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Recently, mode locking of a Ti:sapphire laser with a quantum-well reflector in an external cavity was reported
[Opt. Lett. 15, 1377 (1990)]. This laser was found to operate with a stable mode-locked pulse train without
stabilization of the external cavity. We develop a theory that shows that the system operates by small fre-
quency adjustments. The laser continuously seeks the carrier frequency, which ensures coherent superposition
of the pulses at the coupling mirror. Coupled-cavity resonant passive mode locking, as this new mode-locking
mechanism has been called, is a form of self-stabilized coupled-cavity mode locking with a resonant nonlinear-
ity. We show that self-stabilizing operation cannot be realized with a Kerr medium (reactive nonlinearity) in
the cavity.

INTRODUCTION

Recently the successful mode locking of solid-state lasers
with a Kerr medium in an external cavity has attracted a
great deal of attention.'" The Kerr medium, when in-
terferometrically coupled to the main cavity, acts as a fast
saturable absorber, thus producing mode locking without
gain saturation. This principle of operation has been
called additive pulse mode locking (APM) and also coupled-
cavity mode locking. Thus far all these systems have re-
quired stabilization of the length of the auxiliary cavity
with respect to the length of the main cavity in order to
produce self-starting and to sustain oscillation.

Recently a form of mode locking with an external cavity
was reported" that does not require stabilization of the
external cavity in order to sustain oscillation. Clearly
such a mode of operation is desirable because it simplifies
the operation and is likely to perform better under adverse
conditions. The principle, called coupled-cavity resonant
passive mode locking (RPM) by its inventors, simply uses a
quantum-well saturable absorber in the auxiliary cavity,
as illustrated schematically in Fig. 1. Stable pulse trains
are obtained only when the auxiliary cavity optical length
is different from the optical length of the main cavity, and
mode locking persists with length differences as large as
1 mm. Small fluctuations in the external cavity length
are found not to affect the mode-locked pulse train or auto-
correlation; however, they induce small spectral changes.
The pulse width increases with cavity mismatch. At and
near exact alignment of the optical lengths the operation
is sensitive to length shifts of the order of a fraction of a
wavelength.

In this paper we attempt to explain the operation of this
new system on the basis of a master equation derived from
saturable absorber mode-locking theory'2 and APM the-
ory.' Before we enter into the details, we look at certain

general characteristics that will help us to construct a
model.

The observation that the pulses, while chirped, exhibit
stable pulse shapes in the presence of small fluctuations
in the optical spectrum can be explained only if the pulses
interfere coherently at the coupling mirror. Since the
mode-locking mechanism is not sensitive to cavity length
changes of a wavelength or less, the relative phases of the
pulses that meet at the mirror must be stable. Such a
situation can be maintained only if the system is capable
of adjusting the phases by changing its frequency. This is
the basic postulate of the theory. In the course of the
development we show that the system can accomplish this
self-stabilization of phase by small adjustments of its car-
rier frequency.

We proceed as follows. In Section 1 we present a simple
physical picture that will explain the difference between
coupled-cavity mode locking with a resonant nonlinearity
(RPM) and coupled-cavity mode locking with a nonreso-
nant nonlinearity (APM) and investigate how a frequency
adjustment can produce the required phase alignment of
the two cavities. In Section 2 we look at the reflection
from the auxiliary cavity. In Section 3 we set up the
master equation. In Section 4 we proceed with the inter-
pretation of the solution of the master equation. In
Section 5 we present some experimental results of an
RPM Ti:sapphire laser" in the context of the theory.

1. PHASE ADJUSTMENT BY
FREQUENCY ADJUSTMENT
Following Goodberlet et al.,"0 we model our coupled cavity
as a mirror in which the reflectivity depends on the inten-
sity [Fig. 2(a)]. For the case of the saturable quantum-
well reflector, the reflectivity increases with intensity.
Figure 2(b) shows schematically the Fabry-Perot reflec-
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where vg is the group velocity:
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Fig. 1. Schematic of a system that performs RPM.
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If the two cavities are of different length, then the modes
are spaced as shown in Fig. 3. At a certain carrier fre-
quency the mode frequencies are locally coincident. As
one changes the frequency, the modes separate, but at
some number NJ of modes away from the original coinci-
dence there is another coincidence. The difference be-
tween the mode spacings is

AW = -(al/)A, (1.4)

where 5l is the difference of the cavity lengths. If there
is a coincidence at some frequency coo, then the next coin-
cidence is at

wo + Njj3Awj = wo + A

or

Aw =1
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(1.5)

2. AUXILIARY CAVITY
We analyze the situation shown in Fig. 4. The mirror of
reflectivity r relates the wave amplitudes a, and bi:

bi = ran + (1- r2) 12a2

b2 = (1 - r2 ) 12a1 - ra2.
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Fig. 2. Reflectivity as a function of phase.

tivity for low- and high-intensity conditions for RPM. Fig-
ure 2(c) shows the reflectivity for a pure nonlinear phase
shift, as in the APM laser. For cw operation (or self-
starting) any coupled-cavity laser will seek the frequency
that corresponds to maximum gain. For RPM the phase
corresponding to maximum cw gain is the same as that
for the peak nonlinear reflectivity change, whereas for
APM the optimum phase for cw gain is different from the
phase of maximum nonlinear reflectivity change. There-
fore the APM laser has to be actively held at a lower ref lec-
tivity position, as shown in Fig. 2(c). APM requires active
control of cavity length to a fraction of a wavelength.

For the case of the coupled-cavity laser the relation be-
tween the operation frequency and the coupled-cavity
phase is now further discussed. The cavity modes are
defined by
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Fig. 3. Mode spacing of the main and auxiliary cavities.
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and the mode spacing is given by

Fig. 4. Schematic of the auxiliary cavity.
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As in the APM theory, we consider the waves in the time
domain. If the auxiliary cavity is dispersion free, then a2
is a replica of b2:

a2 = L exp(-job 2 , (2.3)

where L is the loss factor (L < 1) and O is the phase shift
of the carrier that is due to deviation of the cavity length
from an integer multiple of half wavelengths. The reflec-
tion coefficient is 6

b r + L exp(-jo)
al 1 + rL exp(-job) = r + L(1 - r2)exp(-jo)

for small L. Now, the loss L is in fact nonlinear. We
make the simplifying assumption that the multiple quan-
tum well has only a fast recovery time (faster than the
laser pulse width). It has been shown that longitudinal
optical phonon ionization of quantum-well excitons results
in a rapid partial recovery of absorption in 300 fs at
room temperature." In the present case we neglect the
long time transient, which is governed by carrier recombi-
nation. Quantum wells have been used to mode lock a
laser diode and color-center laser.'4 Under these condi-
tions we may write L in the form

L= °Lo(1- u) (2.5)

where u is the time-dependent normalized field amplitude
and 1u812 is proportional to the saturation intensity of the
saturable absorber. Note that in the simplified notation
used here we have not separated the linear and the nonlin-
ear losses, so that lu3I2 has been, in effect, renormalized:

F r + Lo( - r)exp(-jp) + (1 - r2)Lo exp(-jo) - -

(2.6)

3. THE MASTER EQUATION
We now develop the master equation for the present prob-
lem. It is quite similar to the equation used above in the
theory of APM. First, look at the effect of the gain. In
the frequency domain

1 + [(a, - &g)/A()g] 2 (3.1)

g is, of course, a function of time average power, cog is the
frequency with maximum gain, and Acog is the effective
cavity gain bandwidth under mode-locked conditions,
which may include filters inside the cavity. We assume
that the relaxation of the gain medium is slow; the gain is
pulled down by a succession of many pulses. Suppose
that the carrier frequency is wo. Then, for a deviation Aco
from co0 ,

Gain F[i. 2 Ac o)o g ( Ao )2 _ (c _oO9\2]
Aoag Aog Aog Aog

(3.2a)

or, as an operator in the time domain,

Gain g1 + 2j.o - g 1 d + 1 d2
L A ww, Aug dt Awg 2 dt 2

0(o _gw))
2
J

\ A(,g/ (3.2b)

The group-velocity dispersion in the cavity has the effect
jD(d 2/dt2 ), corresponding to D = 3"l/2 in the frequency
domain. Further, a phase factor exp(-j4) may be caused
after one passage through the laser resonator. Finally,
there may be some loss represented by lu. Therefore the
effect of the pulses u(t) on the change Au of the gain
medium, group-velocity dispersion, and loss is, after one
passage,

Au = -jo + g[1 + 2jw° Cg 1 d 1 d2rB, b g + + 2j &A d
At8 AO, dt Ag dt2

(3.3)
( Acg )] Ddt2

The auxiliary cavity effect must be handled with some
care when it is detuned, as it must be for RPM to be opera-
tive. u must be evaluated at a time t + STA, compared
with the time reference t applied to the main cavity.
When TA is positive, the pulse is returned earlier. This
means that the auxiliary cavity is foreshortened com-
pared with the laser cavity. We make the appoximation
of expanding to first order in lu/u,12 and second order in
STA, ignoring product terms, because otherwise we cannot
obtain a closed form solution. The change per pass is

Au = (r - 1)u

= ru + Lo(1 - r2)exp(-j)d1 + 8TA-

+ 2 aT t2lu + (1- r)Lo exp(-jo) i u - u.

(3.4)

After the action of all the elements, the sum of the Au's
must vanish except for the possibility that the pulse is
shifted by aTL. Indeed, the round-trip time of the pulse
in the laser cavity may not coincide with the pulse repeti-
tion time because of temporal pulling of the pulse enve-
lope. If 5TL is positive it means that the pulse is advanced
in one round trip. This means that the laser cavity round-
trip time is longer than the pulse repetition time,

-J + g + 2j °0 al 1 d 1 d 2 \
/\og LAng dt Ajg2jt

-g o g) 2 + jD d2 - -1 + r

+ Lo(1 - r 2)exp(-jo) 1 + TA d + TA2 BT2
0'~~~~ ~ ~ 8~tA +2 Adt

2,

2 U 2~~ du
+ (1 - r)Lo exp(-i) - 2u = TL-* (3.5)

U,8 dt

4. SOLUTION
We solve the above by the ansatz"

u = A sech(t/f)exp[j,31n sech(t/)]. (4.1)
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The derivatives are

T du = -(1 + j13)tanh( )u,

T t2 = _-(2 + 3j3 - 2)sech2(t) + (1 + j,)2]u.

CO - cog = N+Aw6 = al 'P
2,7 81 28TA

(4.2)

(4.3)

We introduce these expressions into the master equa-
tion and equate terms involving sech2(t/T), tanh(t/7), and a
constant multiplier of u. The sech2 terms are

Lo(1 - r2)exp(i-j)- 2 2+ j 2IUl2 &g7T T2 

+ 2 7 (1- r2 )Lo exp(-j]) (2 + 3jf3_ 2) = 0.

The hyperbolic tangent terms are

-2j A 2 g - L0(1 - r )exp(-jL)8TA = -8TL.

The constant terms are

-j, + g g OOOg ) _ [I + (1 - r)]

+ Lo(1 - r2)exp(-jo) + [g + D

(4.4)

(4.5)

71 2TA (-jA](1 + jP)2 = 0. (4.6)
+ --- 2i-(1 - r,)L exp(\jo~J

We have three complex and six real equations for the un-
knowns of interest. These are the gain g, the phase shift
on one pass Ai, the pulse timing deviation TL, the fre-
quency deviation, the pulse width , and the chirp parame-
ter 13. There is an equation for the gain as a function of
pulse energy:

(4.7)
g 1 + [(2A2T)/(TRP.)]

where we assume, as is appropriate for a solid-state laser,
that the gain relaxes slowly and responds only to the aver-
age power; the saturation power is P8, and TR is the cavity
round-trip time. The evaluation of the gain from
Eq. (4.6) then serves to establish the value of the peak
pulse intensity A2. One may simplify this step by equat-
ing the gain to the loss 1. In this case one may solve for
A2 as a given and proceed with the solution, avoiding the
complicated coupling between the pulse width and the
gain as contained in Eq. (4.6). We do so in the remainder
of the paper, assuming that the pulse energy W = 2A is
a given.

Consider next Eq. (4.5). This equation determines the
frequency shift and pulse timing. Now, the phase is not
independent of the frequency shift. The number of
modes by which the center frequency has to shift in order
to produce a phase shift of ' follows from Eq. (1.5):

N, = 2+ ^1' (4.8)

where 81 is the difference of lengths between the two cavi-
ties. On the other hand, the frequency shift is

(4.9)

where we have introduced the detuning time of the auxil-
iary cavity. We can relate the frequency shift to the de-
tuning time:

' = ( -Wg)8TA.

We can now write

(00 A Wg + AcOg8TL - L0(1 - r 2 )Awg8TA

x exp( j Og ACOg8TA) = 0.

(4.10)

(4.11)

If the gain bandwidth is broad, the first term is relatively
unimportant, and the second and third term must cancel.
But this means that the phase factor must be real. It is
made real by the frequency shift wo - COg. There are two
choices for the phase factor, + and -. From Eq. (3.5) we
realize that the choice of + corresponds to saturable ab-
sorption, that is, decrease of the loss with increasing in-
tensity. The choice of - simulates the opposite action,
which cannot produce stable pulses. Therefore, we pick
the +. Let us solve for 13 and r from Eq. (4.4). We take
the pulse energy as given and normalize the three parame-
ters of interest: the pulse width

n= A 2 LO(1 - r2)7 r,
2g Iua27

the dispersion

g

and the detuning parameter

T~2 At (1 - r 2)Lo.
2g

(4.12)

(4.13)

(4.14)

In terms of these normalized parameters we obtain the
equation

(2 + 3j13 - p2) = 1 +jD +T 2
Tn ~ T

(4.15)

We are now ready to plot pulse width and chirp parameter
versus detuning (Figs. 5 and 6). One can further show
that the bandwidth is equal to (1 + 32)1"2/, and so this
quantity is also plotted, in Fig. 7.

Any solution of the master equation has to be tested for
stability. Equation (4.6) gives an expression for the dif-
ference between the gain and the loss as affected by the
mode locking; the contribution of the mode locking is
recognizable by the multiplier 1/X2. If the mode-locked
solution is to be stable against a takeover by cw operation,
the cw excitation has to see net loss (negative gain).
For this purpose we rewrite the real part of Eq. (4.6) in
the form

g - g(C °C )2 - [I + (1 - r)] + Lo(l - r2 )

-A g2 2[(1 -
2) (1 + 872) - 2,GD], (4.16)

ACXg27
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Ti:sapphire laser a two-plate birefringent tuning element
was used, for which a FWHM bandwidth of 0.16 nm for cw
operation was measured. Under mode-locked conditions
a much wider spectrum was observed. Figure 8(a) shows
the time-averaged spectrum width of the RPM laser at
different cavity length detuning. However, the time-

8Tn '

Fig. 5. Normalized pulse width versus T,,.
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where we have used the fact that 4 = 0. The terms col-
lected on the left-hand side are the gain experienced by a
cw excitation offset by the frequency difference c - g,
the detuning term. The terms on the right-hand side are
the contributions of the pulsed excitation. A cw excita-
tion at the center of the gain line would experience a net
gain that is equal to the left-hand side without the detun-
ing term. We assume that this term is small, consistent
with the previous assumption of a broad gain line. If cw
excitation is to be suppressed, the left-hand side has to be
negative, or

(1 - 12) (1 + S*.2) - 2pDn > 0.

6

4

2

0

854.7 nm
Wavelength, nm

6000

C"
0)
0)

'x

0

0

.0
2D
z

(4.17)

5000

4000

3000

2000

1000

This is the stability criterion. We have tested our solu-
tions in Figs. 5-7 for stability and found it to be realized.
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5. SOME EXPERIMENTAL RESULTS
The following results are based on an RPM Ti:sapphire
laser. 1' The idea of self-stabilized operation by small fre-
quency adjustments was experimentally verified. In the
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Fig. 8. (a) Time-averaged spectrum versus detuning. (b) Short-
term spectrum versus detuning. (c) Number of axial modes ver-
sus detuning.
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Fig. 9. Pulse width versus detuning. Solid curve, theory.

averaged spectrum includes the self-frequency shifts of
the laser in order to maintain stable pulse trains, as dis-
cussed earlier, and does not correspond to the bandwidth
of the mode-locked pulses. This is demonstrated with
Fig. 8(b), where the optical spectrum is displayed as a
function of an auxiliary cavity length change of only a
fraction of a wavelength. While stable mode-locked pulse
trains were observed, the center frequency of the optical
spectrum adjusted itself to compensate for the phase shift
introduced by the cavity length change and to maintain
coherent superposition at the coupling mirror. Fig-
ure 8(b) also demonstrates that the actual bandwidth of
the pulse is much less than that of the time-averaged spec-
trum of 3 nm. Figure 8(c) displays NJ, the minimal num-
ber of axial modes required in the gain bandwidth for
self-frequency adjustments, Eq. (1.5), and Ntot, the number
of axial modes in the time-averaged spectrum given in
Fig. 8(a), as a function of cavity detuning. The fact that
Ntot and NJ are equal demonstrates that the Ti:sapphire
laser produces a time-averaged spectral width that is re-
quired for self-stabilization. Close to the matched cavity
length, the phase-matched frequencies are too widely
spaced compared with the bandwidth Aw g, and the laser
does not produce stable pulse trains without active cavity
length stabilization. The optical multichannel analyzer
used for this experiment had a measurement bandwidth of
-0.25 nm, and it was not possible to measure the real
pulse bandwidth and the chirp parameter calculated in
Figs. 6 and 7.

We observe that the repetition rate of the RPM
Ti:sapphire laser depends on the cavity length detuning
and output coupler. For a cavity length detuning of
11 mm, a pulse repetition rate change of 17.3 kHz was
measured, with a repetition rate of 150.6 MHz. This re-
sult is in good agreement with the theory; from Eq. (4.11)
and S = 0 it follows that

5TL = L(1 - r2 )STA. (5.1)

For a 3.5% transmission of C1 (Fig. 1) r is 0.98 and the
average power reflected from the quantum-well saturable
absorber is -25%, which gives an Lo of 0.45, including the
10% output coupler, and for an 11-mm cavity detuning STA

is 73.2 ps; with Eq. (5.1) the repetition rate change is
26 kHz, which is close to the measured value of 17.3 kHz.

Figure 9 displays the measured pulse width versus cav-
ity length detuning. The solid line in Fig. 9 is the theo-

retically predicted pulse width as a function of cavity
detuning. In evaluating the curve the following values
are used: Lo = 0.45(1 - r2 ) = 0.035, Awg = 3.8 X 1012,
and g = 0.45. The bandwidth is reasonably consistent
with the measured time-averaged bandwidth, an indica-
tion of the frequency range over which the pulses can still
find amplification as their carrier frequency drifts.

There is an asymmetry in the experimental curve that
does not show up in the theory. We believe that the asym-
metry is due to the slow relaxation process in the satu-
rable absorber. 6 Close to matched cavity length the laser
becomes unstable, as discussed above, and this produces
longer autocorrelation pulses when averaged many times.
Figure 9 shows that the pulses from the main cavity and
the auxiliary cavity do overlap in time, because the pulse
width is larger than the cavity length detuning. Equa-
tions (4.12) and (4.15) predict the pulse width as functions
of cavity length detuning. We performed some initial
pump-probe experiments 7 on the quantum-well reflector
with another reflector piece with an identical structure in
order to mode lock the Ti:sapphire laser. A fast reflec-
tivity transient was observed with a time constant of the
mode-locked pulse superimposed on a long time transient
that was due to carrier recombination. At this point it is
still not clear whether the small-gain saturation in the
Ti:sapphire laser is enhancing the mode-locking process.
However, the present theory suggests that the fast tran-
sient is enough to mode lock the laser.

DISCUSSION
The thrust of our theoretical argument is that RPM is
self-stabilizing APM. RPM still depends on the coherent
superposition of the pulses at the mirror. This self-
stabilization is possible because the pulse width becomes
longer with cavity detuning, so that the pulses still over-
lap as they meet at the coupling mirror.

The theory predicts the spectral shift associated with
cavity length detuning. It gives the observed change of
spectrum and the change of pulse width as a function of
cavity length detuning. The theoretically predicted val-
ues agree reasonably well with the experimentally ob-
served values, since the theory includes a number of
approximations that may not be fully satisfied by the
parameters of the physical system. There is no doubt,
however, that the theory accounts qualitatively for the ob-
served behavior of the physical system.

Note added in proof The argument goes as follows.
The loss factor L of a slow saturable absorber saturates
according to the law

L = Lo exp - |fdtu|I2/Es,

where Es is the saturation energy. When 1u12 is propor-
tional to sech2 , the integral is proportional to tanh. Ex-
pansion of the exponential to first order gives

L = Lo{1 - A2tanh(t) + 1]}l

Addition of a term of the form - Lu(rA2/E.)tanh(t/T)
produces a perturbation of the pulse that delays it by
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Sod = LorA2 /E8 . Hence the expansion parameter TA
in Eq. (3.4) must be replaced by TA + 3Srd. When this
is done, a set of curves is obtained for different values of
3Srd that is asymmetric and matches better with the
experiments.
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