

Saturable absorber jet:	DODCI (3,3-Dieth	ylocadicarbocyanii

Rhodamine 6G (R6G)	$\sigma_L = 1.36 \cdot 10^{-16} \text{ cm}^2$	$\tau_L = 4 \text{ ns}$
DODCI	$\sigma_A = 0.52 \cdot 10^{-16} \text{ cm}^2$	$\tau_A = 2.2 \text{ ns}$
Photo-isomer	$\tilde{\sigma}_{A} = 1.08 \cdot 10^{-16} \text{ cm}^{2}$	$\tilde{\tau}_{\scriptscriptstyle A} \approx 1 \text{ ns}$
Ultraf	ast Laser Physics ———————————————————————————————————	

Mono	chromat	ic plane wave
$E(z,t) = E_0 e^{i(t)}$	$\omega t - k_n z$)	
Vacuum		Dispersive material
Frequency:	v	ν
Period:	T = 1/v	T = 1/v
Phase velocity:	$v_p = c$	$v_p = c_n = c/n$
Wave number:	$k = \frac{\omega}{c}$	$k_n = \frac{\omega}{\upsilon_n} = \frac{\omega}{c}n = kn$
	$k = \frac{2\pi}{\lambda}$	$k_n = \frac{2\pi}{\lambda_n} = kn$
Wavelength:	λ	$\lambda_n = \frac{\lambda}{n}$

Chirped Ga	ussian Pulse
$E(t) = A(t) \exp(i\omega_0 t)$	$= \exp(-\Gamma t^2) \exp(i\omega_0 t)$
$\Gamma \equiv \Gamma_1 - i\Gamma_2$	$\Gamma \equiv \Gamma_1 - i\Gamma_2$
$\Gamma_2 = 0$	$\Gamma_2 \neq 0$
	$\psi_{tot}(t) = \omega_0 t + \Gamma_2 t$
	$\omega(t) \equiv \frac{d\phi_{tot}(t)}{dt} = \omega_0 + 2\Gamma_2 t$
Ultrafast Laser Physics ———————————————————————————————————	ETH Zurich ETH

Time-Band	width F	Products	Contraction of the second
I(t) $(x \equiv t/\tau)$	τ_p/τ	$\Delta v_p \cdot \tau_p$	
1. Gaussian $I(t) = e^{-t^2}$	2√ln2	0.4413	
2. Hyperbolic secant (soliton pulse) $I(t) = \operatorname{sech}^2 x$	1.7627	0.3148	
3. Rectangle $I(t) = \begin{cases} 1, & t \le \pi/2 \\ 0, & t > \pi/2 \end{cases}$	1	0.8859	
4. Parabolic $I(t) = \begin{cases} 1 - x^2, & t \le \tau/2 \\ 0, & t > \tau/2 \end{cases}$	1	0.7276	
5. Lorentzian $I(t) = \frac{1}{1+x^2}$	2	0.2206	
6. Symmetric two-sided exponent $I(t) = e^{-24t}$	ln2	0.1420	
Ultrafast Laser Physics —	—— етн z	urich ETTH	

- 11	Eldoor Texts the Fords on Learthning	Reference de Zuroue		
	Phase Velocity \boldsymbol{v}_p	$\frac{\omega}{k_n}$	$\frac{c}{n}$	
	Group Velocity $v_{_g}$	$\frac{d\omega}{dk_n}$	$\frac{c}{n} \frac{1}{1 - \frac{dn}{d\lambda}\frac{\lambda}{n}}$	
	Group Delay T_{g}	$T_g = \frac{z}{v_g} = \frac{d\phi}{d\omega}, \ \phi \equiv k_n z$	$\frac{nz}{c} \left(1 - \frac{dn}{d\lambda} \frac{\lambda}{n} \right)$	
	Dispersion 1. Order	$\frac{d\phi}{d\omega}$	$\frac{nz}{c} \left(1 - \frac{dn}{d\lambda} \frac{\lambda}{n}\right)$	
	Dispersion 2. Order	$\frac{d^2\phi}{d\omega^2}$	$\frac{\lambda^3 z}{2\pi c^2} \frac{d^2 n}{d\lambda^2}$	
	Dispersion 3. Order	$\frac{d^3\phi}{d\omega^3}$	$\frac{-\lambda^4 z}{4\pi^2 c^3} \left(3\frac{d^2 n}{d\lambda^2} + \lambda \frac{d^3 n}{d\lambda^3} \right)$	

Material Refractive index $n = n_2 [esu] = n_2 [cm^2/m_2]$	w]
Sapphire (Al ₂ O ₃) 1.76 @ 850 nm 1.25×10 ⁻¹³ [89Ada] 3×10 ⁻¹⁶	
Fused quartz 1.45 @ 1.06 μm 0.85×10 ⁻¹³ [89Ada] 2.46×10 ⁻¹	-16
Glass (Schott LG- 760) 1.5 @ 1.06 μm 1.04×10 ⁻¹³ [93Aza] 2.9×10 ⁻¹⁴	6
$YAG (Y_{3}Al_{5}O_{12}) \qquad 1.82 @ 1.064 \ \mu m \qquad 3.47 \times 10^{-13} \ [93Aza] \qquad 6.2 \times 10^{-14} \ [93Aza]$	6
$n = 1.47 \widehat{(0)} 1.047$	16 [93Aza

