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We demonstrate an all-solid-state hybrid mode-locking technique for flash-lamp-pumped solid-state lasers. The
combination of active acousto-optic modulation and fast saturable-absorber action from a low-temperature multiple
quantum well allows strong pulse shaping to be achieved during the rapid pulse energy buildup from the flash-
lamp pumping. Pulse durations as short as 4.5 ps have been generated. The high-energy storage available
from Ti:A120 3 allows this new mode-locking technique to produce pulses with peak powers of >4 MW at a 10-Hz
repetition rate directly from a single laser.

Nearly all mode-locked Ti:A1203 lasers to date have
been cw mode-locked systems with relatively low
pulse energies. Short pulse energies in the range of
microjoules to millijoules can be generated by regen-
erative and multipass amplifier systems. Although
these techniques achieve excellent performance, they
are relatively costly and complex. Simple, afford-
able sources of wavelength-tunable, picosecond, high-
power laser pulses are relevant to applications such
as frequency doubling, optical parametric oscilla-
tors, materials processing, laser surgery, and picosec-
ond ultrafast nonlinear spectroscopy. In this Letter
we demonstrate a high-performance, all-solid-state,
mode-locked flash-lamp-pumped Ti:A12 03 laser by
combining active acousto-optic modulation and fast
saturable-absorber action from a low-temperature
multiple quantum well. The flash-lamp-pumped
Ti:A1203 laser is a simple, economical, high-peak-
power laser source that can be an attractive alterna-
tive to conventional oscillator-amplifier approaches.
In addition, the development of new techniques for
mode locking flash-lamp-pumped lasers can be gen-
eralized to a broad class of new solid-state laser
materials currently being developed.

Mode locking transient flash-lamp-pumped sys-
tems is challenging because unlike with cw lasers
the pulse energy grows rapidly in time. Although
mode locking has been extensively studied for lamp-
pumped Nd:glass and Nd:YLF lasers,' relatively
few investigations of mode locking have been per-

formed in tunable flash-lamp-pumped solid-state me-
dia. Picosecond operation of an alexandrite laser
was attained with saturable absorption and an ex-
ternal cavity.2 Mode locking in flash-lamp-pumped
Ti:Al203 with saturable absorber dyes3-5 and intra-
cavity second-harmonic generation6 has been demon-
strated, resulting in long pulse durations of Ž25 ps.

To address the problem of mode locking in flash-
lamp-pumped lasers, we used a combination of active
and passive mode locking with a low-temperature
multiple-quantum-well antiresonant Fabry-Perot
saturable absorber to achieve optimum pulse short-
ening during the rapid pulse buildup time. The
laser cavity, shown schematically in Fig. 1, incorpo-
rates a 15-cm-long, 8-mm-diameter, Ti:A1203 laser
rod pumped by two close-coupled flash lamps driven
with 15-ius electrical pulses of up to 12 kV. Op-
erating multimode with a simple planar resonator
(not shown) generates pulse energies as high as 1 J
at a 10-Hz repetition rate. The high small-signal
gain of up to 5 per pass permits a wide range of
cavity designs to be implemented. An intracavity
telescope that consist of two antireflection-coated
lenses was used to achieve the mode control nec-
essary for stable saturable absorber mode locking
and to scale the beam waist sizes to control energy
extraction and saturable absorption. Unequal focal
length lenses (2.5:1) detuned from confocal sepa-
ration allow a relatively large waist (1.5-mm l/e2

radius) to be formed on the semiconductor saturable
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Fig. 1. Schematic of the flash-lamp-pumped mode-
locked oscillator. OC, output coupler; BRF, birefringent
filter; A, aperture; AOM, acousto-optic modulator; MQW,
multiple quantum well.

absorber, while the smaller waist resulting at the
output coupler (0.5 mm) remains sufficiently large
to avoid damage. The optimal output coupler has
14% transmission.

Short-pulse formation during the rapid pulse
buildup time is achieved by a hybrid mode-locking
technique. Active mode locking rapidly shortens
pulses that are long compared with the modulation
period, whereas fast saturable-absorber mode locking
provides a pulse-shortening velocity that increases
inversely with the pulse duration. In this experi-
ment we used a Brewster-cut fused-silica acousto-
optic modulator driven with 5 W of rf power at a
resonance frequency of -52 MHz. Subnanosecond
pulses are generated within the first few oscillations
at the onset of lasing. When this device was used as
the only mode-locking element, the minimum pulse
duration that could be generated was 100 ps.

To reduce the pulse duration further, we em-
ployed an antiresonant semiconductor Fabry-Perot
saturable absorber (A-FPSA).7'5 The A-FPSA
was previously demonstrated for mode lock-
ing cw lasers including Nd:YAG, Nd:YLF, and
Cr:LiSAF.9 In this Letter we extend the use of
the A-FPSA to transient lamp-pumped lasers.
The saturable absorber was a low-temperature
(-300'C) molecular-beam-epitaxy-grown AlGaAs-
GaAs multiple-quantum-well structure with 38
periods of 10-nm-thick GaAs quantum wells
and Al0.3Ga0.7As barriers. The low-temperature
multiple-quantum-well structure was grown on top
of an Al0.3 GaoM7 As/AlAs dielectric mirror stack grown
on a GaAs substrate at normal growth temperature.
The excitonic resonance occurs at -840 nm. An
antiresonant Fabry-Perot structure is formed by
the uncoated front surface of the low-temperature
multiple quantum well (nominal reflectivity of
-30%) and the highly reflecting mirror stack. This
antiresonant design allows the effective cross section
of the absorber to be decreased. In addition, the
low-temperature growth allows the recovery time
of the absorber to be controlled. Thus, in prin-
ciple, the saturable-absorber characteristics may
be explicitly designed to achieve optimum mode-
locked performance.8 The overall small-signal
reflectivity of the A-FPSA was nominally 60% at
825 nm. Pump-probe measurements indicate that
in response to an incident fluence of 200 AuJ/cm2 ,
a differential reflectivity of 15% results and decays
with a time constant of 12 ps.

Because of the high gain and long pump pulse du-
ration associated with flash-lamp pumping, the laser
output consists of relaxation oscillation spikes. At

our typical operating pump energy of -120 J or 1.2
times threshold, the output consists of two relaxation
oscillation spikes separated by -2.5 ,us containing
-15 and -25 pulses, respectively. The formation

of mode-locked pulses within the relaxation spikes
can be studied with fast (< 1-ns response time) pho-
todiodes to monitor simultaneously the intensity of
the pulse train and its second harmonic generated
in a phase-matched LiIO3 crystal. The visualization
of these signals on a single-shot basis is facilitated
by electronically inverting and delaying the harmonic
trace relative to that of the fundamental by one half
the cavity round-trip time and then displaying the
sum on an oscilloscope.

The amplitude of the photodiode signal from the
pulse train is a measure of the integrated intensity
or the total energy of the pulse. The amplitude of the
second-harmonic signal is a measure of the square of
the intensity times the pulse duration. Thus, if the
second-harmonic signal is normalized to the funda-
mental signal, then it is inversely proportional to the
pulse duration. A typical trace depicting the pulse
train produced when active modulation alone is used
is shown in Fig. 2(a). Within the first few cavity os-
cillations pulses of a few hundred picoseconds dura-
tion are formed. Throughout the entire pulse train,
however, the pulse duration decreases by a factor of
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Fig. 2. Photodiode trace of output from the laser (posi-
tive going) and its second harmonic (negative going) for
(a) active mode locking only and (b) hybrid active-passive
mode locking. Comparison of the relative amplitudes
of these signals allows a real-time diagnostic of mode
locking performance.
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Fig. 3. Slow-scan autocorrelation of average mode-
locked pulse duration in the second relaxation spike.
The pulse duration is 4.5 ps, assuming a sech2 temporal
profile.

less than 3 as deduced from the relative amplitude of
the fundamental and second harmonic. In contrast,
Fig. 2(b) demonstrates the strong pulse shaping that
results from the combined action of active and pas-
sive mode locking. Pulses in the second relaxation
spike typically are shorter than those in the first by
a factor of -20. Additionally, the shift of the peak
in the second-harmonic trace to later times relative
to the peak in the fundamental indicates that strong
pulse shaping continues to occur throughout the sec-
ond relaxation spike.

To register the second harmonic, a standard
(multiple-shot) noncollinear autocorrelation was per-
formed with a photodiode and boxcar integrator.
When the integrator was triggered after the first
relaxation spike, the average mode-locked autocor-
relation within the second relaxation spike (Fig. 3)
was found to have a FWHM of 6.9 ps, correspond-
ing to a pulse duration of 4.5 ps (assuming a sech2

pulse). The wavelength was 824 nm and the time-
integrated spectral bandwidth was 0.8 nm, giving a
time-bandwidth product of 1.6. The entire pulse
train contains 800 /uJ of energy, corresponding to
-20 ,uJ per mode-locked pulse. With an intracavity
two-plate birefringent filter the laser can be tuned
from 820 nm to 835 nm with a maximum pulse du-
ration of 7.5 ps.

The pulse energy, duration, and limited tunability
demonstrated with this laser are superior to those of
previous flash-lamp-pumped Ti:Al203 systems; how-
ever, performance can be significantly improved. Al-
though the pulse duration is limited by the relaxation
time of the saturable absorber, one may increase the
pulse energy by scaling the mode size in the res-
onator, and electro-optically cavity dumping single
pulses. Pulse energy may be increased by scaling
the mode size in the resonator, and single pulses can
be extracted by electro-optic cavity dumping. Using
these techniques, we believe that it should be pos-
sible to generate picosecond pulse durations in the
millijoule energy range. The tuning range of the

laser also could be increased by use of a broadband
A-FPSA design.10 It also should be noted that the
hybrid mode-locking concepts demonstrated can be
extended to other nonlinearities that are of inher-
ently broad bandwidth, such as Kerr rotation of ellip-
tical polarization, self-focusing, and carrier-induced
index changes.

In conclusion, we have demonstrated a new
all-solid-state technique for mode locking flash-
lamp-pumped lasers. The combined pulse-shaping
mechanisms of active and passive mode locking used
in conjunction with the high gain and high energy
storage supplied by flash-lamp pumping makes possi-
ble the development of a simple, cost-effective source
of high-peak-power optical pulses.
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