Recent advances in SESAM-modelocked high-power thin disk lasers

Ursula Keller

Department of Physics, Institute for Quantum Electronics, ETH Zurich, Switzerland

OPIC 2019 Optics & Photonics International Congress 2019 Yokohama, Japan, 22-26 April 2019 Plenary Talk

UNRITH COM

ETH zürich

Acknowledgments

ETH Zurich

Prof. Dr. Clara Saraceno

Dr. Matthias Golling

Cesare Alfieri

Dr. Chris Phillips

Dr. Cinia Schriber

Ivan

Graumann

Dr. Andreas Diebold

Dr. Florian Emaury

Francesco Saltarelli

... Swiss National Science Foundation

High energy and high (MHz) pulse repetition rates

High energy and high (MHz) pulse repetition rates

High energy and high (MHz) pulse repetition rates

ETHzürich Ultrafast high-power laser sources

Yb-doped gain crystals

- Good thermal properties
- Availability of low-cost high-power pump diodes
- Emission wavelength around 1 µm

Efficient cooling via maximization of surface/volume ratio of gain crystal

Ultrafast Laser Physics

Highest average power (275 W, 16.9 μJ, 0.58 ps, 16 MHz ^{#1}) & highest pulse energy (80 μJ, 242 W, 1 ps, 3 MHz ^{#2}) of any ultrafast oscillator technology

^{#1}C. J. Saraceno, et al., Opt. Express **20**, 23535 (2012)

^{#2}C. J. Saraceno, et al., Opt. Lett. **39**, 9 (2014)

Ultrafast Laser Physics

Endzine SESAM-modelocked thin-disk lasers

Required: TEM_{00} operation at high average power

efficient heat removal with thin disk:

- \rightarrow disk thickness < 100 μ m
- → good pump absorption: many passes through gain

A. Giesen, et al., Appl. Phys. B 58, 365 (1994)

Highest average power (275 W, 16.9 μJ, 0.58 ps, 16 MHz ^{#1}) & highest pulse energy (80 μJ, 242 W, 1 ps, 3 MHz ^{#2}) of any ultrafast oscillator technology

^{#1}C. J. Saraceno, et al., Opt. Express **20**, 23535 (2012)

^{#2}C. J. Saraceno, et al., Opt. Lett. 39, 9 (2014)

Ultrafast Laser Physics -

EndzundHigh power modelocked thin disk lasers

Required: TEM₀₀ operation at high average power

efficient heat removal with thin disk:

- \rightarrow disk thickness < 100 μ m
- → good pump absorption: many passes through gain

Yb:YAG: the standard thin disk material

- large disks on diamond with excellent quality commercially available
- 4 kW fundamental transverse mode (M² <1.4) demonstrated
 - → kilowatt-level modelocked oscillators are in sight
 - → <u>goal</u>: pulse energy scaling to the millijoule-level

A. Giesen, et al., Appl. Phys. B 58, 365 (1994)

Laboratory result: 4 kW from a single disk at nearly diffraction limited beam quality.

Trumpf: T. Gottwald, et al., Proc SPIE 8898 (2014)

Ultrafast Laser Physics -

ETHzürichSESAM: designed saturable absorber

U. Keller et al., Optics Lett. 17, 505 (1992) U. Keller et al., IEEE J. Sel. Top. Quant. 2, 435 (1996)

- Widely tunable absorber parameters (growth conditions, material choice, topsection...) for different types of laser geometries
- Self-starting, reliable modelocking \checkmark
- \checkmark Power scalable by increase of mode diameter (constant saturation)

SESAM-modelocked femtosecond solid-state lasers

GDD < 0

Given by material

e.g. gain material

Endour Challenges for next-generation SESAMs

Endzürich SESAM-modelocked thin-disk lasers

efficient heat removal with thin disk:

- \rightarrow disk thickness < 100 µm
- → good pump absorption: many passes through gain

A. Giesen, et al., Appl. Phys. B 58, 365 (1994)

Highest average power (275 W, 16.9 μJ, 0.58 ps, 16 MHz ^{#1}) & highest pulse energy (80 μJ, 242 W, 1 ps, 3 MHz ^{#2}) of any ultrafast oscillator technology

^{#1}C. J. Saraceno, et al., Opt. Express **20**, 23535 (2012)

^{#2}C. J. Saraceno, et al., *Opt. Lett.* **39**, 9 (2014)

Ultrafast Laser Physics -

Endzür This result: 350 W average output power

350 W – new record average output power from an ultrafast oscillator

- \Box Vacuum operation \rightarrow mitigates disk's thermal lensing and reduces overall SPM
- □ Multi-pass cavity → minimizes the intracavity power

Endzür Further Power Scaling: Thermal lensing

- > **Disk-material thermal lensing** is well-known in literature
- When the disk heats up it changes its radius of curvature (ROC)

→ Diopter change:
$$\Delta F_{disk}(T) = \left(\frac{2}{ROC(T)} - \frac{2}{ROC(cold)}\right)$$

S. Chenais, F. Balembois, F. Druon, et al., *IEEE J. Quantum Electron.* 40 (9), 1217–1234 (2004)
G. Zhu, X. Zhu, M. Wang, Y. Feng, and C. Zhu, *Appl. Opt.* 53 (29), 6756–6764 (2014)

Endzür Further Power Scaling: Thermal lensing

Endzün Further Power Scaling: Thermal lensing

Total thermal lensing $(\Delta F_{\text{total}})$ =

= disk-material lensing ~63%	+	gas lens ~37%
---------------------------------	---	------------------

Disk-material lensing is known in literature

What is the difference between **air** and **helium**?

$$\rightarrow \quad \left(\frac{dn}{dT}\right)_{helium} \ll \left(\frac{dn}{dT}\right)_{air}$$

Challenges for ultrafast TDLs

Step 1: Operate in fundamental spatial mode (gaussian beam, $M^2 < 1.1$)

- □ Thermal effects from the disk:
 - □ Thin disk heating up
 - Air forming a gas-lens[#]
- Challenge:

ETHzürich

Sensitivity to thermal lensing increases for larger laser spot sizes on the disk

Vittorio Magni, J. Opt. Soc. Am. A, 1962 (1987)

- Solution:

Operate the laser in vacuum

→ removes the gas-lens

A. Diebold, et al., Opt. Express 26, 12648 (2018)

Challenges for ultrafast TDLs

Step 2: Obtain stable pulse formation

- Challenges:

ETHzürich

- □ Thermal effects from the thin-disk / SESAM / dispersive mirrors
- □ The air is a substantial source of SPM at MW level peak power

Possible Solutions:

- \Box Minimize the intracavity power (i.e. multi-pass gain) \rightarrow limits the thermal effects
- \Box Operate the laser in vacuum \rightarrow limits the amount of SPM and thermal gas lens

ELEO SF3E.3; May de Shigie and cavity

28 EO SF3E.3; May de Shigie and cavity

29 EO SF3E.3; May de Shigie and cavity

Soliton Modelocking

Soliton Modelocking

MIN HEN HER MININ

ETHzürich

Soliton Modelocking

an an an an an an

□ Add the SESAM \rightarrow start and stabilize soliton modelocking

Ultrafast Laser Physics -

Soliton Modelocking

UD RE BREDE

Endzür This result: 350 W average output power

□ 350 W – new record average output power from an ultrafast oscillator

- □ Vacuum operation → mitigates disk's thermal lensing and reduces overall SPM
- □ Multi-pass cavity → minimizes the intracavity power

Endzin This result: 350 W average output power

350 W – new record average output power from an ultrafast oscillator

- \Box Vacuum operation \rightarrow mitigates disk's thermal lensing and reduces overall SPM
- □ Multi-pass cavity → minimizes the intracavity power

ETHzürich Overview ultrafast thin disk lasers

Power and energy scaling

ETHzürich Overview ultrafast thin disk lasers

Power and energy scaling

^{#4} J. Brons, et al., *Optics Letters* **41** (2016)

Reaching shorter pulse durations

 Novel broadband gain materials: shortest τ_p = 49 fs (Yb:CALGO)^{#5} low P_{av} < 5 W

#5 A. Diebold, et al., Optics Letters 38 (2013)

Promising material: Yb:CALGO thin-disk laser

Progress in high-quality crystal growth:

& C. Kränkel, et al., IEEE J. Sel. Top. Quant. 21 (2015)

→ pulse-duration scaling with Yb:CALGO: J. Petit, P. Goldner, B. Viana, Opt. Lett. 30, 1345, 2005

	Yb:YAG	Yb:CALGO
$\Delta f_{\rm g}$ FWHM (nm)	7.0	35
Thermal conductivity (1 at.%) [W/(m*K)]	8.5	6.3
Crystal growth	+	-

5.1 W, 62 fs: A. Diebold et al., *Opt. Lett.* **38**, 3842 (2013) C. Schriber et al., ASSL, Paper AF1A.4 (2014)

Minimized third-order dispersion by optimizing GTI-type dispersive mirrors

		P_{av}	2 W
l _{out}	1.6%	Tp	49 fs
f _{rep}	f _{rep} 65.0 MHz	$P_{peak, IC}$	35 MW

Ultrafast Laser Physics -

Promising material: Yb-doped Lu₂O₃ thin-disk laser

J. Graumann et al., *Optics Express*, vol. 25, No. 19, 22519, 2017

C. Kränkel, IEEE J. Sel. Top. Quantum Electron. 21 (2015) - material pioneered by Prof. Huber, Hamburg

Promising material: Yb:GGG thin-disk laser

	Yb:LuO	Yb:YAG	Yb:GGG
Quantum defect (rel. to YAG)	95%	100%	80%
Thermal conductivity (at 4 at.%) (W/(m*K)	12	8	7.8 (independent of doping)
Melting temperature (°C)	2450	1940	1750
Crystal growth method	HEM	Czochralski	Czochralski

	Yb:YAG	Yb:GGG
FWHM emission spectrum	7 nm	8 nm

Spectrum of **Yb:GGG** should support sub-ps modelocking

Yb:GGG TDL limited by crystal quality so far!

S. Chenais, et al., *Opt. Mat.* **22** 99-106 (2003) Shandong University, China

A. Diebold, Z. Jia, I. J. Graumann, Y. Yin, F. Emaury, C. J. Saraceno, X. Tao, U. Keller "High-power Yb:GGG thin-disk laser oscillator: first demonstration and power scaling prospects" *Optics Express*, vol. 25, No. 2, pp. 1452-1462, 2017

Ultrafast Laser Physics –

Challenges for ultrafast TDLs

ETHzürich

Step 2: Obtain stable pulse formation

Highest average power (275 W, 16.9 μJ, 0.58 ps, 16 MHz ^{#1}) & highest pulse energy (80 μJ, 242 W, 1 ps, 3 MHz ^{#2}) of any ultrafast oscillator technology

^{#1}C. J. Saraceno, et al., *Opt. Express* **20**, 23535 (2012)

^{#2}C. J. Saraceno, et al., Opt. Lett. 39, 9 (2014)

Ultrafast Laser Physics -

End Next challenge in high-power thin disk lasers

$$n(I) = n + n_2 I \qquad T_{out}$$
in Group delay dispersion Self-phase modulation Loss modulation SESAM

Typical soliton modelocking:

ga

GDD < 0

 $n_2 > 0$

designed with prism pairs Gires Tournois Interferometers (GTI)

Given by material e.g. gain material

Current challenge Damage of GTI mirrors!

SESAM damage

not a problem!

Typical soliton modelocking:

GDD < 0

designed with prism pairs Gires Tournois Interferometers (GTI) n₂ > 0 Given by material e.g. gain material

Designed nonlinearity:

GDD > 0

Given by material e.g. gain material

 $n_2 < 0$ designed ?

n₂ <0 with cascaded quadratic nonlinearities (CQN)

Several publications, e.g.:

- Theoretical investigations^[1]
- Kerr lens-modelocking / SESAM modelocking results using LBO^[2-4], PPKTP^[5,6], PPMgSLT^[7]
- ^[1] Review of early work: G. I. Stegeman, D. J. Hagan, and L. Torner, *Opt. and Quant. Electron.* **28**, 1691 (**1996**)
- ^[2]G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segala, and V. Magni, *Opt. Lett.* **20**, 746 (1995)
- ^[3] L.J. Qian, X. Liu, and F. W. Wise, *Opt. Lett.* 24,166, (1999)
- ^[4] A.Agnesi, L.Carrà, F.Pirzio, G.Reali, Opt. Express 16, 9549 (2008)
- ^[5] C. R. Phillips, A. S. Mayer, A. Klenner, and U. Keller, *Opt. Express.* **22**, 6060 (**2014**)
- ^[6] H. Iliev, D. Chuchumishev, I. Buchvarov, and V. Petrov, *Opt. Express* **18**, 5754 (**2010**)
- ^[7] S. J. Holmgren, V. Pasiskevicius, and F. Laurell, *Opt. Express* **13**, 5270 (**2005**)
- ^[8] H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, *Opt. Lett.* **35**, 1016 (**2010**)

weak periodic modulation of the fundamental, but no depletion

n₂ <0 with cascaded quadratic nonlinearities (CQN) Result:

An effective nonlinear index n_2^{casc} that can be **negative in sign**

Intrinsic n_2

$$n_2 = \frac{3}{4} \frac{\chi^{(3)}}{n_{\rm F}^2 c \varepsilon_0}$$

SPM coefficient:

$$\gamma = k n_2 \mathsf{L}$$

Cascaded with CQN n_2^{casc} $n_2^{\text{casc}} = \frac{3}{4} \frac{\chi_{\text{casc}}^{(3)}}{n_F^2 c \mathcal{E}_0}$ $n_2^{\text{casc}} = -\frac{1}{\Delta k} \frac{\omega_F}{2 n_F^2 n_{\text{SH}} c^2 \mathcal{E}_0} (\chi^{(2)})^2$ Depends on phase mismatch

Depends on phase mismatch and second order nonlinearity

ETHzürich

What happens when you put a SHG crystal as an intracavity component?

Second harmonic generation

acting as a loss

> SPM coefficient: $\gamma_{CQN} = k n_2^{CQN} L$

W. Frank, et al., Journal of Nonlinear Optical Physics **11**, 317-338 (2002)

Cascaded $\chi^{(2)}$ processes

ETHzürich

What happens when you put a SHG crystal as an intracavity component?

Second harmonic generation

acting as a loss

> SPM coefficient: $\gamma_{CQN} = k n_2^{CQN} L$

positive or negative!

W. Frank, et al., Journal of Nonlinear Optical Physics **11**, 317-338 (2002)

Cascaded $\chi^{(2)}$ processes

ETHzürich Cascaded $\chi^{(2)}$ – SPM on demand

SPM coefficient: $\gamma_{CQN} = k n_2^{CQN} L$

Ultrafast Laser Physics

— ETH zürich

ETHzürich Cascaded $\chi^{(2)}$ – SPM on demand

> SPM from air cancelled:

$$4 \approx 60\%$$

ETHzürich Cascaded $\chi^{(2)}$ – SPM on demand

 \succ SPM from air cancelled:

 $\approx 60\%$ ≈ 75%

ETHzürich

Cascaded $\chi^{(2)}$ – SPM on demand

≈ 75%

> SPM from air cancelled:

4) ≈ 60%

——— **Ett**zürich

Up to $\approx 80\%$

F. Saltarelli et al., Optica 5, 1603, 2018 (December 2018)

Towards 500-W ultrafast thin-disk oscillators

- **350 W** new record average output power from an ultrafast oscillator
- □ Vacuum operation → mitigates disk's thermal lensing and reduces overall SPM
- □ Multi-pass cavity → minimizes the intracavity power
- □ Modelocking in the **500-W** average-output-power regime looks feasible