10 ⁰
F ₂	18 mJ/cm ²	31 mJ/cm ²	100 - B _m
Absorber	recovery dyna	imics	99 - ^{ns}
τ ₁	160 fs	300 fs	AR - 76 the ctivity
τ ₂	1.9 ps	> 10 ³ ps	95 95 95 F
A _{slow}	0.45	0.58	93

Measured @ 2.36 µm with 100-fs pulses

sat

10

sat

Type-II

10¹

A. Barh, J. Heidrich, B. O. Alaydin, M. Gaulke, M. Golling, C. R. Phillips, U. Keller "Watt-level and sub-100-fs self-starting modelocking Cr:ZnS oscillator enabled by GaSb-SESAMs" Optics Express, vol. 29, No. 4, pp. 5934-5946, 2021

- **1. SESAM, VECSEL and MIXSEL basic device structure**
- 2. Dual-comb modelocking and application demonstration
- 3. III-V semiconductor material
- 4. MIXSEL and SESAM modelocked VECSEL
- 5. Long wavelength SESAMs (> 2µm)

6. Outlook

ETHzürich

Overview near infrared results

WE REAL FOR THE PARTY NAME

ETHzürich

Overview near infrared results

WE ME HAMIN

MIXSEL

oc

Dual comb MIXSEL

modelocked integrated external-cavity surface-emitting laser

Fraunhofer-Institut for Applied Solid State Physics Tullastrasse 72, D-79108 Freiburg, Germany Introduction type-I diode (GaSb) QCL ICL, cascaded type-II (GaSb) GaSb-based diode laser: cascaded type-I (GaSb) VECSEL (GaSb) ■2 – 3 µm VECSEL (II-VI) ★ ■ up to 2 W with poor beam quality VCSEL (GaSb) 100 Tm fiber **QCLs** for $\lambda > 3.5 \mu m$ - Cr:ZnSe fiber pumped ■ICT, Interband cascaded type-II 10 Cascaded type-I Output Power [W] ■1W at 3 µm 1 GaSb-based VECSEL Up to 17 W CW @ RT 0,1 High beam quality 0,01 ■II-VI-based VECSEL 0 ■3 – 5 µm 0.001 Electrically pumped VCSEL ■GaSb, type-I, type-II 1E-4 2,5 3,0 3.5 ■2 – 4 µm 2.0 4.0 Tm fiber laser / Cr:ZnSe, Tm-fiber pumped Wavelength [µm]

Invited Talk SPIE PW 2019

PW 2019, M. Rattunde

🗾 Fraunhofer

8

FIRS

					——— Measured with 100-fs pulses:			
	QWs	F_{Sat} (µJ/	cm²) Δ <i>R</i> (%)	$\Delta R_{\rm ns}$ (%)	<i>F</i> ₂ (mJ/c	$(m^2) \int_{100}^{101} \frac{101}{m}$		
SESAM 1	2	5	1	0.18	70.6			
SESAM 2	3	2.9	1.8	0.15	50.8	$\frac{2}{5}, 97$ $= - SESAM 1$		
SESAM 3	4	2.6	2.4	0.23	29.			

Recovery times fit with a bi-exponential decay i

$$\Delta R(\tau) = A \ e^{-\tau/\tau_1} + (1 - A) \ e^{-\tau/\tau_2}$$

	SESAM 1	SESAM 2	SESAM
Weighting factor A (%)	71	71	74
$ au_1$ (ps)	0.56	0.73	0.47
τ ₂ (ps)	16	32	20

Work in progress:

- 2-µm VECSEL
 - SESAM modelocked VECSEL
 - 2–µm MIXSEL & dual-comb MIXSEL

Collaboration with Prof. Clara Saraceno:

SES9562M 3 ~ESAM 39.95 ± 0.04 % = 9595626300 measu

SESAM-modelocked Ho-YAG thin-disk laser

40.5 W output power

Sub-ps pulses at 2.09 µm

Center for Micro- and Nanoscience

EHzürich

Measured @ 2.36 µm with 100-fs pulses

This project has received funding from the European Research Council (ERC) under the European Union's Horizón 2020 research and innovation programme grant agreement No 787097

ETH zürich

0.4

0.

n

-0.2

-0.4

Energy (eV)

Energy (eV)

-1

4

ETHzürich New textbook for ultrafast lasers

U. Keller

Ultrafast Lasers

April 29, 2021

Springer

Partial lab shut down and home office made it possible

≈800 pages

Detailed derivations

Focus on diode-pumped solid-state lasers

Hopefully to be published end of 2021