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60-fs pulses from a diode-pumped Nd:glass laser
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We demonstrate 60-fs pulses with an average output power of 84 mW from a diode-pumped Nd:glass laser mode
locked by a low-finesse antiresonant Fabry–Perot saturable absorber (A-FPSA). The mode-locked spectrum
spreads over most of the available Nd:glass f luorescence bandwidth. At increased pulse energy f luence or
decreased negative group-velocity dispersion, multiple pulsing was observed. We experimentally characterize
this behavior, which can be explained by the saturation behavior of the A-FPSA and the limited available gain
bandwidth. These considerations are significant for the design of saturable absorbers to achieve stable passive
mode locking.  1997 Optical Society of America
Diode-pumped femtosecond Nd:glass lasers offer a
cost-effective and compact alternative to Ti:sapphire
lasers operated near 1.06 mm, with applications such
as seeding of high-power amplifiers, pumping of fem-
tosecond optical parametric oscillators, and ultrafast
spectroscopy. The absorption band of Nd:glasses
at ,800 nm allows for diode pumping,1 resulting in
a compact, wall-plug-driven setup, which does not
require water cooling. Typical Nd:glasses have a
f luorescence bandwidth of 20–30 nm FWHM, sup-
porting sub-100-fs pulse generation at a wavelength of
,1.06 mm. Until recently, the shortest pulses from
a (bulk) Nd:phosphate laser,2 88 fs, were produced
by additive-pulse mode locking. Semiconductor satu-
rable absorber mirrors3 in various Nd:glass lasers4,5

have supported pulses as short as 130 fs for diode
pumping and 90 fs for Ti:sapphire pumping. In this
Letter we demonstrate 60-fs pulses from an optimized
diode-pumped Nd:glass laser, using an antiresonant
Fabry–Perot saturable absorber6,7 (A-FPSA). The
ratio of the intracavity pulse energy f luence to the
saturation f luence of the A-FPSA is shown to be an
important design parameter for avoiding multiple
intracavity pulses. Simple arguments can explain the
occurrence of double or multiple pulses at increased
pulse f luence.

Figure 1 shows the experimental results of 60-fs
pulses from a Nd:f luorophosphate (LG-810, 3% Nd)
laser at an average output power of 84 mW with a
total absorbed pump power of 1.1 W. We also obtained
68-fs pulses from a Nd:silicate laser glass (LG-680, 3%
Nd) at an output power of 32 mW (absorbed pump
power 0.37 W from both diodes). The spectrum of
the 60-fs pulses is 21.6 nm wide (FWHM) and fills
most of the available gain bandwidth of the LG-
810 [Fig. 1(b)]. The time–bandwidth product is 0.34,
within 10% of the transform limit. These pulses
were stable over an experimental period of more than
1 h. Mode locking was generally self-starting. The
laser cavity was easy to align and did not have
to be operated close to the resonator stability limit.
Additionally, no hard aperture was present. This
rules out Kerr-lens mode locking8 as a significant
mode-locking effect.
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We used an optimized low-f inesse A-FPSA9,10 (Fig. 2,
inset) with an increased maximum modulation depth
of 1% but with the trade-off of increased insertion loss
(at low intensities) of 2%. The bitemporal impulse re-
sponse of the A-FPSA is similar to that of the device
used in Ref. 5, with a fast time constant of 200 fs fol-
lowed by a slow time constant of 25 ps, as determined
by a standard pump–probe measurement. The satu-
ration f luence Fsat of the A-FPSA was measured to be
116 mJycm2, as determined in a setup similar to that
of Ref. 11.

The pump and cavity layout (Fig. 2) is based on
a standard delta-cavity design similar to that of
Ref. 5. The laser beam is focused onto the A-FPSA
to a calculated beam waist of approximately
63 mm 3 70 mm (radius). The cavity repetition
rate was typically 114 MHz. The calculated beam
radius in the laser material is approximately
47 mm 3 66 mm. The Nd:glass laser is cw pumped
by two diode lasers (Spectra Diode Laboratories SDL-
2360-C, 1.2 W, emitting wavelength ø803 nm) focused
to a beam radius of approximately 40 mm 3 50 mm.

Fig. 1. (a) Noncollinear autocorrelation and (b) spectrum
of the shortest pulses obtained from a diode-pumped
Nd:f luorophosphate laser. The dotted curve in (a) is a
fit to an ideal sech2 pulse shape. The dotted curve in (b)
shows the f luorescence spectrum of LG-810, indicating that
the pulse spectrum spreads over most of the available gain
bandwidth.
 1997 Optical Society of America
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Fig. 2. Diode-pumped Nd:glass laser setup. Inset: structure of the low-finesse A-FPSA. ROC, radius of curvature;
LT, low temperature grown.
The higher doping level and the reduced absorption
length (2 mm) of the Nd:f luorophosphate, compared
with those of Ref. 5, result in improved mode match-
ing of the pump beam to the laser mode over the ab-
sorption length. This makes up for the increased loss
of the A-FPSA, thus causing only a slight decrease
in output power. The Nd:silicate glass (LG-680) used
in some experiments had 3% Nd doping with an ab-
sorption length of 2.5 mm at the pump wavelength.
We chose LG-810 and LG-680, which are inhomoge-
neously broadened, because mode locking is obtained
more easily than with the homogeneously broadened
Nd:phosphate.5

In the experiments described above, we verif ied that
a single intracavity pulse was present. However, we
observed a breakup into two or more pulses at in-
creased intracavity energy (Fig. 3) or at a decreased
amount of negative group-velocity dispersion, jDj, i.e.,
increased prism insertion (Fig. 4). The spacing be-
tween the pulses in the cavity ranged from 90 ps to
half the cavity round-trip time and was subject to spon-
taneous changes. We monitored the pulse train with a
50-GHz fast photodiode and a 20-GHz sampling scope
(Tektronix CSA 803) with a time resolution better than
20 ps. Additionally, the autocorrelation span was in-
creased to .20 ps to monitor possible smaller pulse
spacings. However, such smaller spacings were not
observed.

Figure 3 shows the pulse width as a function of the
total intracavity pulse energy Ep but at a constant
negative dispersion in the Nd:silicate laser (the f luo-
rophosphate laser showed similar behavior). As we in-
creased the pump power and thus the pulse energy Ep,
the measured transform-limited pulse width decreased
approximately inversely proportionally to Ep, as the
soliton mode-locking model predicts.12,13 The observed
deviation is most likely due to thermal lensing effects.
At suff iciently high Ep of ø35 nJ with a pulse energy
f luence incident upon the A-FPSA of ø250 mJycm2,
i.e., ø2.2 times Fsat, the intracavity pulse breaks up
into two separate pulses, accompanied by a jump in
pulse width by a factor of ,2. Correspondingly, the
spectrum narrows by a factor of ,1y2, as we would ex-
pect for a soliton with half the energy.

For a f ixed absorbed pump power of 658 mW in
the Nd:silicate and an intracavity pulse energy of
46 nJ, which corresponds to 2.8 times Fsat, we ob-
served an analogous behavior as we increased the in-
sertion of one intracavity prism, thereby decreasing jDj
(Fig. 4). The transform-limited pulse width decreases
for smaller jDj, i.e., increased prism insertion, until the
pulse breaks up into two pulses of longer width. We
observed a linear dependence both in the single- and

Fig. 3. Dependence of the pulse width on the total intra-
cavity pulse energy in the Nd:silicate laser. The data are
fitted to ,1yEp (soliton). At an energy of 35 nJ, the pulse
breaks up into two intracavity pulses that have longer pulse
widths.
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Fig. 4. Dependence of the pulse width on the total intra-
cavity group-velocity dispersion jDj in the Nd:silicate laser.
The solid lines are f its to a straight line.

the double-pulse regimes, well in agreement with the
soliton mode-locking model.12,13 At an even smaller
jDj, we could also observe a transition to more than
two intracavity pulses. Again, the increased number
of pulses was accompanied by a jump in pulse width.

To explain these multiple-pulse observations,
we considered both the saturable absorption of the
A-FPSA and the limited gain bandwidth of the laser
medium. The ref lectivity of the A-FPSA increases
with increasing pulse energy f luence and eventu-
ally goes into saturation (see, for example, Fig. 8
of Ref. 11). Given an energy f luence many times
the saturation energy f luence Fsat, the ref lectivity
is strongly saturated and therefore similar to the
ref lectivity for a pulse of half the energy. There-
fore the A-FPSA provides reduced discrimination
between single and double pulsing at increased inci-
dent pulse energy f luence. In addition, the limited
gain bandwidth of Nd:glass prefers double pulsing over
single pulses because the two longer intracavity soli-
tons, which have a narrower spectrum, see more gain
than a single shorter intracavity soliton. Therefore
the laser prefers two intracavity pulses over a single
pulse for a sufficiently broad mode-locked spectrum
with a given saturation level of the saturable absorber.
A more detailed treatment of this behavior is under
investigation.

In conclusion, we have demonstrated a diode-
pumped passively mode-locked Nd:glass laser pro-
ducing pulses as short as 60 fs with an average
output power of 84 mW. In comparison with pre-
vious research4,5 we obtained these improvements
by increasing the modulation depth of the saturable
absorber and increasing the small-signal gain, using
better mode matching. The trade-off with increased
modulation depth (obtained with a thicker absorber
layer at a constant top ref lector of the A-FPSA) is
increased nonsaturable losses.11 In addition, the
onset of multiple-pulsing instabilities sets a limit to
how strongly the absorber can be saturated, which
then limits the useful modulation depth of the device
and further increases its residual insertion loss.
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