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Exact Coupled-Mode Theories for
Multilayer Interference Coatings with
Arbitrary Strong Index Modulations
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Abstract—The analysis of multilayered interference coatings by quarter-wave Bragg mirrors with large index discontinuities as
coupled-mode theory is considered to be an approximation useful mentioned above. In the future, one can use the coupled-mode
for small index, gain, and/or loss modulations. In this paper, we gagerintion of multilayer structures derived here to develop

show that an exact analysis of a multilayer coating with coupled- desi thods f il i imilar to th
mode theory is possible by redefining the coupling and detuning new aesign methods for muitiiayer coatngs simiiar to those

coefficients. We derive the correct coefficients for the case of Put forward by Matsuharat al. [3] based on coupled-mode
a Bragg mirror consisting of layers with arbitrary high and  theory.

low refractive indexes. A detailed comparison with coupled-mode  |n Section I, we briefly review the coupled-mode theory
theories using the standard coupling and detuning coefficients is for a periodic Bragg grating and state its transfer matrix in
presented. order to clarify notation. The exact transfer matrix of the
Index Terms—Coatings, coupled mode analysis, coupled trans- Bragg grating is given in Section IlI. Its structural equivalence
mission lines, dielectric films, electromagnetic coupling, thin film 5 the coupled-mode result is shown. Both transfer matrices
devices, transmission line theory. are absolutely equivalent over the whole wavelength range if
the coupling and detuning coefficients are properly chosen,

|. INTRODUCTION as derived in Section IV. In contrast to the normal coupling

OR THE DESIGN of optical filters and mirrors that arednd detuning coefficients, these redefined quantities exhibit
Fcomposed of high and low index layers, one usual} complicated wavelength dependence. However, with these

starts from a standard structure known to solve a givéﬁdefined guantities, the coupled-mode analysis is exact and
design problem (see, for example, [1]). The design goal not limited to small index differences. In Section V, we discuss
further approached by computer optimization of this standa¥g1ous approximations to the exact coupled-mode analysis
structure. Alternatively, there exist analytic methods for thiiat are normally used in the literature.

synthesis of waveguide filters based on coupled-mode theory

[2], [3]. These waveguide filters are made by small index || CoupLED-MODE THEORY FOR A BRAGG GRATING

variations in the guiding layers that result only in small id , hich . ¢ . ¢
reflections within a distance of one wavelength. For this Case,We consider a Bragg grating which consists of a series o

coupled-mode theory is an excellent approximation to thiMogeneous layer pairs with refractive indexgsand n;.
exact problem [4]. T_he period of the resulting index pr_of|le, shoyvn in Fig. 1, is
It would be very useful if the analytic design tools developed Ve Y A = di. +di and the effective refractive index.q

for waveguide filters that are based on coupled-mode thedfydetermined by
could be also used for broad-band filters and mirrors composed
of high and low index layers, such as the chirped mirrors,

invented by Szipcs et al. [5]. One finds, for broad-band h s th ical thick f . Il of th

quarter-wave Bragg mirrors that consist of layer pairs with ‘Y 1ere dopt 1S t e optical thickness of a unit cell 0 .t €
%ructure. In this paper, we assume that the medium is free
0

large refractive-index difference, that coupled-mode analyssi . . . .
still agrees surprisingly well with the exact analysis [6]. absorption. We only consider propagation perpendicular to

In this paper, we show that coupled-mode theory for tﬁge layers z_ind describe the amplitudes of the_right- and left-
description of a Bragg mirror is indeed exact for arbitrar aro:_trzvelmg waves bl_yl(g) and hB(z),hre_spebctlvler. These .
refractive-index differences if redefined coupling and detuni plitudes are normalized so that their absolute square Is

coefficients are used. This explains the good agreement oportional to the energy flux in the corresponding direction.

tween normal coupled-mode theory and exact analysis for tlﬁethe refractive-index difference is small, it is well known

that the dynamics of the right- and leftward wave can be
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Nh For small index differences, quarter-wave layers and a wave-
length close to the stop band around the Bragg wavelength,
A1) AN A(0) the coupling coefficient (4) is approximately given by [7]
T T T R K= _ﬂ. (5)
B(-/) B(0 i
n, 0) Solution of the coupled-mode equations between the posi-
— T — tionsz = —¢ andz = 0 results in the transfer matrixI(—¢,0)
e [P for the Bragg grating [6]
5d, d d A
241 Yh | A(—K) :M(_g 0) A(O) ©)
_ﬁ/% Oi zZ B(—K) ’ B(O)
NA with (7), shown at the bottom of the page. Hete; AN is the

Fig. 1.1 Rectangular—shapgd index profile with an average refractive indl@tngth of the medium expressed by the number of |ayer pairs

fﬁeiiai_(ﬁ’;ret ';Qrig‘gg :rr(‘a 'gﬁg\j‘vno_““erence&" = mn —m foralayered  nr The detuning coefficient is given ywhich describes the
phase mismatch between the effective wavenumber and the
half wavenumber of the index profile

K s
b=p—-——=p—— 8
p-F =8~ ®)
A1) A(-L+A) andy = v/k2 — 62 is the propagation constant in the Bragg
S s medium. Note that this propagation constant becomes purely
u d imaginary outside the stop band, i.6:] < |6].
B(-/) B(-/+A) The a_mp_litude reflectivity]\q of the peripdic structure, for
a wave incident from the right, is then given by
| — 1
K T = RO maz ©)
B(O) mi1

i 1
e M(-/,-/+A) —
( ) where m;; are the matrix elements of the corresponding

Fig. 2. The total transfer matrix for one period is written as the product gfgnsfer matrix, given in this case by (7).
five matrices for this symmetrical definition of the unit cell. It involves three

propagation steps and two jump steps (see Appendix A).
IIl. EXACT TRANSFER MATRIX OF A BRAGG

) 9 GRATING FOR ARBITRARY INDEX DIFFERENCES
Here, the quantityK = =t denotes the wavenumber of ] ) ) .
the periodic index profile andd = kneg is the effective In this section, we derive a compact expression for the exact

wavenumber in the layered medium, with= 2T7r representing transfer matrix of a Bragg grating. The transfer matrix of one
the vacuum wavenumber. In standard coupled-mode thed®j299 period, as shown in Fig. 2, can be obtained by the
the coupling coefficient: is determined by the first Fourier ransfer matrix method [1]. For more details, see Appendix
coefficient of the periodic index profile. If we choose thé\: The result is

period of the index profile symmetrically, as shown in Fig. 2, g, _(F G*

then the coupling coefficient in (2) is a real negative number. M(—t,—t+A) = G Fr* (10)
Otherwise, the coupling coefficient includes an additionglith

complex phase factor [6], [8]. 1 i 2 il
For the rectangular-shaped index profile, we obtain with F= 142 (e re ) (11)
An =np —ngandn = %(nh +ny) [8]: —2ir
G = S 3 12
2Anm | (1 1 T2 S €2
K= sin <§th> 3 < 0. 3) ¢ = ¢n+ P (13)
Te
! _ A = ¢ — (14)
If we _evaluate_(_3) at the B_r.agg wavelength = 2n.gA, this bn = knndy, (15)
coupling coefficient simplifies to
And 1 ¢ = knidy (16)
_ nn ooz An
K _ngﬂA sin <2th>. 4) r= - (17)
N [cosh(vAN) + i% sinh(vAN) i sinh(yAN)
- — (= 7
M(=£,0) = (1) < —i sinh(7AN) cosh(vAN) — i2 sinh(vAN) Q)
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and F* andG* denote the complex conjugate quantities. Note
that the particular structure of matrix (10) combined with the
unimodularity

detM(—£,—f+ A) = |F|* = |G]? = +1 (18)

is a consequence of the losslessness (energy conservation)
and time-reversal invariance of the structure, as is shown in
Appendix B.

Since the total grating is a sequence &f unit cells
with transfer matrix (10), the transfer matrix of the periodic
structure is given as théVth power of this matrix, i.e., for Ay’
M(—4,0) = MY (—¢,—¢ + A). To calculate this expression
in a simple way, one needs to know the eigenvalues of matrix -1

(10) that determine the behavior of the field amplitudes. The _ _
Wi iaenval r Fig. 3. Loci of the roots\; and Az in the complexA plane. Each arrow
two eigenvalues are represents one of the four range<ff. In this figure, thef'; axis corresponds

N to the eigenvalue\;. Note thatA; is the reciprocal of\; .
A2 =FrF\/F—1 (19)

1 ) To avoid ambiguities, we cover all cases hy = —¢" =
Fr=R{lI}= 1_—T2(COS(¢) —r?cos(A¢))  (20) ¢1-iv wheren € T is piecewise defined as

with

and . (In (—Fr+ /F% —1); Fr< -1
Fr =S{F} = 15 (sin(¢) +*sin(Ag))  (21) —
7 iarctan(%;); —-1< Fr<0
where we have used the identity n= (26)
—i¢ arctan < Y I_FE‘) +im; 0< Fpr<+1
VFR-1= /|61 - 7 (22) TR ’ =
which follows from (18). Because of the unimodularity and n (Fr— /Ff—1) +im; Fr>+1
time-reversal invariance of the transfer matrix, its eigenvalugiye that with this definition, the first case describes the
(19) fulfill the conditions usual stop band regime near the Bragg wavelength For
M-do=1 and M\ + X\ €IR. (23) this range,) is a real positive number. The fourth case also
describes a stop band that can only occuhif # 0, because
Thus, only two cases are possible: otherwise the conditiod’y > 1 cannot be satisfied according
) A1, X2 € R & |Fg| > 1: The eigenvalues are real ando (20). The appearance of this additional stop band will be
can be written as discussed in detail in Section V. As an illustration, Fig. 3

; — n shows the loci of the roots\; and X\, in the A plane in
A =Fe, d=Fel nelRT. (24) gependence oty

The field in the grating then exponentially increases or With A1 ands as defined in (26), we obtain

decreases, respectively. This wavelength range corre- Fr = —cosh7 27)
sponds to the stop band of the Bragg grating. _

) A1, A2 € @< |Fg| < 1: The eigenvalues can be written \/Fj — 1 =sinhp (28)
as

and the transfer matrix of a unit cell (10) can be written as
A =Fe, Ao =Fe N, nelRT  (25) (29), shown at the bottom of the page. It can be proven by
i _ ) . induction that theNth power of this unimodular matrix is
and the field shows an oscillating behavior. This Wavesiven by (30), shown at the bottom of the page.
length range cprresponds to the transmission band ofAS is shown in Appendix B, all matrices of the form (10)
the Bragg grating. with det M = 1 generate a matrix subgroup of the special

. Fy . o i
Micti—t 48y = T T g (29)
’ N —Lsinhn coshn +1 Ll sinhn
cosh(nN) — i—ZL— sinh(nN) ——& __sinh(nN)
M(=£,0) = MY (=4, ~£+ A) = (1) g Vir e (30)
v sinh(nN) cosh(nN) + i T sinh(nN)
R R
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linear groupSL(2, @). For this reason, also the coupled-mode
matrix (7) is an element of this subgroup. The matrix (30) must 10 v

obey the power law given here, because the transfer matrix of _
the unit cell (29) is of the same form as the transfer matrix - 08 7
of the coupled-mode theory (7). Therefore, it is an element of 0.6:— ]
the same subgroup &L.(2, @), and the transfer matrix of the Z T
coupled-mode theory obviously obeys this power law. It is a é 04l ]
special case of the generally valid power law for an arbitrary & [
unimodular matrix, as given in [9] and proven in [10]. 02f .
IV. EXACT COUPLED-MODE THEORY 00" 0 20
Comparison of the two transfer matrices (7) and (30) shows °
that they are structurally equivalent and even equal, if the @
corresponding coefficients and arguments of the hyperbolic O
functions are matched. Thus, we identify the coupling and A
detuning coefficients of the coupled-mode equations, which of
give the correct transfer matrix of the Bragg grating, as e
. 2r 2 3~
KA = —taG = —aT 3 sin(¢p ) (31) £ -4;—
5
A = —aly = —aﬁ (sin(¢) + r?sin(Ag)). (32) ok
Here, the factorr has to be chosen such that the propagation 5 0 0 T oe T T T T e 50
constants of the exact transfer matrix and the equivalent k/Kg
coupled-mode matrix agree, i.e., (b)
AmVEEaz a1ty @ e
From (33) with (28), we can obtain an explicit expression for £ 0'25 ]
o T 04r -
(5] F o T TR T T T TS T T T T T T T, 4
a=— n (34) 8 o6 .
sinh o r 1
£ 08 p
wheren is determined according to (26). Thus, our conclusion § D (ﬂB ]
is that the coupled-mode equations exactly describe a Bragg © 't = (v :
grating for arbitrary refractive-index differences, if the rede- B o oI S Ry Y
fined quantities (31) and (32) are used instead of the normal k/kg
values presented in Section II. ©
V. COMPARISON BETWEEN EXACT AND - N AR AR RRAL AL ARR AR AR
APPROXIMATE COUPLED-MODE THEORY © 3”
In this section, we compare the standard coupled-mode § 2F
theories that use the coupling coefficients (3) or (4) and % s
detuning coefficient (8), with the exact results (31) and (32). S of
Our comparison is made for a mirror which consists of five g 4E
periods of layers with a Bragg wavelength at 800 nm. We 2 ¢t
choose the refractive indices;, = 1.5 andn;, = 2.5, i.e., = '2;'
r = 0.25, which are close to the refractive indexes S0, 30 02 07 o8 o8 T
and TiO, used for standard laser mirrors. kikg
First, we want to discuss the case of a quarter-wave Bragg )

mirror, i.e., A¢ - 0 (nndn = mdi = 200, nm). Fig. 4 _Fig. 4. Comparison of the coupled-mode results with the exact results for
shows the numerical results for the amplitude reflectivity gragg mirror composed o = 5 layer pairs. The refractive indexes are

rv = VRe™. In Fig. 4(a), we show its absolute squale 7, = 2.5 andn; = 1.5.The thickness of the layers was chosgn = 80

and in Fig. 4(b) its phas@ as a function of wavenumber "M andd; = 133 nm, so that the optical thickness per layer (200 nm) is a
. ' quarter wavelength. We show results for (a) reflectivity, (b) phase, (c) coupling
normalized to the Bragg wavenumbleg = 7/(Aneg). FOUr  coefficient, and (d) detuning coefficient for the four different cases as defined
different cases were computed. in the text: 1) exact calculation using (31) and (32); 2) the usual coupled-mode
. . . . . heory using (3) and (8); 3) the usual coupled-mode theory using (4) and (8);

I) exact calculation, using the COUpI'ng coefficient (31 ) using the linearized approximations (C-1) and (C-2) of the exact coupling

and detuning coefficient (32); and detuning coefficients.
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Il) approximation, using the normal coupling coefficient 1.0~
(3) and detuning coefficient (8);
[1) approximation, using the simplified coupling coefficient ~ 08
(4) and detuning coefficient (8); i
IVV) approximation, using a linear expansion of the rede-% 0.61
fined coupling and detuning coefficients with respect tog
wavenumber, as presented in Appendix C.

The cases Ill) and IV) agree surprisingly well with the
exact result I) over the whole wavelength range shown,
whereas case 1l), the normal coupling coefficient, results in
a considerable deviation. The same is true for the phase. The 00
reason for this behavior can be explained by Fig. 4(c) and
(d) where the coupling and detuning coefficients used in the
four cases are shown. For a quarter-wave stack, the exact
coupling coefficient depends to lowest order only quadratic
on the wavenumber arourig; (see Appendix C). Therefore,

a constant coupling coefficient leads to a better approximate
description of the Bragg mirror than the value (3) derived
from the Fourier expansion of the index profile. Obviously, &
the linear dependence of the coupling coefficient (3) onx
wavenumber leads to a shift of the stop band to higher
wavenumbers that destroys the symmetry relative to the Bragg
wavenumber. Therefore, the range to the right kgf is
overemphasized by the larger absolute value of the coupling
coefficient in this range. Fig. 4(d) shows that the discussion
of the quality of various approximations essentially can be
reduced to a discussion of the coupling coefficient, because
all detuning coefficients show approximately the same linear s
behavior over the whole wavelength range depicted. T 02}

Note that the approximations 2)- 4) become arbitrarilys |
wrong in the regime when the next stop band of the exactc |
computation arises. The reason is that all approximationsg -o.6
to the exact expressions are expansions around the Bra
wavelength and, therefore, only the stop band around this ™~
wavelength exists. The greater the deviation from the Bragg% 4ol
wavelength, the greater the phase mismatch given by th&
detuning coefficients, which is responsible for the decay
of the envelope of the reflectivity? to zero instead of the
periodic revival of the exact calculated reflectivity. In the
case of A¢p = 0, the condition for a maximum reflectivity
is k/kp = 2m — 1, for all positve Integersn, thus, the next -
stop band is centered Af kg = 3 (not shown in Fig. 4). This
can be explained by the fact that all waves reflected at an
refractive-index step are in phase at the positios 0, and
therefore show maximum constructive interference.

The situation becomes more complex for the case of laye
pairs with unequal optical thicknesses, i.A¢ # 0. Fig. 5
shows the results fag;,d;, = 100 nm andh;d; = 300 nm. Due
to the deviation from quarter-wave layers, the absolute valu€
of the coupling coefficient around the Bragg wavelength is -3t
reduced [compare Figs. 4(c) and 5(c)] which also reduces the
width and the peak reflectivity of the corresponding stop band )

[see Fig. 5(a) and (b)]. Again, the worst approximation is giv Ig. 5. Comparison of the coupled-mode results with the exact results for a
for case 2), the normally used coupled-mode theory. As for tRegg mirror composed ol = 5 layer pairs. Again the refractive indexes
guarter-wave stack, the stop band seems to be shifted andatiee, = 2.5 andn; = 1.5. However, the thickness of the layers is now

: ; : ‘e i osend;, = 40 nm andd; = 200 nm so that the difference in the optical
quality of the approximation 2) for both cases is similar. Ca%gcknesfs per period iahdlh ~aidy = —200 nm. We show results fo‘r’ @)

3) leads again to a very accurate agreement at least in the st@Bctivity, (b) phase, (c) coupling coefficient, and (d) detuning coefficient
band regime, although the accuracy is not as good as for #iere 1), 2), 3), and 4) are the same four different cases as defined in Fig. 4.

R
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case of a quarter-wave stack. Again, the best approximatiortasattain an absolute equivalence between both matrices by
the redefined coupled-mode theory with a linear approximatisnitable definition of the coupling and detuning coefficients.
of the coupling and detuning coefficients, case 4). Thus, there is an exact coupled-mode theory for Bragg gratings
For the caseA¢ # 0, the exact calculation shows awith arbitrary refractive index differences.
new stop band centered &Ykp = 2 with an even greater The prerequisite for the existence of an exact coupled-mode
peak reflectivity than at the Bragg wavelength [see Fig. 5(ajheory is only that the transfer matrix of a unit cell has the
For this wavenumber rangd,r is greater thant1 and the form stated in (10). However, Appendix B proves that this is
redefined coupling and detuning coefficients of the exaitte case for every lossless and time-reversal invariant Bragg
coupled-mode theory become complex. Therefore, they are goating with an arbitrarily shaped index profile. Thus, there
any longer comparable with their real approximations shovalways exists a set of equivalent coupled-mode equations that
in Fig. 5(c) and (d). Obviously, the additional stop band iexactly describe a periodic Bragg structure. Here, we derived
responsible for the reduced agreement between the nortied exact coupling and detuning coefficients for the special
coupled-mode theory and the exact results in comparisocase of a rectangular-shaped index profile by the transfer
to the caseA¢ = 0. By increasing the deviation at thematrix method, which is the technically most important case
Bragg wavelengtiA¢o from its value at a quarter-wave stackwith respect to optical coatings.
Agg = 0, the peak reflectivity of the second stop band grows,

whereas the reflectivity at the Bragg wavelength decreases APPENDIX A
if ¢o = 7 is held constant. AfA¢o| = 7, the reflectivity TRANSFER MATRIX OF ONE BRAGG PERIOD
of the stop band ak/kp = 2 reaches its maximum value.

Fig. 5 shows the results fakgy = — = and therefore depicts The transfer matrix for the first Bragg period, which con-

> Tnects the amplitudes at the positions- —¢ andz = —£+ A,

the worst case when compared with the exact results. The : : . .

. . . _according to Fig. 2 and (10), can be written as the following
higher peak reflectivity akkp can be explained as follows: .

oo . r?duct.

all waves reflected at any refractive-index step are in phaseD a
the positionz = 0 if the conditions|A¢o| = § andk/kp = M(—4,—¢4+A)=T;-S,-T),-Sy4-T,. (A1)
4m — 2 for all positive integersm are fulfilled, whereas

at wavenumbers defined biy/kp = 2m — 1, a partially The explicit form of the propagation matricd, andT; is

destructive interference of the reflected waves occurs now. (In eibn 0
this example, for the wavenumbers defined s = 4m, T = < 0 e—z‘%) (A2)
the amplitudes interference is totally destructive.) it 0

The different quality of the approximations can be again T, = <60 6_¢%L) (A3)

explained by the behavior of the coupling and detuning co-

efficients. If the optical thicknesses of the layers are nwtith ¢, = kn,dy, and ¢; = knid;. The normalized Fresnel
equal (A¢ # 0), the exact coupling coefficient has also anatrices which describe the refractive index jumps “up” and
linear term (see Appendix C). Then, both the first Fouriédown” are given by

coefficient with the wrong slope [case 2)] and the constant 1 A —1An

approximation of the coupling coefficient [case 3)] result in Sy = —<—lA z ) (A4)
a considerable deviation from the exact result. Especially, VIR AT S0 L "

the worse agreement of case 3) directly follows from the S, = ;(177 5%”) (A5)
greater deviation of the coupling coefficient, as the comparison ViR \3An 7

between the Figs. 4(c) and 5(c) clearly shows. Now, also t)& introduce the sum and difference of the phasesd;, +¢;,
deviation in the detuning coefficient is not negligible. A¢ = ¢y — ¢y and the Fresnel reflectivity = 22 which is the

To summarize this section, for the analysis of Bragg strugsfiectivity per layer. With these definitions, and multiplying
tures with relatively high index differences, the usual couplegse matrices according to (A1), we find

mode analysis leads to a surprisingly good agreement with
exact calculations. This is due to the fact that there exist M(—¢,—{+A)

coupled-mode equations with special coupling and detuning 1 <ei¢ —r2e7¢  2irsin(¢y,) ) (A6)
coefficients which solve the problem exactly. We have found ~ — 142\ —2irsin(¢,) e —r2eid¢ |-

that for a Bragg mirror the constant coupling coefficient (4)

leads to better results than the coupling coefficient (3) derived APPENDIX B

from the first Fourier coefficient of the grating, which is TRANSFER MATRIX IN THE CASE OF ENERGY
normally used. CONSERVATION AND TIME-REVERSAL INVARIANCE

We show that due to energy conservation and time-reversal
invariance, an arbitrary transfer matrik is necessarily an

) ) ) element of the matrix grouL(2, €) and possesses complex
We have studied a Bragg mirror with a rectangular-shapegnjugate matrix elements

index profile by coupled-mode theory and transfer matrix .
method. We have shown that the transfer matrices derived T = <t11 tzl) (B1)
with both methods are structurally equivalent. It is possible tar 1

VI. CONCLUSION
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with unit matrix. Thus, all conditions that define a group (here, the
subgroup ofSL(2 are fulfilled, but note that this grou
TPl = @) 3 o bt o
Hence, these matrices form a subgroup of the gigiug, €).
Proof: The transfer matriXI' combines the amplitudes APPENDIX C
of the right and left traveling waves by LINEARIZATION OF THE COUPLING COEFFICIENT AND
DETUNING PARAMETER AT THE BRAGG WAVELENGTH
Ay Ay . . . .
<Bl> =T <Bg) (B3) In this appendix, we expand the redefined coupling and
detuning coefficients (31) and (32) in a Taylor series at the
where the matrix is of the general form Bragg wavelength up to terms of first order and show that we
t to get the usual expressions from Section Il if we use quarter-
T= <t21 t22>. (B4) wave layers(A¢ = 0) in the limit r < 1.

The Bragg wavelength is defined By = =. So, the Taylor
Time-reversal invariance requires that the matrix (B4) dossgries at this point can be written in the form
not change under the time-reversal operatien —t which is _ 9
equivalent to the following exchange of the amplitudes: rh = roA + R A(¢ — ) + O((¢ — 7)°) (C1)
§A = SoA + 61A(p — ) + O((¢ — m)?). (C2)
A; — B (B5)
B, — A* (B6) The quantitiesig A andéyA denote the exact expressions (31)
! i and (32) for the coupling and detuning coefficients evaluated at
Backtransformation and reordering of the original amplitudébe Bragg wavelength and A andé, A are the corresponding

finally leads to the matrix first derivatives with respect t¢. The calculation of these
four values results in
T = <t§2 tél) (87) 2
12 1 Ko\ = Klgo=rA = —{_ 2% sin(¢n.0) (C3)
Comparison of the elements of the matrix (B4) with (B7) Ok 2o
; - kiA=— A=—
results in the conditions 29, 1_ 42
0=
tin =155 &t =t (B8) 0 r2 1+aok R
_ g% o _ g ——= cos(¢p,0) BT I
t10 = t21 <~ t12 =191. (Bg) T 1—7 FR,O 1
Thus, time-reversal invariance requires a matrix of the form Agg . )
(B1). a X % sin(Ado) sm(d)h,o)> (C9)
The unimodularity (B2) is then a consequence of energy P
conservation, which means that the net flow of energy, i.e., thgA = 8l po=nA = —7—2040 sin (Agp) (CH)
difference of the squared absolute values of the amplitudes, 1=
has to be preserved: S1A = — A=— 1
2 2 2 2 0 | gy =r 1—r2
|AL]" = |By[" = [A2]” — |Ba|". (B10)
" . . . 1 Ado . A
Substitution of (B3) into the left side of (B10) and comparison Al R cos(A¢o)
of the coefficients leads to .
T 1+060FR70 A(f)o .
lt11f? = [t = 1. (B11) 12 FR,-1 o« sin (Agho)
With (B8) and (B9), it follows that this expression is exactly
the determinant (B2); thus, under the given prerequisites the (C6)
assertions (B1) and (B2) about an arbitrary transfer matrix afg,
proven.
The property that all possible transfer matrices (B1) generate In (—FR,o + ,/Fl?-i,0 - 1)
a subgroup of the special linear grosip(2, €) follows directly o = > (C7)
from the multiplication of two arbitrary transfer matrices. Fro—1
The result is a new matrix which is again unimodular and 1 9
of the same form as matrix (B1). Therefore, this set of Fro = =7 3(1+77 cos(Ao)) (C8)
matrices is closed under matrix multiplication. From the A¢o = kp(nydy, — nydy) (C9)
physical viewpoint, it is a necessary consequence of energy o = kpnndy. (C10)

conservation and time-reversal invariance. Obviously, matrix
multiplication is an associative operation. There also exists aln general, none of the four expressions (C3)—(C6) vanishes.
unimodular inverse matrix to each transfer matrix of the fori8o, (C1) and (C2) can not be simplified, and the linear

(B1) and the neutral element (identity) is represented by tke&pressions here are very different from the simple expressions
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(3), (4), and (8) normally used. But we see directly that -
simplification is possible if the layers have the same optic

thickness(A¢o = 0, ¢r,0 = ¢1,0 = 5). In this case, we get

Ko = —In G J_r:) (C11)

KA =0 (C12)

§oA = 0 (C13)

51A=i1n<1+7’). (C14)
2r 1—7r

Further simplification is only possible if the Fresnel reflectivity
r is much smaller than one. Then the expansion of tt

logarithm vyields

Ko = =2r
A =1.

(C15)
(C16)

Thus, only if the condition&\¢py = 0 andr <« 1 are fulfilled
can we write

KA = =2r
N=¢—m.

(C17)
(C18)
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Whereas the linear detuning coefficient (C18) is the same assiiety of America.
Section I, we see that the constant coupling coefficient (C17)

is equal to (5).
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