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Abstract—We investigate the differences in the dynamics of
lasers mode-locked by fast and slow saturable absorbers. Slow
saturable absorbers can already generate almost transform lim-
ited pulses much shorter than the recovery time of the absorber.
If soliton-like pulse shaping is present in addition the pulses can
be further compressed below the resulting net gain window until
either the continuum breaks through or the pulses break up into
multiple pulses, which sets a limit to the shortest pulsewidth
achievable. Given a certain amount of saturable absorption, a
comparison is made that results in an estimate for the shortest
pulse achievable for a solitary laser stabilized by a fast or a slow
saturable absorber. The theoretical results are compared with
experiments.

Index Terms—Multiple pulsing, pulsed lasers, semiconductor
saturable absorbers, solid lasers.

I. INTRODUCTION

FOR A LONG TIME, it was believed that the use of a
fast saturable absorber is absolutely necessary to mode-

lock a solid-state laser, because mode-locking relies on a
short net gain window that only supports the pulse and
discriminates against the noise that might grow outside the
pulse. However, over the last several years many solid-state
lasers have been mode-locked using semiconductor saturable
absorbers mirrors SESAM’s [1]–[3], that have very often much
longer recovery times than the shortest pulses generated from
the given laser. One reason for this behavior has been traced
back to the soliton-like pulse formation, i.e., negative group
delay dispersion (GDD) and self-phase modulation (SPM),
occuring in femtosecond solid-state lasers [4]–[6]. The soliton-
like pulse formation leads to stable pulsing even in the
presence of a considerable open net gain window following
the pulse. The pulse is not any longer shaped dominantly by
the saturable absorber, but the absorber is still essential for
pulse stability. Note, this regime of operation is significantly
different from what has been discussed before in the context
of the CPM-dye lasers, where the interplay between loss and
gain saturation always leads to a short net gain window in time
[7]–[10]. The same is very much true for the fast saturable
absorber, where the soliton-like pulse shaping leads to pulses
about a factor of two shorter than without soliton-like pulse
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shaping [11]. The open net gain windows that form in these
cases are only about one pulsewidth long.

In this paper, we further discuss the difference in the dynam-
ics of solid-state lasers mode-locked by fast or slow saturable
absorbers with and without soliton-like pulse shaping. We
show that a slow saturable absorber can generate pulses much
shorter than the recovery time of the absorber already without
soliton-like pulse shaping. Of course, the soliton-like pulse
shaping helps to compress the pulse even further until the
continuum breaks through as discussed in [4] and [5] or
the pulse breaks up into multiple pulses, as has been shown
experimentally in [12] and [13]. We present simple relations,
that indicate when the single pulse per cavity round-trip
will break up into longer multiple pulses due to the soliton-
like pulse shaping. The breakup criterion is compared with
experimental results observed recently with a Nd:glass laser.
The breakup into multiple pulses sets limits to the shortest
pulse achievable with a given saturable absorber even if the
laser is stable against continuum breakthrough. The criterion
for pulse breakup can be applied to lasers mode-locked by fast
as well as slow saturable absorbers. The analysis shows that
the laser is most stable against multiple pulse breakup, if the
absorber is about three times saturated (i.e., the intracavity
pulse energy is about three times the saturation energy of
the absorber) for the case where the saturable absorption is
only a small contribution to the overall cavity losses. The case
of a slow saturable absorber is interesting for two reasons.
First of all, every fast saturable absorber becomes slow if the
pulsewidth is short enough. Second, in many cases the dy-
namics of semiconductor saturable absorbers is well described
by a simple slow saturable absorber. Such absorbers have
been used very successfully to mode-lock a variety of solid-
state lasers down to the 10-fs regime [14]–[16]. The question
arises, how effective is a slow saturable absorber in mode-
locking in comparison with a fast saturable absorber with equal
strength, i.e., modulation depth. Of course, one could always
generate a shorter pulse by increasing the modulation depth.
But usually every saturable absorber introduces undesired
nonsaturable losses which increase with larger modulation
depth and degrade the performance of the laser. Thus a
given saturable absorption should be utilized as efficiently as
possible for the generation of short pulses. A brief conclusion
is that we can obtain with the same modulation depth almost
equally short pulses with a fast saturable absorber and a slow
saturable absorber, if the absorber recovery time is not more
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than a factor of ten slower than the pulsewidth for optimum
saturation. However, the fast saturable absorber is more stable
against multiple pulse breakup in case of oversaturation of the
absorber.

The discussion in this paper is based on the assumption
of small linear and nonlinear pulse shaping effects occuring
within each intracavity element per round-trip, such that we
can apply Haus’ master equation [17]. However, most of
the results can be carried over, at least qualitatively, to
lasers where the pulse shaping in each element leads already
to substantial changes on the laser dynamics. This is most
pronounced in the 10-fs and sub-10-fs Ti:sapphire lasers
[18]–[20]. Numerical simulations show that the influence of
the discrete action of the individual elements for a given
situation, e.g., overdriven SPM within one round-trip, can be
considered as increased losses for shorter pulses similar to
a finite-gain bandwidth. Therefore, overdriven SPM should
be avoided. For example, the stretched-pulse mode-locking
technique in femtosecond fiber lasers strongly reduces the
SPM [21], [22]. For this reason, we stay in our discussion
within the master equation approach.

II. BASIC MODEL

A. Analytic Approach

We start from the well established model for the pulse
shaping process in a solid-state laser, where we assume, that
the linear and nonlinear changes in the pulse within each
round-trip in the laser cavity stays small. Then the average
dynamics of the pulse can be described by Haus’ master
equation:

(1)

Here is the slowly varying field envelope,
the cavity round-trip time, the intracavity GDD,

the gain and possible filter dispersion,the
SPM coefficient, the round-trip losses, and the saturated
gain. is the half-width at half-maximum (HWHM) gain
bandwidth and the filter HWHM bandwidth. denotes
the saturable absorption coefficient. The SPM coefficient is
given by the nonlinear refractive index of the laser crystal,
the effective area of the laser mode in the crystal and the
length of the crystal according to . For
solid-state lasers the gain-cross section is very small, such that
for typical intracavity pulse energies the gain saturation due to
a single pulse is negligible. Then the gain saturates only over
many pulses, i.e., with the average power. In the following,
we are not concerned with instabilities due to-switching
which is an interesting subject on its own [23], [24]. Thus, we
always assume that the gain is saturated to its stationary value
corresponding to the average power

(2)

where is the small-signal gain,
gives the pulse energy, and is the saturation power of the
gain medium. The saturable absorber can be fast or slow. In
case of a fast absorber, the response within each round-trip on
the instantaneous pulse power is given by

(3)

where is the nonsaturated but saturable loss of the absorber
and is the saturation power of the saturable absorber. In
case of a slow saturable absorber, i.e., the recovery time
of the saturable absorber is comparable or even longer than
the final pulsewidth. In this case, the absorber is assumed to
saturate according to the following:

(4)

Note, in the limit of a very short absorber recovery time the
solution of (4) approaches (3). We always assume that the
absorber recovers completely between two consecutive cavity
round-trips of the pulse. is the saturation energy of the
absorber. Then the master equation (1) complemented with
the absorber (4) determines our laser model completely.

B. Numerical Approach

Only for a few cases the steady state solution according
to (4) can be found analytically. One case is the ideal fast
saturable absorber which will be discussed in the next section.
In general the steady state solution will be found numerically
by simple simulation of the laser dynamics according to (1)
and (4) until a steady state is reached within the available
computation time. However, in many cases there is no steady
state solution anymore, then we will simply stop after 20 000
round-trips and discuss the final result. In the real laser,
the dispersion and the SPM is lumped in the individual
elements and does not occur distributed in the average sense
as described by (1). Therefore, we simulate (1) by the standard
split-step-Fourier-transform method [25]. The linear effects are
treated in the frequency domain in one step and the nonlinear
effects are treated in the time domain in one step. The
simulation uses the laser and absorber parameters (Table I)
observed in the Nd:glass laser experiments presented in [12].
The small-signal gain is varied from 0 to 0.2 in steps of 0.01.
The resulting pulse intensities achieved after 20 000 cavity
round-trips for different parameter settings will be computed.
Note, the maximum amount of saturable absorption is half
a percent, see Table I, therefore, it produces only a small
change in the pulse shape within each round-trip. For long
pulses with low peak power also the effects due to GDD and
SPM are small, so that the numerical solution will mimic the
solution of the average model (1). However, when the pulses
get shorter the lumped action of the GDD and SPM can grow
and the simulation will deviate from the average model. We
will discuss effects due to the discrete action of SPM and
GDD in Section V.
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TABLE I
PARAMETER VALUES USED IN THE SIMULATIONS

III. PULSE FORMATION WITHOUT GDD AND SPM

A. Mode-Locking with an Ideal Fast Saturable Absorber

In the following, we consider different cases: First, the well
studied fast saturable absorber model [17]. We assume no
dispersion and refractive index changes and that the absorber
response time is much faster than the resulting pulsewidth.
Then the absorber saturates with the ratio between the in-
stantaneous power of the pulse and the saturation power

of the absorber according to (3). If the peak
intensity of the pulse is much smaller than the saturation
intensity of the absorber, we can linearize (3) and obtain

where

(5)

For the linearized absorber model, the steady state solution
of the master equation (1) can be solved analytically and a

-pulse solution is obtained [17]

(6)

where . Using the solution (6) with (5) in
(1), results in a saturated gain for the -pulse

(7)

where is the energy of the -pulse and
is the saturable amplitude loss encountered by the

-pulse within one round-trip

(8)

This is the residual loss the pulse sees during saturation of the
absorber and, therefore, is here the response calculated
from (4) with the solution (6).

The steady-state pulse energy and the pulsewidthof
the -pulse are related to each other because the pulse

Fig. 1. (- - -) Saturation characteristic of the fast saturable absorber and (—)
the piecewise-linear characteristic of the ideal fast saturable absorber.

Fig. 2. Normalized loss and gain dynamics for asech (x)-pulse of a laser
mode-locked by a ideal fast saturable absorber in the regime of linear and
full saturation.

broadening due to gain filtering is balanced by the pulse
shortening due to the saturable absorber in each round-trip
[17]

or (9)

For the case of the linearized fast saturable absorber (5), we
obtain

(10)

The resulting gain loss balance (7) is then given by

(11)

Let us assume, that we exploit the absorber as much as
possible, to create the shortest pulse, that is the absorber is
completely saturated at the peak of the pulse, i.e.,
but we still want to use the linearized saturable absorber
characteristic, (Fig. 1). Thus, we approximate the saturable
absorber characteristic by a piecewise linear function. Fig. 2
shows the time dependent saturable absorption as a function
of the normalized time together with the position of
the saturated gain level according to (9)–(11) and the pulse
power, for this case. Equations (9) and (11) show that the
saturated gain level is exactly placed at the full-width at half-
maximum (FWHM) points of the absorber modulation which
opens and closes the net gain window, that supports the pulse,
immediately in front and after the pulse. Then (9) and (10)
show, that the pulse still experiences one third of the saturable
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Fig. 3. Each trace shows the stationary pulse intensity profile obtained after
20 000 cavity round-trips with an absorber response time�A = 50 fs for the
different values of the small-signal gain indicated on the left. The simulations
are always started with a 1-ps initial pulse shown as the first trace.

loss during saturation of the absorber. Only one sixth of the
total saturable absorption is used to overcome the filter losses
of the pulse due to the finite gain bandwidth. The remaining
one half of the available saturable absorption is reserved for
pulse stability, i.e., the net gain window is kept as short as
the FWHM of the amplitude profile. Therefore, instabilities
that might grow outside the pulse are suppressed. From (9)
follows, that for full saturation of the linearized fast saturable
absorber, i.e.,

(12)

the minimum FWHM pulsewidth that can be achieved given
a certain amount of saturable absorption results in

(13)

To demonstrate that (13) gives a good estimate for the shortest
pulse achievable with a given fast saturable absorber, we
carried out computer simulations of (1) with an absorber
according to (4) and a fast absorber recovery time of only
50 fs. The other laser and absorber parameters are tabulated
in Table I. The laser parameters model the experiments per-
formed with a Nd:glass laser [12], to which we like to relate
our simulation results later. All the numerical solutions of the
master equation (1), shown in the following, are performed by
the standard split-step-Fourier-transform method as discussed
in Section II-B. The small-signal gain is varied from 0 to 0.2
in steps of 0.01. The resulting stationary steady-state pulse
intensities achieved after 20 000 cavity round-trips without
GDD and SPM are shown in Fig. 3. We clearly see, that as
soon as the laser reaches threshold short pulses are formed. The
pulses get shorter with increasing saturation of the absorber.
Fig. 4 shows the pulsewidth and time-bandwidth product over
the resulting intracavity pulse energy. We see already from
the time-bandwidth product, that the resulting pulses are close
to a sech and the pulsewidth is only slightly longer than the
estimate given by (13) for increasing saturation of the absorber.
The shortest pulse achieved in the simulation is 200 fs. For
the parameters in Table I, we obtain from (13) for the shortest
pulse fs, if we assume . In this
case, the resulting pulse series always results in a steady-state

Fig. 4. The FWHM pulsewidth and the time-bandwidth products for the
stationary pulses in Fig. 3 as a function of the intracavity pulse energy. The
dashed line indicates the estimate for the shortest pulse achievable with an
ideal fast saturable absorber according to (13).

Fig. 5. Each trace shows the stationary pulse intensity profile obtained after
20 000 cavity round-trips with an absorber response time�A = 50 ps for
different values of the small-signal gain. The simulations are always started
with a 1-ps initial pulse shown as the first trace.

single-pulse solution and the pulses do not break up, even
if the absorber is further saturated. Thus, the simple formula
(13) gives a good estimate for what can be expected for the
pulsewidth given a certain amount of fast saturable absorption.

B. Mode-Locking with a Slow Saturable Absorber

If we keep all parameters constant and just increase the
absorber recovery time from 50 fs to values as large as 10
ps, we find, surprisingly enough that the FWHM pulsewidth
achievable with a given absorber does not increase very
much. Fig. 5 shows the intensity profiles of the corresponding
simulation results and Fig. 6 shows the pulsewidth and time-
bandwidth product over the pulse energy. We find, that for
strong saturation of the absorber we can generate pulses that
are only about 10% longer, i.e., 220 fs, as for those achieved
with the fast saturable absorber that had a response time which
was 200 times shorter. We obtain pulses which are about 30
times shorter than the absorber response time and do not show
any instabilities on the scale of the simulation time of 20 000
round-trips. We can explain this as follows. First, the filter loss
decreases quadratically with the pulsewidth, (7). Thus, a pulse
twice as long experiences only a fourth of the filter losses.
Second, the absorber is now more strongly saturated than it
has been before, because the response time is now much longer
than the pulsewidth. The saturation energy of the absorber is
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Fig. 6. The FWHM pulsewidth and the time-bandwidth products for the
stationary pulses shown in Fig. 5 over the intracavity pulse energy. The top
scale shows the corresponding small-signal gains.

Fig. 7. Pulse power on a logarithmic scale and absorber response over time
for a laser mode-locked with either a saturable absorber that has a 50-fs
response time or a saturable absorber that has a 10-ps response time.

17 nJ, see Table I. For the largest pulse energies achieved, we
saturate the absorber about eight times for the slow absorber,
(Fig. 6). Thus the losses experienced by the pulse are much
less than in the case of an ideal fast saturable absorber, i.e., the
absorber is more strongly saturated. Therefore, the saturated
gain level, extracted from the numerical simulation, saturates
to a lower value, (Fig. 8), so that there is not too long a net gain
window following the pulse. However, there is a prize to pay,
the pulses develop a trailing wing due to the slowly recovering
absorber, as can be seen from Fig. 7. Thus in terms of pulse
quality and stability an absorber with a response as fast as
possible is always desirable, as long as it can be sufficiently
saturated with the available intracavity peak power, so that
the saturable absorption can be exploited. We will show in
the next section, that these limitations dissappear when soliton
formation becomes the dominant pulse forming mechanism.

IV. PULSE FORMATION WITH NEGATIVE GDD AND SPM

A. The Fast Saturable Absorber

In the case of the ideal fast saturable absorber without
soliton-like pulse shaping, there is so much of the available
saturable absorption reserved for stability, because the pulse
has not only be kept stable by the saturable absorber, but
also has to be shaped by the absorber. This behavior changes
in the presence of negative GDD and SPM which has been
studied in detail in [11]. The nondissipative, soliton-like pulse

Fig. 8. Pulse power on a linear scale and absorber response together with
the saturate gain level over time for a laser mode-locked with a saturable
absorber response time of 10 ps.

shaping shapes already the pulse. The saturable absorber is
then mainly responsible for the stabilization of this pulse. In
the net negative dispersion regime, and for strong soliton-
like pulse shaping, i.e., the SPM coefficientis much larger
than the saturable absorption coefficient, the resulting exact
solutions to the master equation (1) are very slightly chirped

-pulses. Therefore, for this parameter regime an ideal
soliton-like -pulse is still an excellent approximation to
the exact solution. For an ideal soliton the relation between
the pulsewidth and the pulse energy changes from (9) to

or (14)

The pulsewidth seems no longer to depend on the sat-
urable absorption, which is of course not true. The finite
gain bandwidth introduces additional loss to the soliton in
comparison to a continuous-wave (CW)-signal that has a
wavelength equal to the center wavelength of the gain. In each
round-trip, the CW-signal would experience more gain than
the soliton and would break through. To avoid the CW-break
through, a necessary condition is that the saturated gain level
as shown in Fig. 2 stays below the loss level [11]. Then, we
can compress the pulse to shorter durations than the width
of the net gain window until all of the available saturable
absorption that is reserved for pulse stability is used up to
overcome the increasing filter losses. From Fig. 2 follows, that
the minimum pulsewidth is reached when two thirds of the
available saturable absorption above the unavoidable losses

are used to overcome the losses in the gain medium due
to the finite gain bandwidth

(15)

The resulting minimum FWHM pulsewidth that can be
achieved in this case is then twice as short as in (13)

(16)

For the laser parameters in Table I this minimum pulsewidth
corresponds to 85 fs. Similar results have been
obtained in [11]. However, as we will see later, there is another
condition that has to be met which is stability against breakup
into multiple pulses.
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Fig. 9. Loss and gain dynamics for a secant hyperbolic pulse of a laser
mode-locked by a slow saturable absorber and soliton formation.

B. Mode-Locking with a Slow Saturable Absorber

For a mode-locked laser with strong soliton-like pulse
shaping, the minimum pulsewidth achievable with a given
amount of saturable absorption, does not any longer rely on
the creation of a window of net gain as short as the pulse itself.
The pulse can be compressed below the width of the net gain
window. In the fast saturable absorber case, this allows for
an additional pulse shortening up to a factor of two given the
same amount of saturable absorption, see (13) and (16). Of
course, the same pulse shortening by a factor of two could be
simply achieved by a saturable absorber four times as strong
as before. However, a real saturable absorber also introduces a
considerable amount of nonsaturable losses, which is usually
proportional to the saturable absorption. Increasing the linear
intracavity absorption reduces the efficiency of the laser and
may even lead to such high losses that the laser cannot reach
threshold. Thus, it is very important, that a saturable absorber
with a given amount of saturable absorption can be used as
efficiently as possible to generate the shortest pulses. The
soliton-like pulse shaping present in most femtosecond solid-
state lasers helps in this respect. Soliton formation does not
only lead to shorter pulses in the case of a fast saturable
absorber, it also leads to shorter pulses in the case of a slow
saturable absorber as we have shown in [4]. In the case of
a slow saturable absorber the reduction in pulsewidth can be
even larger than a factor of two, because the pulse shaping
due to the absorber is reduced.

The response of the slow absorber together with the satu-
rated gain level and the total time dependent loss is shown
in Fig. 9. The line shows the loss of a possible long
background pulse, which is also called continuum in the
language of soliton perturbation theory. Notice, the continuum
loss is not any longer equal or close to the total linear
intracavity losses as in the case of the fast saturable absorber.
This is due to the fact that the slow absorber eventually
leaves a long net gain window, following the pulse. In this
net gain window the continuum can grow. However, the
dispersion which is balanced for the soliton-like pulse by
the SPM nonlinearity is not balanced for the continuum, i.e.,
the background pulse. Therefore, the continuum is spread
into the regions of the slowly recovering loss, which leads
to a cleanup of the continuum and a stabilization of the
soliton-like pulse. The situation is shown in Fig. 9 for a

pulse energy ten times the saturation energy of the absorber.
For stability of the solitary pulse against the continuum it
is required that the saturated gain has to be lower than the
continuum loss , so that the continuum does not reach
threshold. Fig. 9 shows a net gain window following the
pulse, which is about four times as long as the pulse itself.
The situation shown could never be a stable situation in
a purely dissipative mode-locking scheme. Therefore, we
call this regime of mode-locking soliton-mode-locking. In a
previous experiment, using GaAs–AlGaAs quantum wells to
realize a broad-band semiconductor saturable absorber on a
silver mirror, we achieved pulses as short as 13 fs at 820 nm
from a standard Ti:sapphire laser. These pulses exist over the
full stability range of the laser cavity and the laser is always
self-starting in contrast to short pulse Kerr-lens mode-locked
lasers. Computer simulations show, that if the SPM and GDD
is switched off, the pulse widens to a width of about 40 fs,
so that the net gain is zero immediately before and after the
pulse, similar to what is shown in Fig. 2. Note, the pulsewidth
shows a square root dependence on the absorber strength.
Thus in order to achieve an additional pulse shortening by
a factor of three, without using soliton-like pulse shaping,
would necessitate an absorber roughly ten times stronger. In
order to reach 10-fs pulses in a Ti:sapphire laser a few percent
of saturable loss are already necessary. Thus, if we have to
increase this amount by another factor of ten, the laser would
not reach threshold anymore or it would run very inefficiently.
This demonstrates the importance of the soliton-like pulse
shaping to reach the shortest pulse with a given absorber
strength.

However, stability against the continuum is not the only sta-
bility requirement. If we assume, that the pulse is completely
shaped by the soliton-like pulse shaping process the FWHM
pulsewidth is given from (14)

(17)

where denotes the pulse energy. With increasing pulse
energy, of course the absorber becomes stronger saturated
which leads to shorter pulses due to the saturable absorber and
the soliton formula. At some point the absorber will saturate
and can not provide any further pulse stabilization. However,
the Kerr nonlinearity does not saturate and therefore the soliton
formula dictates an ever decreasing pulsewidth for increasing
pulse energy. This only works, until either the continuum
breaks through, because the soliton loss becomes larger than
the continuum loss, or the pulse breaks up into two pulses. The
pulses will have reduced energy per pulse, such that each pulse
is longer and experiences a reduced loss due to the finite-gain
bandwidth. Due to the reduced pulse energy each of the pulses
will suffer increased losses in the absorber, since it is not
any longer as strongly saturated as before. However, once the
absorber is already too strongly saturated by the single-pulse
solution, it will also be strongly saturated for the double-pulse
solutions, but the filter loss due to the finite-gain bandwidth are
heavily reduced for the double-pulse solution. As a result, the
pulse will break up into double pulses. To find the transition
point where the breakup into multiple pulses occurs, we write
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down the round-trip loss due to the gain and filter losses and
the saturable absorber according to (7)

(18)

with the pulse energy of one pulse of the multiple pulse
solution. The energy is determined from the total gain
loss balance (7)

(19)

Most often, the saturable absorber losses are much smaller
than the losses due to the output coupler. In that case the total
losses are fixed independent of the absorber saturation and the
filter losses. Then the average power does not depend on the
number of pulses in the cavity. If this is the case, one pulse of
the double-pulse solution has about half of the energy of the
single-pulse solution, e.g., and, therefore, the
width of the double pulse is twice as large as that of the single-
pulse according to (17). Then the filter and absorber
losses for the single- and double-pulse solution are given by

and

(20)

The single-pulse solution is stable against breakup into
double pulses as long as

(21)

i.e., the difference in the filter losses between the single and
double-pulse solution is smaller than the difference
in the saturable absorber losses

(22)

Fig. 10 shows the difference in the saturable
absorption for a single- and a double-pulse solution as a
function of the ratio between the single-pulse peak power
and saturation power for a fast absorber and as a function
of the ratio between the single-pulse energy and saturation
energy for a slow absorber. Thus, for both cases the optimum
saturation ratio, where the largest discrimination between
single and double pulses occurs and, therefore, where the
shortest pulse can be expected before breakup into multiple
pulses occurs is about 3. Note, to arrive at this absolute
number, we assumed that the amount of saturable absorption is
neglegible in comparison with the other intracavity losses, so
that the gain dispersion is fixed. At this optimum operation
point, the discrimination against pulse breakup with a fast
absorber is about 50% larger than the value of the slow
absorber. Since the minimum pulsewidth scales with the square
root of , see (22), the minimum pulsewidth of the
slow absorber is only about 22% longer than with an equally
strong fast saturable absorber. Fig. 10 also predicts that a

Fig. 10. Difference in loss experienced by asech-shaped pulse in a slow
(- - -) and a fast (—) saturable absorber for a given pulse energyEP or peak
powerPP ; respectively.PA is the saturation power of the fast absorber and
EA the saturation energy of the slow absorber.

Fig. 11. Each trace shows the pulse intensity profile obtained after 20 000
cavity round-trips in a diode-pumped Nd:glass laser according to [12] and
Table I (with an absorber response time�A of 200 fs). When the laser reaches
the double-pulse regime the multiple pulses are in constant motion with respect
to each other. The resulting pulse train is not any longer stationary in any
sense.

laser mode-locked by a fast saturable absorber is much more
stable against multiple pulse breakup than a slow saturable
absorber if it is oversaturated. This is due to the fact that the
fast saturable absorber saturates with the peak power of the
pulse in comparison with the slow saturable absorber which
saturates with the pulse energy. When the pulse breaks up
into a pulse twice as long with half energy in each, the peak
power of the individual pulses changes by a factor of four.
Therefore, the discrimination between long and short pulses
is larger in the case of a fast saturable absorber, especially
for strong saturation. Note, Fig. 10 is based on the simple
saturation formulas for fast and slow saturable absorbers
according to (3) and (4). We compare these predictions with
numerical simulations and experimental observations made at
the example of a Nd:glass laser [12].

The Nd:glass laser described in [12] was mode-locked by
a saturable absorber which showed a fast recovery time of

200 fs, a modulation depth 0.005, and a saturation
energy 17 nJ. The other laser parameters are those
listed in Table I. Without the soliton-like pulse formation
(GDD and SPM is switched off), the laser is predicted to
produce about 200-fs short pulses with a single pulse per
round-trip, very similar to what is shown for the fast saturable
absorber in Fig. 3. The dynamics becomes completely different
if the negative GDD and SPM are included in the simulation,
(Fig. 11). With increasing small-signal gain, i.e., increasing
pulse energy, the soliton shortens to 80 fs due to the soliton-
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Fig. 12. Steady-state pulsewidth( ) and time-bandwidth product(�) for a
Nd:glass laser mode-locked by a saturable absorber with a 200-fs recovery
time with GDD and SPM included, shown as a function of the intracavity pulse
energy. The time-bandwidth product is only meaningful in the single-pulse
regime, where it is shown. The pulses are almost transform limitedsech-pulses
and follow the simple prediction of (17). The pulsewidth in the multiple
pulseing regime is only unique in the parameter region where multiple pulses
of similar height and width are achieved. The pulses break up into multiple
pulses when the absorber is about three times saturated.

like pulse shaping, (Fig. 12). The pulsewidth follows nicely
the soliton relation (17), dash–dotted line. The pulses become
shorter, by about a factor of 2.5, than without GDD and SPM
before the pulse breaks up into longer double pulses. The
pulse breakup into double pulses occurs, when the absorber
is about two times saturated, close to the point where the
shortest pulse can be expected according to the simple relations
described above and visualized in Fig. 10. Fig. 11 shows, that
the breakup point for the double pulses is also very close to the
instability for continuum breakthrough. Indeed the first pulse
train after breakup at a small-signal gain of 0.09 shows
the coexistance of a longer and a shorter pulse, which indicates
continuum breakthrough. But the following five traces are
double pulses of equal height and energy. For even stronger
saturation of the absorber the double pulses break up into
triple pulses and so on. Then the dynamics becomes even
more complex. This behavior has been observed recently in a
Nd:glass laser [12], see Fig. 13, as well as in Cr:YAG lasers
[13]. The simulations just discussed match the parameters of
the Nd:glass experiments. Fig. 13 clearly shows the scaling of
the observed pulsewidth according to the soliton formula until
the pulses break up at a saturation ratio of about 2, which
is close to the expected one of about 3. The breakup into
pure double and triple pulses can be observed more clearly
if the absorber recovery time is chosen to be shorter, so
that continuum breakthrough is avoided. Fig. 14 shows the
final simulation results obtained after 20 000 round-trips in the
cavity, if we reduce the absorber recovery time from 200 to
100 fs, again for different small-signal gains, e.g., intracavity
power levels and pulse energies. Now, we observe a clean
breakup of the single-pulse solution into double-pulses and at
even higher intracavity power levels the breakup into triple
pulses without continuum generation in between. Note, the
spacing between the pulses is very much different from what
has been observed for the 200-fs response time. This spacing
will depend on the details of the absorber and may also be
influenced by the dynamic gain saturation, even if it is only a
very small effect in this case [13].

Fig. 13. Loss and gain dynamics for a secant hyperbolic pulse of a laser
mode-locked by a slow saturable absorber and soliton formation.

Fig. 14. Each trace shows the pulse intensity profile obtained after 20 000
cavity round-trips for an absorber with a response timeTA = 100 fs for
different values of the small-signal gain. The simulations are always started
with a 1-ps initial pulse shown as the first trace. Note, only the single-pulse
solutions are stationary.

V. INFLUENCE OF THE DISCRETENESS

OF THE INTRACAVITY ELEMENTS

So far, the numerical simulation of the master equation (1)
by the split-step-Fourier-transform method has been performed
by applying the net GDD per round-trip in one step and the net
SPM per round-trip in one step according to the parameters
listed in Table I. The master equation (1) assumes a continuous
distribution of the GDD and SPM over one round-trip. In the
real laser, the action of the GDD and SPM is discrete very
much as in the split-step-Fourier transform. It is important
to know at which power levels and pulsewidth the discrete
action of the SPM and GDD leads to considerable deviations
from the average model assumed in (1). One expects, that the
discrete action of the SPM and GDD will lead to additional
losses for shorter pulses in comparison to long pulses due to
the higher peak power and increased spectral width. Therefore,
the discrete nature of the two processes in the laser will also
lead to a pulse breakup if the peak-phase shift due to the SPM
and the pulse shaping due to the GDD becomes too large
per round-trip. We show this SPM induced breakup for the
Nd:glass laser model above by fixing the small-signal gain
at a value of 0.06, so that we stay below the breakup
into multiple pulses due to the bandwidth limitations imposed
by the gain. Then, we vary the SPM and the negative GDD
linearly from 0.1/MW to 2/MW and 37.5 to 750
fs , respectively, such that the ratio between the SPM and
GDD stays constant in each run, i.e., the pulsewidth of the
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Fig. 15. Each trace shows the pulse intensity profile obtained after 20 000
cavity round-trips for an absorber with a response timeTA = 200 fs for
different values of the SPM coefficient indicated on the left. The simulations
are always started with a 1-ps initial pulse shown as the first trace. Note only
the single-pulse solutions are stationary.

corresponding soliton should stay constant. Then the laser
is simulated over 20 000 round-trips and the resulting pulse
trains are shown in Fig. 15. We see, that the pulse shape stays
constant for SPM values greater than 0.2/MW, when the
soliton-like pulse shaping becomes strong enough. However,
for SPM values as large as 1/MW the pulse shape
starts to change again. The pulse broadens and a background
occurs or the pulse breaks up as observed before. In total,
we see for the given case that the deviation from the average
dynamics described by (1) occurs when the nonlinear phase
shift, e.g., the product of the peak pulse power and the SPM
reaches about a value of 0.2 which is more than
two times larger then the nonlinear phase shift that occurs
before the pulses break up in the simulations shown in Fig. 11.
Nevertheless, the influences of the discreteness of the pulse
shaping processes might already influence the dynamics of the
Nd:glass laser in [12] beyond the first breakup point. In total,
this discussion shows that the discrete action of the intracavity
elements leads to additional losses for the pulse, which results
in very similar effects as the finite gain bandwidth. In the
case studied here this occurs for nonlinear phase shifts larger
than 0.2 per round-trip. As we have seen above, the
pulse stability depends critically on the amount of saturable
absorption employed, and how close we operate the laser at the
threshold to instabilities where the minimum pulsewidth can be
expected. Therefore, the precise value of the nonlinear phase
shift where the discrete action of the SPM drives the pulse
unstable or makes a visible difference to the average dynamics
depends critically on the amount of saturable absorption in the
laser which stabilizes the pulse. The effects of the discreteness
of the elements is most pronounced in fiber lasers and the
sub-10-fs Ti:sapphire lasers where the typical intracavity peak
powers and/or the focussing into the gain material is stronger
than in the case discussed here. However, it has to be noted
that in the Nd:glass laser model used here we had only a
saturable absorber with 0.5% modulation depth. In the sub-
10-fs lasers, we typically had SESAM’s with several percent
of modulation depth [15] and the KLM induced modulation
depth can be several ten percent. In that case much higher
nonlinear phase shifts are necessary to drive the mode-locking
process unstable.

VI. CONCLUSION

We have shown that one can also employ slow saturable
absorbers for short pulse generation. Already without any
soliton-like pulse shaping, such an absorber can generate
pulses much shorter than the recovery time of the absorber
at the expense of some pulse broadening when compared
with a fast saturable absorber of equal strength and similar
saturation under pulsed excitation. If additional soliton-like
pulse shaping is present, the pulse can be further compressed
below the width of the net gain window and further shortened
by a factor of about two in the case of a fast saturable
absorber and even more in the case of a slow saturable
absorber. The soliton-like pulse shaping, which decouples
to a large extend the pulse shaping from the stabilization
that is provided by the saturable absorber, may lead to a
breakup of the single pulse per round-trip into many pulses
per round-trip. The most stable operation against breakup
into multiple pulses is obtained, if the absorber is about
three times saturated (i.e., the intracavity pulse energy is
about three times the saturation energy of the absorber).
A laser mode-locked by a fast saturable absorber is more
stable against multiple pulse breakup than a slow saturable
absorber, especially if it is oversaturated. One has to be
aware, that the saturation behavior of a real semiconductor
saturable absorber can be more complex than the simple
saturation formulas derived for a two-level system in the
limit of a fast or slow recovery time. Nevertheless, the
formulas and operation guidelines derived here in using fast
or slow saturable absorbers for the mode-locking of lasers
allow for a design of the absorber for the power levels and
pulsewidth one wants to achieve with a given system. The
general arguments presented are true even if the saturation
characteristics of the absorber deviates from the simple re-
lations for a two-level system. For example, the saturation
characteristics of a semiconductor absorber will definitely
depend on the pulsewidth as well as on the excitation wave-
length. SESAM’s offer the additional benefit that the detailed
saturation charcteristics of the absorber can be determined
by independent pump-probe measurements [2], [15]. From
the measured saturation characteristics, one can compute the
new optimum operation point according to (22) for the given
absorber.
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