
486 J. Opt. Soc. Am. B/Vol. 12, No. 3 /March 1995 Kärtner et al.
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We present a theory and experiments on active mode locking in the presence of negative group-velocity
dispersion (GVD) and self-phase modulation (SPM). It is shown that beyond a critical value of GVD a
solitonlike pulse can be stabilized by the mode locker. The width of the soliton can be shorter than the width
of the Gaussian pulse produced by the mode locker in the absence of soliton shaping. We establish analytically
that the pulse shortening possible by addition of SPM and GVD is limited only by the requirement that the
phase shift of the soliton per round trip be limited. Parameter ranges allowing for stable solitary-pulse
formation and shortening are derived and discussed for different gain media and compared with numerical
simulations and experimental results.
1. INTRODUCTION
It has been well known for quite some time that the addi-
tion of a nonlinear index medium to a passively or actively
mode-locked laser system may lead to shorter pulses.1

The bandwidth limitation that results from gain disper-
sion can be partially overcome by the spectral broadening
caused by the nonlinearity. However, as has been shown
by the numerical simulations of Haus and Silberberg,1

pulse shortening in an actively mode-locked system is
limited by roughly a factor of 2 in the case of self-phase
modulation (SPM) only. They also showed that the addi-
tion of negative group-velocity dispersion (GVD) can undo
the chirp introduced by SPM, and therefore both effects
together may lead to stable pulse shortening by a factor
of 2.5.

Experimental results with fiber lasers2–4 and solid-state
lasers5,6 indicate that soliton shaping in the negative GVD
regime may lead to pulse stabilization and considerable
pulse shorting. In this paper we extend the analysis of
Haus and Silberberg by investigating the possible reduc-
tion in pulse width of an actively mode-locked laser as
a result of solitonlike pulse formation, i.e., the presence
of SPM and an excessive amount of negative GVD. We
show by means of soliton perturbation theory that beyond
a critical amount of negative GVD a solitonlike pulse is
formed and kept stable by an active mode locker.

If the bandwidth of the gain is large enough, the width
of this solitary pulse can be much less than the width of a
Gaussian pulse generated by the active mode locker and
gain dispersion alone. We establish analytically that the
pulse shortening possible by addition of SPM and GVD
does not have a firm limit of 2.5. These analytical results
are confirmed by numerical simulations and experiments
with a regeneratively actively mode-locked Nd:glass laser.

The pulse-width reduction achievable depends on the
amount of negative GVD available. For an actively
mode-locked Nd:glass laser a pulse shortening up to a
factor of 6 may result, until instabilities arise. Indeed,
if additional intracavity filtering is properly applied, fem-
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tosecond pulses can be achieved with an actively mode-
locked Nd:glass laser, as was observed recently6 and is
now explained theoretically. The Nd:glass laser was
one of the first solid-state lasers used for ultrashort-pulse
generation7 and is still interesting because it can be diode
pumped.8,9 The technique established in this paper may
allow for efficient diode-pumped actively mode-locked
Nd:glass lasers producing 1.5-ps or even femtosecond
pulses, which can be used efficiently to pump optical
parametric oscillators or seed amplifiers. This theory
is also applicable to actively mode-locked fiber lasers in
the negative-dispersion regime, where soliton formation
plays a dominant role.2–4

2. ACTIVE MODE LOCKING AND
SOLITON PERTURBATION THEORY
Pulse evolution in an actively mode-locked laser system
with SPM and GVD is described by the master equation
of mode locking of Haus and co-workers1,10,11:
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if the change in the pulse per round trip is small. We
have assumed that the modulator is always perfectly
matched to the round-trip frequency of the pulse in the
cavity, a condition achievable by regenerative mode lock-
ing. We denote by AsT , td the slowly varying envelope of
the pulse; T is a coarse-grained time that develops on a
time scale of the order of the round-trip time TR in the cav-
ity, t denotes the fast time scale of the order of the pulse
width, D is the intracavity dispersion per round trip, l is
the loss per round trip, M is the modulation depth, and
vM is the modulation frequency. g is the saturated gain
of the laser medium, which is given by
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with the pulse energy
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and where g0 denotes the unsaturated gain and EL the
saturation energy of the laser medium. As is evident
from the formulation we assume a gain medium with a
long relaxation time and a large saturation energy, so
that the gain is appreciably saturated only by a series
of successive pulses traveling through the gain medium;
i.e., we can neglect dynamic gain saturation. This is
usually the case in most solid-state lasers. There are
no analytic solutions to the full master equation (2.1).
However, without the dissipative effects, i.e., gain, loss,
and modulation, the resulting equation is the nonlinear
Schrödinger equation (NSE) exhibiting soliton solutions.12

A. Soliton of the NSE
In case of negative GVD, the NSE possesses soliton solu-
tions. The general fundamental soliton solution is given
by

AssT , td  A0 sechsxdexpsiud , (2.4)

with
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and the nonlinear phase shift
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where we have introduced the initial frequency offset
p0 from the assumed carrier frequency, initial time t0,
and phase u0. The balance between GVD and SPM is
achieved when the chirp introduced by the nonlinear
phase shift is compensated for by GVD, which leads to
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, (2.7)

where F0 denotes the phase shift of the soliton per round
trip through the cavity. The energy contained in the
soliton is given by
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jAssT , tdj2dt  2A0
2t . (2.8)

B. Active Mode Locking without GVD and SPM
Active mode locking without GVD and SPM has been
studied analytically by Kuizenga and Siegman13 with the
circulating Gaussian pulse analysis and by Haus10 in
the framework of the master equation (2.1). The results
of Ref. 10 are crucial for understanding of the following
analysis and are therefore briefly summarized.

In the absence of GVD and SPM the mode-locking
process is described by
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Assuming a certain pulse energy W and thus a fixed
saturated gain, Eq. (2.9) is a linear partial differential
equation that can be solved by separation of variables.
Furthermore, the pulses that we expect to result will have
a width much shorter than the round-trip time in the
cavity and will be placed in time at the position where
the modulator introduces the least loss. Thus we can ap-
proximate the cosine by a parabola and obtain the eigen-
solutions

AnsT , td  AnstdexpslnTyTR d , (2.10)
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where ta is the pulse width of the Gaussian, given by

ta  4
q

DgyMs , (2.12)

and Dg denotes the gain dispersion and Ms the modulator
strength:
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The round-trip gain of the eigenmode considered is given
by its eigenvalue (or in general by the real part of the
eigenvalue), which is given by

ln  gn 2 l 2 2Msta
2sn 1 1/2d , (2.15)

where
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1
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From Eq. (2.15) we see that for a given pulse energy the
mode with n  0, which we call the ground mode, has
the largest eigenvalue. Consequently the ground mode
experiences the highest gain per round trip, because it
has the narrowest spectrum compared with all the other
modes and represents at the same time the shortest pulse
in comparison with the other modes. Thus, starting with
an arbitrary pulse shape, the ground mode will see the
highest gain per round trip and saturates the gain to a
value so that l0  0 in steady state and therefore sup-
presses all other modes ln , 0 for n $ 1. This proves the
stability of the ground mode.10 Thus active mode locking
produces Gaussian pulses with a FWHM given by

ta,FWHM  1.66ta . (2.17)

In Subsection 2.C we use soliton perturbation theory to
derive the requirements on the strength of SPM and GVD
to transform the Gaussian pulse from the active mode
locker into a stable soliton.
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C. Soliton Perturbation Theory
In the presence of negative GVD and SPM the interplay
between GVD and SPM will tend to form a sech-shaped
pulse with a constant phase over the pulse, similar to the
fundamental soliton of NSE (2.4). Therefore we will call
this pulse a soliton despite the fact that, in the strict sense
of definition, it is only a solitary wave.

In what follows, we derive the requirements for the
strength of SPM and GVD such that the Gaussian pulse
formed by the mode locker is transformed into a stable
soliton by means of soliton perturbation theory. Soli-
ton perturbation theory has been successfully used to
study the influence of loss, filtering, the action of an
active mode locker, periodic perturbations, and noise
on a soliton.11,14–18 In contrast, here we derive a self-
consistent equation for the soliton and the continuum
contribution that form the new solitary pulse. This is an
approximate solution of Eq. (2.1), which assumes a small
contribution from the continuum. It allows us to deter-
mine the parameter ranges of stable soliton generation.

Starting from the fundamental soliton solution
[Eq. (2.4)], we assume that the solution of the full master
equation (2.1) can be solved by the ansatz

AsT , td  fasxd 1 acsT , tdgexpsiu 1 Dptd , (2.18)

with

asxd  A sechsxd, x  s1ytdft 2 DtsT dg , (2.19)

where ac is the continuum that we will characterize below
in more detail.17 We also allow for a continuous change
in the soliton amplitude A or energy W  2A2t and small
corrections of the soliton parameters phase Du, carrier
frequency Dp, and timing Dt; that is,
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with
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However, we assume changes in carrier frequency and
timing. Introducing Eq. (2.18) into Eq. (2.1) and keeping
terms in first order, we obtain for the perturbations the
equation

TR

"
≠ac

≠T
1

≠W
≠T

fw 1
≠Du

≠T
fu 1

≠Dp
≠T

fp 1
≠Dt
≠T

ft

#
 FLsac 1 Dpfpd 1 Rsa 1 Dpfp 1 acd

2MvM sinsvM txdDtasxd . (2.22)

Note that the NSE couples the complex amplitude to its
complex conjugate, which necessitates the introduction of
the vector notation. The last term arises because the ac-
tive mode locker breaks the time invariance of the system
and leads to a restoring force pushing the soliton back to
its equilibrium position.14 The vector ac is determined
by sac, ac

pd and a analogously. L and R are the oper-
ators of the linearized NSE and the active mode-locking
equation, respectively:
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sssi, i  1, 2, 3 are the Pauli matrices, and the vectors fw,
fu, fp, and ft describe the change in the soliton when the
soliton energy, phase, carrier frequency, and timing vary:
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The action of the evolution operator of the linearized NSE
on the soliton perturbations is

Lfw 
1
W

fu , (2.29)

Lfu  0 , (2.30)

Lfp  22t2ft , (2.31)

Lft  0 . (2.32)

Equations (2.29) and (2.31) denote that perturbations in
energy and carrier frequency are converted into additional
phase and timing fluctuations of the pulse as a result
of SPM and GVD. The full continuous spectrum of the
linearized NSE has been studied by Kaup17 and is given
by

Lfk  lkfk , (2.33)
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Our definition of the eigenfunctions is slightly different
from that of Kaup for reasons that will become obvious
below. In contrast to Kaup,17 we define the inner product
in the complex space as

ku j v l 
1
2
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2`

u1sxdv sxddx . (2.39)

With this definition, the inner product of a vector with
itself in the subspace where the second component is the
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complex conjugate of the first component is the energy of
the signal, a physical quantity.

With respect to this inner product, iL is not self-adjoint,
because the linearized system does not conserve energy
as a result of the parametric pumping by the soliton.
However, from Eqs. (2.23) and (2.39) we can easily see
that the adjoint operator is now given by

L1  2sss3Ls3 , (2.40)

and therefore we get
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The eigenfunctions to L and its adjoint are mutually or-
thogonal:

kf s1d
k j fk0 l  dsk 2 k0d, kf

s1d
k j fk0 l  dsk 2 k0d ,

kf
s1d
k j fk0 l  kf s1d

k j fk0 l  0 .

We make this system, which describes the continuum ex-
citations, complete by also taking into account the per-
turbations of the four degrees of freedom of the soliton,
Eqs. (2.25)–(2.28):
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Then the unity can be decomposed into two projections,
one onto the continuum and one onto the perturbation of
the soliton17:
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From Eqs. (2.18) and (2.51) we can see that ac is the
continuum that then can be decomposed as
ac 
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dkf gskdjfkl 1 gskdjfklg . (2.52)

Note that the continuum ac has to lie in the subspace
defined by

sss1ac  ac
p , (2.53)

and therefore the spectra of the continuum gskd and gskd
have to be related by

gskd  gs2kdp . (2.54)

Then we can directly compute the continuum from its
spectrum, using Eqs. (2.35), (2.52), and (2.53):
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where Gsxd is up to the phase factor expsiud Gordon’s asso-
ciated function,15 which is the inverse Fourier transform
of the spectrum:
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3. SOLITON STABILIZATION BY
ACTIVE MODE LOCKING
In this section we prove that a stable soliton can exist
in the presence of the mode locker and of gain disper-
sion if the ratio between the negative GVD and the gain
dispersion is sufficient. From Eq. (2.22) we obtain the
equations of motion for the soliton parameters and the
continuum by projecting out with the corresponding ad-
joint functions. Specifically, for the soliton energy we get
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We see that gain saturation does not lead to a coupling
between the soliton and the continuum to first order in the
perturbation. Because the soliton and the continuum are
orthogonal to each other in the sense of Eq. (2.39), to first
order the total field energy is contained in the soliton.

Thus to zero order the stationary soliton energy W0 
2A0

2t is determined by the condition that the saturated
gain is equal to the total loss attributable to the linear
loss l, gain filtering, and modulator loss:
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with the saturated gain
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Linearization around this stationary value gives for the
soliton perturbations
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and for the continuum we obtain
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Thus the action of the active mode locker and gain dis-
persion has several effects. First, the mode locker leads
to a restoring force in the timing of the soliton [Eq. (3.7)].
Second, the gain dispersion and the active mode locker
lead to coupling between the perturbed soliton and the
continuum, which results in steady excitation of the
continuum.

However, we will see below that the pulse width of the
soliton, which can be stabilized by the mode locker, is not
too far from the Gaussian pulse width as a result of active
mode locking alone [Eq. (2.12)]. Then relation

vM t ,, 1 ,, Vgt (3.9)

is fulfilled. The weak gain dispersion and the weak ac-
tive mode locker only couple the soliton to the continuum,
but to first order the continuum does not couple back to
the soliton. Neglecting higher-order terms in the matrix
elements of Eq. (3.8) (see Appendix A) results in a de-
coupling of the soliton perturbations from the continuum
in Eqs. (3.4)–(3.8). For a laser far above threshold, i.e.,
W0yEL .. 1, gain saturation always stabilizes the ampli-
tude perturbation, and Eqs. (3.5)–(3.7) indicate stability
for phase, frequency, and timing fluctuations. This is in
contrast to the situation in a soliton storage ring in which
the laser amplifier compensating for the loss in the ring
is below threshold.11

By inverse Fourier transformation of Eq. (3.8) and
weak coupling, we obtain for the associated function of
the continuum
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where Dn is the dispersion normalized to the gain
dispersion:
Dn  jDjVg
2yg . (3.11)

Note that the homogeneous part of the equation of mo-
tion for the associated function of the continuum, which
governs the decay of the continuum, is the same as the
homogeneous part of the equation for the noise in a soli-
ton storage ring at the position where no soliton or bit
is present.11 Thus the decay of the continuum is not
affected by the nonlinearity, but there is a continuous
excitation of the continuum by the soliton when the per-
turbing elements are passed by the soliton. Thus un-
der the above approximations the question of stability of
the soliton solution is completely governed by the stabil-
ity of the continuum [Eq. (3.10)]. As we can see from
Eq. (3.10), the evolution of the continuum obeys the ac-
tive mode-locking equation with GVD but with a value
for the gain determined by Eq. (3.2). In the parabolic
approximation of the cosine we again obtain the Hermite
Gaussians [Eq. (2.11)] as the eigensolutions for the evo-
lution operator, but the width of these eigensolutions is
now given by
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The gain is clamped to the steady-state value given by
condition (3.2), and we obtain
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Stability is achieved when all continuum modes see a net
loss per round trip, Rehlmj , 0 for m $ 0; i.e., we get
from Eq. (3.14)√
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Inequality (3.15) establishes a quadratic inequality for
the pulse-width reduction ratio j  staytd2, which is a
measure for the pulse-width reduction that is due to soli-
ton formation:

j2 2 3 Reh
p

s1 1 iDnd jj 1 sp2y4d , 0 . (3.16)

As has to be expected, this inequality can be satisfied only
if we have a minimum amount of negative normalized
dispersion so that a soliton can be formed at all:

Dn,crit  0.652 . (3.17)

Therefore our perturbation ansatz gives meaningful re-
sults only beyond this critical amount of negative disper-
sion. Because j compares the width of a Gaussian with
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Fig. 1. Pulse-width reduction as a function of normalized dis-
persion. Below Dn,crit  0.652 no stable soliton can be formed.

that of a hyperbolic secant, it is more relevant to compare
the full width at half-maximum of the intensity profiles1

of the corresponding pulses, which is given by

R 
1.66
1.76

p
j . (3.18)

Figure 1 shows the maximum pulse-width reduction R
allowed by the stability criterion [inequality (3.16)] as a
function of normalized dispersion. The critical value for
the pulse-width reduction is Rcrit ø 1.2. For large nor-
malized dispersion Fig. 1 shows that the soliton can be
kept stable at a pulse width reduced as much as a factor
of 5 when the normalized dispersion can reach a value of
100. Even at a moderate negative dispersion of Dn  5
we can achieve a pulse-width reduction by a factor of
2. For large normalized dispersion the stability criterion
[inequality (3.16)] approaches asymptotically the behav-
ior

j ,

s
9Dn

2
or R ,

1.66
1.76

4

s
9Dn

2
. (3.19)

Thus the possible pulse-width reduction scales with the
fourth root of the normalized dispersion, indicating the
need for an excessive amount of dispersion to maintain
a stable soliton while suppressing the continuum. The
physical reason for this is that gain filtering and the active
mode locker continuously shed energy from the soliton
into the continuum. For the soliton the action of GVD
and SPM is always in balance and maintains the pulse
shape. However, as can be seen from Eq. (3.10), the con-
tinuum, which can be viewed as a weak background pulse,
does not experience SPM once it is generated and there-
fore gets spread by GVD. This is also the reason why
the eigenstates of the continuum consist of long chirped
pulses that also scale with the fourth root of the disper-
sion [Eq. (3.12)]. Then the long continuum pulses suf-
fer much higher loss in the active modulator, unlike the
short soliton, which suffers reduced gain when it passes
the gain medium because of its broader spectrum. The
soliton is stable as long as the continuum sees less round-
trip gain than the soliton does.

In principle, by introducing a large amount of nega-
tive dispersion the theory would predict arbitrarily short
pulses. However, the master equation (2.1) describes the
laser system properly only when the nonlinear changes
of the pulse per pass are small. This gives an upper
limit to the nonlinear phase shift F0 that the soliton can
undergo during one round trip. A conservative estima-
tion of this upper limit is F0  0.1. Then the action of
the individual operators in Eq. (2.1) can still be consid-
ered continuous. Even if one considers larger values for
the maximum phase shift allowed, because in fiber lasers
the action of GVD and SPM occurs simultaneously and
therefore Eq. (2.1) may describe the laser properly even
for large nonlinear phase shifts per round trip, one will
run into intrinsic soliton and sideband instabilities for F0

approaching 2p.16,18,19 Under the condition of a limited
phase shift per round trip we obtain from Eq. (2.7)

t2  jDjyF0 . (3.20)

Thus, from Eq. (2.17), the definition of j, inequality (3.19),
and Eq. (3.20), we obtain for the maximum possible re-
duction in pulse width

Rmax 
1.66
1.76

12

s
s9F0y2d2

DgMs
(3.21)

and therefore for the minimum pulse width

tmin 
6

s
2Dg

2

9F0Ms

. (3.22)

The necessary amount of normalized negative GVD is
then given by

Dn 
2
9

3

s
s9F0y2d2

DgMs

. (3.23)

Equations (3.21)–(3.23) constitute the main results of
this paper, because they allow us to compute the possible
pulse-width reduction and the necessary negative GVD
for a given laser system. Table 1 shows the evaluation
of these formulas for several gain media and typical laser
parameters. It shows that soliton formation in actively
mode-locked lasers may lead to considerable pulse short-
ening, up to a factor of 10 in Ti:sapphire. Because of the
12th root in Eq. (3.21) the shortening depends mostly on
the bandwidth of the gain material, which can change by
Table 1. Maximum Pulse-Width Reduction and Necessary Normalized GVD for Different Laser Systemsa

Gain Material

Vg

2p sTHzd M
vM

2p sMHzd
Dg

s ps2d Ms s ps2d
ta,FWHM

s psd Rmax

Tmin,FWHM

s psd Dn

ttrans

TR

Nd:YAG 0.06 0.2 250 0.7 2.5 3 1027 68 3 22.7 23.4 702
Nd:glass 4 0.2 250 158 3 1026 2.5 3 1027 8.35 6 1.4 385 11,538
Cr:LiSAF 32 0.2 250 2.4 3 1026 2.5 3 1027 3 8.6 0.35 1563 46,600
Ti:sapphire 43 0.01 100 1.4 3 1026 2 3 1029 8.5 13.5 0.63 9367 281,000

aIn all cases we used for the saturated gain g  0.1 and for the soliton phase shift per round trip F0  0.1. For the broadband gain materials the
last column indicates rather long transient times, which call for regenerative mode locking.
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Table 2. Parameters Used
for Numerical Simulations

Parameter Value

l 0.1
g0 1
PL 1 W
Vg 2p 3 60 GHz
vM 2p 3 0.25 GHz
TR 4 ns
M 0.2
d 1.4 3 1024 W21

D 217 ps2y210 ps2

several orders of magnitude for the different laser ma-
terials. The amount of negative dispersion required for
achieving this additional pulse shortening is in a range
that can be achieved by gratings, Gires–Tournois inter-
ferometers, or prisms.

Of course, in the experiment one has to stay away
from these limits to suppress the continuum sufficiently.
However, as numerical simulations show, the transition
from stable to unstable behavior is remarkably sharp.
The reason for this can be understood from the structure
of the eigenvalues for the continuum [Eq. (3.14)]. The
time scale for the decay of transients is given by the in-
verse of the real part of the fundamental continuum mode,
which diverges at the transition to instability. Neverthe-
less, a good estimate for this transient time is given by the
leading term of the real part of Eq. (3.14):

ttrans

TR


1
Rehl0j

ø
3p

DgMs R2
. (3.24)

This transient time is also shown in Table 1 for different
laser systems. Thus these transients decay, if they are
not too close to the instability border, on time scales from
approximately 1000 to some 100,000 round trips, depend-
ing strongly on the gain bandwidth and the modulation
strength. Consequently, to first order, the eigenvalues of
the continuum modes, which are excited by the right-hand
side of Eq. (3.10), are purely imaginary and independent
of the mode number; i.e., ln ø 2iF0. Therefore, as long
as the continuum is stable, the solution to Eq. (3.10) is
given by

Gsxd 
i

F0
F 21hkf s1d

k j Ra0sxdl

2 Mst2kf s1d
k j xa0sxdlsDtytdj . (3.25)

Thus in steady state the continuum is of the order of

jGsxdj ø
A0

F0

Dg

t2


A0

Dn

, (3.26)

which again demonstrates the spreading of the continuum
by the dispersion. This shows that the nonlinear phase
shift of the solitary pulse per round trip has to be chosen
as large as possible, which also maximizes the normalized
dispersion, so that the radiation shed from the soliton into
the continuum changes the phase rapidly enough that the
continuum in steady state stays small. Note that the size
of the generated continuum according to relation (3.26) is
largely independent of the real part of the lowest eigen-
value of the continuum mode. Therefore the border to
instability is sharply defined. However, the time scale
of the transients at the transition to instability can be-
come arbitrarily long. Therefore numerical simulations
are trustworthy only if the time scales for transients in the
system are known from theoretical considerations such as
those derived above in relation (3.24). The simulation
time for a given laser should be at least of the order of
10 times ttrans but even longer for operation close to the
instability point, as we will see in Section 4.

4. NUMERICAL SIMULATIONS
In this section we compare the theory developed above
with numerical simulations. A Nd:YAG laser is chosen
for our example because of its moderate gain bandwidth
and therefore its large gain dispersion. This will limit
the possible pulse-width reduction to ,3, but the decay
time of the continuum [relation (3.4); see also Table 1] is
then in a range of 700 round trips so the steady state
of the mode-locked laser can be reached with moder-
ate computer time, while the approximations involved
[inequality (3.19)] are still satisfied. The system param-
eters used for the simulation are given in Table 2. With-
out GVD and SPM we would obtain a Gaussian pulse with
a FWHM according to Eqs. (2.12) and (2.17) of

ta,FWHM  68 ps , (4.1)

where we have assumed that the saturated gain is equal
to the loss l. Allowing for a maximum nonlinear phase
shift F0  0.1 in Eq. (3.23) we obtain for the normalized
dispersion Dn  23.4 and therefore a maximum reduction
in pulse width [Eq. (3.18)] of R  3.

For the simulation of Eq. (2.1) we use the standard
split-step Fourier-transform method. Here we include
the discrete action of SPM and GVD per round trip by
choosing the integration step size for the T integration
to be the round-trip time TR. We used a discretization
of 1024 points over the bandwidth of 1 THz, which cor-
responds to a resolution in the time domain of 1 ps. All
the following figures show only one tenth of the simulated
window in time and frequency.

Figure 2 shows the result of the simulation starting
with a 68-ps-long Gaussian pulse with a pulse energy of

Fig. 2. Time evolution of the pulse intensity in a Nd:YAG laser
for the parameters in Table 2, D  217 ps 2, for the first 1,000
round trips in the laser cavity, starting with a 68-ps-long Gauss-
ian pulse.
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Fig. 3. Time evolution of (a) the intensity and (b) the spectrum
for the same parameters as in Fig. 2 over 10,000 round trips.
The laser reaches steady state after ,4000 round trips.

W  40 nJ for Dn  24, i.e., D  217 ps2. For the given
SPM coefficient this should lead to stable pulse shortening
by a factor of R  2.8. Thus after at least a few thousand
round trips the laser should be in steady state again with
a FWHM pulse width of 24 ps. Figure 2 shows the pulse
evolution over the first 1,000 round trips, i.e., 4-ms real
time. The long Gaussian pulse at the start contains an
appreciable amount of continuum. As we can see from
Eqs. (2.17), (2.55), and (3.14), the continuum part of the
solution, in contrast to the soliton, does not experience
the nonlinear phase shift that is due to SPM. Thus the
soliton interferes with the continuum periodically, with a
soliton period of TsolitonyTR  2pyF0  20p. This is the
reason for the oscillations of the pulse amplitude seen in
Fig. 2 that vanish with the decay of the continuum. Note
also that the solitary pulse is formed rapidly because of
the large nonlinear phase shift per round trip. Figure 3
shows the simulation in time and frequency domain over
10,000 round trips. The laser reaches steady state after
,4,000 round trips, which corresponds to 6 3 ttrans, and
the final pulse width is 24 ps, in exact agreement with
the predictions of the analytic formulas derived above.

The lower normalized dispersion of Dn  15 or D 
210 ps2 allows for a reduction in pulse width by only
R  2.68. However, using the same amount of SPM as
before, we leave the range of stable soliton generation.
Figure 4, like Fig. 2, shows the first 1,000 round trips in
that case. Again the solitary pulse is rapidly formed out
of the long Gaussian initial pulse. But, in contrast to the
situation for Fig. 2, the continuum no longer decays on
this time scale. The dispersion is too low to spread the
continuum rapidly enough. The continuum then accu-
mulates over many round trips, as can be seen from Fig. 5.
After ,10,000 round trips the continuum has grown so
much that it extracts an appreciable amount of energy
from the soliton. But surprisingly the continuum modes
stop growing after ,30,000 round trips, and a new quasi-
stationary state is reached.

Qualitatively this quasi-stationary state corresponds to
the coexistence of a soliton with an appreciable amount
of continuum. The soliton still interferes with the con-
tinuum, leading to periodic oscillation of the peak value.
The pulse shape is no longer symmetric, because even
and odd eigensolutions of the continuum are now above
threshold, leading to symmetry breaking. Thus the total
pulse shown in Fig. 5 looks like a 50-ps long pulse followed
by a 24-ps short pulse, a phenomenon that one observes
experimentally when leaving the stability regime, as dis-
cussed in Section 5.

These are only qualitative remarks because for a quan-
titative analysis the theory presented above would have
to be carried further to second-order perturbation theory
to yield the amplitudes of the continuum excitations be-
yond the stability range derived in Subsection 2.C. That
study is beyond the scope of this paper, however.

Fig. 4. Time evolution of the intensity in a Nd:YAG laser for the
parameters in Table 2. The amount of negative dispersion is
reduced to D  210 ps2, starting again from a 68-ps-long pulse.
The continuum in this case does not decay as in Figs. 2 and 3
because of insufficient dispersion.

Fig. 5. Parameters chosen as for Fig. 4 but for 50,000 round
trips.
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Fig. 6. Solid curves, the normalized fluorescence spectrum of
the Nd:glass LG-760 used in our experiment, measured with
an optical spectrum analyzer, when pumped below threshold.
LG-760 is a quasi-homogeneous laser material; thus when it
is lasing the saturated gain is proportional to the fluorescence
spectrum. From the refractive index of the quartz prism and
the beam waist at the knife position we can calculate the low-path
filter function attributable to the knife-edge relative to the knife
position, which is an error function. The several dashed curves
show the difference between the saturated gain determined from
the measured fluorescence spectrum and the computed low-path
filter losses for different knife positions, which we call the net
gain. For lasing at a certain power level, moving the knife
edge into the cavity reduces the overall gain somewhat but also
flattens the net gain profile over a range of ,10 nm.

5. EXPERIMENTAL RESULTS
The Nd:YAG laser is not a proper candidate for verifica-
tion of the theory experimentally, because the necessary
large amount of negative dispersion to achieve soliton
formation or even a factor-of-3 pulse shortening cannot
be achieved simply by a pair of prisms. However, we
believe that the theory above explains very well the pi-
cosecond Ti:sapphire experiments5 in the regime where
the pulses are stabilized by the active mode locker alone.
Gires–Tournois interferometers were used to produce
large amounts of negative GVD to operate the laser in
the stable soliton regime derived above. Here we discuss
in more detail the experimental results obtained recently
with a regeneratively actively mode-locked Nd:glass
laser,6 which resulted in generation of 310 fs pulses.
The Nd:glass laser system is interesting because of its
potential for ultrashort-pulse generation owing to the
large gain bandwidth available8 and because it can be
diode pumped.9

We used a standard dispersion-compensated delta
cavity,20 in which an intracavity filter formed by a knife-
edge introduced between the prisms for dispersion com-
pensation allows for a modification of the net gain profile
of the laser and therefore for a variation in the effective
gain bandwidth.6 The high-Q acousto-optic modulator
was operated off resonance as a regenerative mode locker
and therefore had a modulation depth of only M  0.01.
Figure 6 shows the fluorescence spectrum of the phos-
phate Nd:glass material LG-760. If we do not introduce
a knife-edge, the gain bandwidth of the Nd:glass can
be extracted around the peak of the fluorescence spec-
trum to be Vg  25 THz. The laser beam was tightly
focused into the gain medium, resulting in a self-phase
modulation coefficient of d  0.4yMW . The repetition
rate was fM  250 MHz, the total cavity losses are 2%,
and therefore g ø 1%. Note that the quantities in the
master equation (2.1) are related to amplitude and not to
power. The output coupling was 1%. The output power
varied from 70 to 150 mW, depending on the position
of the knife-edge. The total amount of negative disper-
sion available in this setup was limited to D ø 1300 fs2.
If SPM and GVD could be neglected, the weak mode
locker would produce Gaussian pulses with a FWHM of
ta,FWHM  10 ps. However, the strong SPM prevents
stable pulse formation.1 The negative dispersion avail-
able in the experiment is too low to permit stable soliton
formation, because the pulse width of the soliton at this
power level is given by t  4jDjysdW d  464 fs. There-
fore the normalized dispersion is not large enough to al-
low for such a large pulse-width reduction, as can be seen
from inequality (3.19) and Fig. 1, because Dn,max  23
in that case. However, moving the knife-edge into the
beam, which acts as a long-path wavelength filter, results
in a new net gain profile that is flat over ,10 nm.

Obviously, the net gain profile can no longer be fitted
to a parabola. However, it is instructive to follow
what happens when the gain parabola is gradually
opened up by insertion of the knife-edge. Suppose
that we increase the gain bandwidth by a factor of 9.
The actively mode-locked pulse width of the purely
Gaussian pulses is then reduced by only a factor ofp

9  3, to ta,FWHM  3.3 ps. But at the same time
the maximum normalized dispersion increases with
the square of the bandwidth to Dn,max  1863, which
would allow for an additional pulse shortening attrib-
utable to soliton formation by a factor of 9 (see Fig. 1),
resulting in a 370-fs short and most importantly stable
solitonlike pulse. Of course the flattening process shown
in Fig. 6 is not well described by a parabola. Thus soli-
ton formation essentially allows us to fill up the flat part
of the net gain profile, which could never be achieved
by the weak mode locker alone. This results in a 310-
fs perfectly sech-shaped solitonlike pulse, as shown in
Fig. 7, which corresponds to a bandwidth of ,3 nm. We
observed no contribution from Kerr-lens mode locking, as
switching off the drive signal to the acousto-optic modu-
lator resulted in a cw running laser.

A numerical simulation of this case would need millions
of round trips through the cavity until a stationary state is
reached. This means milliseconds of real time but would
necessitate days of computer time.

We also observed in the transition to unstable behav-
ior the characteristic occurrence of a short, solitary fem-
tosecond pulse together with a long, picosecond pulse as
a result of the instable continuum, as we have found in

Fig. 7. Autocorrelation of the mode-locked pulse (solid curve)
and the corresponding sech2 fit (dashed curve). The output
power was 70 mW at 930-mW absorbed pump power.
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Fig. 8. Sampling signal of the fast detector when the
mode-locked laser operates at the transition to instability.
The short, femtosecond pulse cannot be resolved by the detector
and therefore results in a sharp spike corresponding to the
detector response time. In advance of the femtosecond pulse
there is a roughly 100-ps-long pulse.

the numerical simulation for the case of a Nd:YAG laser
(see Fig. 5). Figure 8 shows the signal of a fast detec-
tor diode on the sampling oscilloscope. The detector has
an overall bandwidth of 25 GHz and therefore cannot re-
solve the femtosecond pulse but can resolve the width of
the following roughly 100-ps-long pulse. According to the
theory, the time scale of the continuum modes is of the or-
der of Restc,FWHMd ø ta,FWHM coss45±) 4

p
Dn  35 ps, where

we have used a value for the normalized dispersion of
Dn  10, 000. Therefore the observed double pulsing in
the actively mode-locked laser at the transition to instabil-
ity can be explained if we assume that a few lower-order
Hermite Gaussian continuum modes are above threshold
but still not far enough above threshold to take too much
of the energy away from the solitary pulse.

6. CONCLUSIONS
We extended the early investigations of Haus and
Silberberg on pulse shortening,1 using SPM and GVD
in actively mode-locked lasers, and found that beyond a
critical value of negative GVD a stable solitary pulse can
indeed be formed and kept stable by the mode locker. We
derived analytical expressions for the possible stability
range and the pulse shortening. The pulse shortening
achieved by these means can be as large as a factor
of 10 for the case of Ti:sapphire. If we choose opti-
mum values for a Nd:glass laser without gain reshaping,
the usual 8–10-ps-long pulses in an active mode-locking
experiment8 can be shortened by a factor of R  6 to
tFWHM  1.4 ps according to Table 1 if the laser is oper-
ated in the soliton regime by introduction of a dispersion
compensation that produces a total intracavity negative
GVD of D  261 3 103 fs2. Thus this technique allows
for considerable pulse shorting in actively mode-locked
Nd:glass lasers. Application of additional intracavity
filtering allows reaching even the femtosecond regime.
However, it reduces the output power as a result of ad-
ditional intracavity losses.

The main result of this paper, that a soliton that is
much shorter than the Gaussian pulse because of pure
active mode locking can be stabilized by an active mode
locker, also has an important consequence for passive
mode locking. It implies that a slow saturable absorber,
i.e., an absorber with a recovery time much longer than
the width of the soliton, is enough to stabilize the pulse,
i.e., to mode lock the laser. However, this subject will be
pursued in a forthcoming publication.21

APPENDIX A
In this appendix we prove that the mode locker and the
gain filtering only weakly couple the soliton to the contin-
uum, which allows for Eq. (3.8). From the soliton pertur-
bation theory outlined in Subsection 2.6 we obtain for the
matrix element coupling the continuum and the soliton

kf s1d
k jcossvM txdjfk0,w,u,p,tl 

1/2 kf s1d
k jff s1d

k2vM t 1 f s1d
k1vM t 1 OsvM tdgjfk0,w,u,p,t l ,

where we have made use of the fact that the eigenfunc-
tions of the continuous spectrum are plane waves outside
the interaction zone, Eq. (3.25), with the soliton and there
the active mode locker has the most action on the waves.
Thus we get

kf s1d
k jcossvM txdjfk0 l  1/2 fdsk 2 k0 1 vM td

1dsk 2 k0 2 vM tdg 1 OsvM td ,

(A1a)

kf s1d
k jcossvM txdjfk0 l  OsvM td , (A1b)

kf
s1d
k jcossvM txdjfk0 l  1/2 fdsk 2 k0 1 vM td

1dsk 2 k0 2 vM tdg 1 OsvM td ,

(A1c)

kf
s1d
k jcossvM txdjfk0 l  OsvM td ; (A1d)

ksf, fds1d
k jcossvM txdjfw,u,p,tl  OsvM td , (A1e)

kf s1d
w,u,p,t jcossvMtxdjsf, fdkl  OsvM td . (A1f)

Similar relations can be obtained for the matrix elements
of the gain dispersion operator:

kf s1d
k sxdjF

√
1

Vgt

≠

≠x

!
jfk0 ,w,u,p,tsxdl , (A2)

where F s yd is a function that does not vary strongly.
Then we obtain for the matrix element [expression (A2)]
in the Fourier representation

kf s1d
k svdjF

√
iv

Vgt

!
jfk0,w,u,p,tsvdl , (A3)

with the Fourier transform of [Eq. (2.35)]

fksvd  2pdsv 2 kd 1 p
v 2 k

sinhfpy2sv 2 kdg

12k P.V.

(
2

v 2 k
1

p

sinhfspy2d sv 2 kdg

)
, (A4)

where P.V. denotes the principal value. This shows that
the continuum eigenstate fk is a wave with a spec-
trum strongly localized around the wave number k.
F fivysVgtdg is a slowly varying function in v because
relation (3.9) is fulfilled. Then it is useful to expand F
in a Taylor series around k, and we obtain
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kf s1d
k svdjF

√
iv

Vgt

!
jfk0 ,w,u,p,tsvdl

 F

√
ik

Vgt

!
kf s1d

k svdjfk0 ,w,u,p,tsvdl .

1 F 0

√
ik

Vgt

!
kf s1d

k svdjsvdjsv 2 kdjfk0 ,w,u,p,tsvdl

1 . . . . (A5)

If the integrals on the right-hand side of Eq. (A5) exist,
we obtain

kf s1d
k svdjF

√
iv

Vgt

!
jfk0,w,u,p,tsvdl  F

√
ik

Vgt

!
dsk 2 k0d

1 O

√
1

Vgt

!
. (A6)

Note that if F s yd is only a power, as is the case in our
quadratic approximation of the gain profile, the scaling
factor 1ysVgtd2 can be pulled out to the front, and Eq. (A7)
below is not applicable because a power is not slowly
varying in the whole domain. However, the correct
physical gain profile is a Lorentzian that is weakly vary-
ing in the whole domain, and then Eq. (A7) is applicable
and the resulting function can again be approximated up
to a second order. Thus we can replace in inequality (3.9)
the matrix elements of the differential operator in R by

kf s1d
k j

≠2

≠x2 jfk0,w,u,p,tsvdl  2k2dsk 2 k0d 1 O

√
1

Vgt

!
.

(A7)

Thus the differential operator strongly couples only the
same continuum modes.
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