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Abstract—We present a theory for the analytical design of
double-chirped mirrors with special dispersion characteristics.
A simple analytical equation takes an arbitrarily desired group
delay dispersion (that also includes possible higher order disper-
sion) as an input function and gives the chirp law as an output.
The chirp law determines the local Bragg wavelengths in the
mirror. It allows the calculation of the thicknesses of the high-
and low-index layers if the double chirp of the layers in the front
part of the mirror is taken into account. We use this method to
design a highly dispersive double-chirped semiconductor Bragg
mirror and a double-chirped TiO 2–SiO2 mirror for higher or-
der dispersion compensation in optical parametric oscillators
operating in the visible spectral range. The design formulas are
applicable to general chirped Bragg gratings and provide insight
into the reasons why certain dispersion characteristics might be
impossible to achieve.

Index Terms—Chirped mirrors, coatings, coupled-mode analy-
sis, dielectric films, dispersion control, thin-film devices, ultrafast
optics, WKB analysis.

I. INTRODUCTION

RAPID advances in ultrashort pulse generation have re-
sulted in sub-10-fs pulses from Ti:sapphire lasers [1]–[4].

It became evident that the main limitation to short pulse
generation is given by higher order dispersion. Chirped mirrors
[5] provide a powerful and compact technique for disper-
sion compensation. Additionally, they exhibit a broader high-
reflectance range than standard quarter-wave Bragg mirrors.
A chirped mirror introduces a controlled negative group delay
dispersion (GDD) by increasing the local Bragg period of the
mirror along the grating.

However, so far there were no analytical laws for the
chirping of the layer thicknesses for mirrors with a given
dispersion characteristic. Therefore, the mirrors are often de-
signed by time-consuming numerical optimization. The reason
for this lack in appropriate design formulas is that the standard
design methods for optical interference coatings were mostly
focused on their reflection and transmission properties but
not on the phase properties of the coatings. There exist only
a few papers concerning the phase properties of multilayer
coatings by analytical means (see, for example, [6]). Most of
these results are only of a qualitative nature and give little
analytical insight into the design problem. Additionally, they
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do not answer important questions such as “Is it possible to
design chirped mirrors with some arbitrarily chosen dispersion
characteristics?” or “What is a good starting structure for a
chirped mirror that can be used for computer optimization,
given the desired reflectance and GDD of the mirror?”

Recently, we developed a theory for chirped mirror analysis
that resulted in the double-chirped mirror (DCM) design
technique [7], [8]. The theory, which is based on an exact
coupled-mode analysis [9], allows for an easy and still pre-
cise calculation of the group delay and GDD by using the
WKB approximation. In the case of weakly index-modulated
nonuniform grating structures (e.g., chirped fiber gratings), the
usefulness of the WKB approach has been already demon-
strated by Poladian and Sipeet al. [10], [11]. In this paper, we
use our analytical expressions and derive the chirp law for the
design of mirrors with an arbitrary dispersion characteristic.

This paper widely uses the notation and results derived
in [8] and is organized as follows. In Section II, the main
results of [8] are summarized in a self-contained manner. In
Section III, a differential equation for the chirp law, given
a desired GDD, is derived within certain approximations.
Subsequently, in Section IV, we use the analytical solution
of this differential equation and explicitly determine the chirp
law for some analytically and some numerically solvable cases.
Finally, in Section V, the applicability and use of the derived
formulas is demonstrated by investigation of two examples,
a semiconductor Bragg mirror with a constant negative GDD
and a dielectric mirror for dispersion compensation in optical
parametric oscillators (OPO’s). We discuss the final design of
the dispersion compensating OPO mirrors obtained from the
theoretical starting design after numerical refinement. These
DCM’s have the potential to support 6-fs pulses from an OPO
in the visible [12].

II. WKB D ESCRIPTION OF ADOUBLE-CHIRPED MIRROR

According to Fig. 1, a DCM is an optical interference
coating that in general consists of four multilayer subsections
deposited on a substrate. For dispersion-compensating broad-
band high reflectors, the layer materials are dielectrics such
as SiO and TiO . The first section of a DCM is a broad-
band antireflection (AR) coating, which typically consists of
8–14 layers and matches the subsequent optical coating to the
ambient medium [7], [8]. Here, we do not consider the problem
of finding a proper high-quality AR coating (see, for example,
[13]). We start to design the phase and amplitude properties
of the mirror under the assumption of perfect matching to
the ambient medium. Therefore, we count the layers starting
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Fig. 1. Schematic drawing of a DCM, which is composed of four multilayer
sections. The different task of each section is described in the text. The
position in the mirror is determined by the variablem; wherem = 0 defines
the beginning of the theoretical DCM structure directly after the AR coating.
Light, with wavenumberk; is reflected at the wavenumber-dependent classical
turning pointmt(k).

from the first layer following the AR-coating section and we
calculate all quantities with respect to this layer, which we
assume to be made of the low-index material.

The double-chirp section is necessary for the avoidance of
Gires–Tournois-like oscillations in the group delay. Double
chirping means that the local Bragg wavelength of the index
grating and the local coupling of the incident wave to the
reflected wave are chirped simultaneously. This corresponds
to an adiabatic matching of the impedance of the Bragg
grating to the low-index layer at the front, as discussed in
[7], [8]. In the subsequent simple-chirp section (Fig. 1), only
the Bragg wavelength is chirped. This means that the high-
and low-index layers are quarter-wave layers for maximum
reflection of waves with a wavelength close to the local Bragg
wavelength. The fourth section is a quarter-wave Bragg mirror
with fixed Bragg wavelength. The third and fourth sections are
optional and depend on the special design problem considered.
However, they are necessary to obtain high reflectances over
a wavelength range as broad as possible.

The following theoretical derivation of the chirp law, as
presented in Sections III and IV, deals only with the double-
chirp and simple-chirp sections of the DCM and does not
include the quarter-wave section. The reason is that wave-
lengths around the fixed Bragg wavelength of the quarter-wave
section are reflected approximately at the same position in
the mirror. This leads to an almost vanishing dispersion and
the one-to-one mapping of the wavelength with its point
of reflection (classical turning point) is lost. However, the
quarter-wave stack at the end of the mirror can be considered
as a continuation of the simple-chirp section in the case of
a desired small amount of negative dispersion for the long
wavelengths, as will be explained in more detail in Section
V-C.

The Bragg grating is decomposed into symmetrically de-
fined index steps [7], [8], and the discrete variable
counts the index steps of the chirped Bragg grating (see Fig.
2). In [7] and [8], we found an exact description of a chirped
Bragg grating by exact coupled-mode equations of the form

(1)

where and are the slowly varying amplitudes of the
forward and backward propagating waves, respectively. Here,

is considered to be a continuous variable, where the

Fig. 2. Refractive-index profile of a DCM composed of two different
layer materials with the indicesnh and n1. The physical thickness of the
symmetrically defined index steps is given by�(zm) = dh;m + d1;m;

where dh=1;m denotes the physical thickness of the high-/low-index layer
at the (�m)th index step.

connection to the coordinate is given via
where is the physical thickness of the
individual index step at position . Thus, in (1), the thickness
of a complete index step is normalized to . Note that
we place the mirror on the negative side of theaxis, i.e.,

where defines the beginning of the mirror
(see Fig. 1). As we have recently shown, a chirped mirror
is exactly described by the coupled-mode equations (1) even
for arbitrarily high index differences of the layer materials,
if the exact normalized coupling coefficient and detuning
coefficient are used [8], [9].

In [8], we used the WKB approximation to derive the
following expression for the phase of the wave reflected
by a DCM with an ideally matched front part of the mirror,
which is achieved by the double-chirp section:

(2)

with

(3)

Here, is the vacuum wavenumber. The propagation constant
in the grating is the square root of the negative scattering

potential of the Schr̈odinger equation, which is equivalent
to the coupled-mode equations (1), and is the right turning
point of the corresponding classical motion. The classical
turning points are defined by the condition

(4)

In the following, we consider only generic potentials with one
or two classical turning points [8, Fig. 6], where the right
turning point corresponds to the positive sign in (4). In Fig.
3, the negative potential and the effective wavenumber

are shown for a typical DCM for a wavelength in the high-
reflectance region. The areain the figure corresponds to the
integral that has to be calculated when evaluating (2).
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Fig. 3. The effective propagation constantq(m) in the grating is the square
root of the negative scattering potential�U0(m). The phase of the reflected
light is essentially given by twice the areaAAA under theq(m)-curve, according
to (2). The area has to be integrated from the beginning of the mirror(m = 0)
to the right classical turning pointmt. In the zeroth-order approximation, one
has to integrate over the absolute value of the detuning coefficientj�(m)j.
The error in the phase due to this approximation is indicated by the additional
area�AAA. The curves in this figure are obtained for a typical wavelength in
the high-reflectance range of a dielectric DCM.

III. A NALYTICAL DERIVATION OF THE CHIRP LAW

In this section, we derive approximate expressions for the
group delay and the GDD, based on (2). The relation for the
GDD can also be interpreted as a differential equation for the
classical turning point of the Bragg grating as a function of
wavenumber, if a certain GDD is desired.

A. Approximation of the WKB Formulas

Generally, it is not possible to derive analytical expressions
for the GDD due to the complicated integrand

in (2). Therefore, we expand the square root in a
Taylor series according to

(5)

and take only the zeroth-order term for an analytical
estimation of the phase properties. The expansion (5) is always
possible since in the interval . Fig. 3 also shows
the error in the integral (2) in zeroth-order approximation.
Note that, in the impedance-matched case considered here, the
propagation constantand its approximation have the same
tangent at the beginning of the mirror, i.e., .

In principle, one has to use the exact coupling and detuning
coefficients for the calculation of the phase integral. However,
for an analytical treatment of the DCM dispersion, further
approximations are necessary. Therefore, in this paper, we use
the expressions

(6)

(7)

which agree with the coefficients from standard coupled-mode
theory [14]. Here, we have introduced the Fresnel reflectivity

(8)

where and are the refractive indices of the high- and
low-index layer materials, respectively. In the following, we
denote

(9)

as the local Bragg wavenumber and
as the corresponding local Bragg wavelength, where

and are the physical layer thicknesses of the high-
and low-index layers, respectively, at the th index step
(see Fig. 2).

B. Chirp Laws for the Bragg Wavenumber

Using the approximations (5)–(7), we derive the group delay
from (2)

(10)

where is the velocity of light in vacuum with the
angular frequency . Note that the second equality holds
because the integrand (3) vanishes at the classical turning point
according to (4). Thus, we first built the derivative of (2) with
respect to wavenumber, and afterwards we applied the zeroth-
order approximation (5). The approximate group delay (10) has
a simple physical interpretation. It is the optical path length
for a wave traveling from the mirror surface to the classical
turning point and back. From (10), we obtain the GDD

(11)

The meaning of this equation is twofold. The equation
allows one to calculate the dispersion if the Bragg wavenumber
is given as a function of the index step which
also specifies the classical turning point as a function of
wavenumber. The equation can also be interpreted as a first-
order differential equation for the classical turning point if a
certain dispersion is desired. Here, we are interested
in the second interpretation, since it gives us the Bragg
wavenumber for the index steps, and therefore the layer
thicknesses, for a desired dispersion characteristic. Thus, we
write

(12)



132 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 35, NO. 2, FEBRUARY 1999

where we have used the equation for the classical turning point

(13)

which follows from condition (4) with the approximations (6)
and (7). Equation (13) shows that, for negligible coupling
coefficients, the incident wave is reflected at the point where
the wavenumber equals the Bragg wavenumber. This happens
where the approximate detuning coefficient vanishes according
to (7).

The general solution of the differential equation (12) is given
by

(14)

where is an arbitrary integration constant. This equation
determines the classical turning point for a given wavenumber

. By using (13), which connects the Bragg wavenumberat
the classical turning point with the wavenumberthe classical
turning point can be written as a function of the corresponding
Bragg wavenumber. Thus, we get the following inverse law
for chirping the Bragg wavenumber with position in the
mirror:

(15)

Note that the index at the variable is no longer necessary,
since we consider as an independent variable. The inte-
gration constant is determined by a boundary condition—for
example, the Bragg wavenumber at the beginning of the
mirror. Hence, we have a condition of the form

(16)

where denotes the maximum Bragg wavenumber of a
chirped mirror that produces a negative GDD. In that case,
the Bragg wavenumber is a monotonically decreasing function
with respect to the negative axis.

Using (16), we obtain the following closed-form solution
for the turning point:

(17)

This equation allows us to calculate the position of the index
step at which the Bragg wavenumber has the valuein
order to achieve the given GDD. The inverse of this equation
determines the Bragg wavenumber and, therefore, according

to (9), the optical thickness as a function of the index step. At
first, (17) might look surprising, since it contains the product

and not only because that would
relate to the change of the group delay over a distance of the
index steps, if each step would have equal optical length. But
this is not the case, and the optical thickness of theth step
is proportional to the inverse of .

IV. A NALYTICAL EXAMPLES

In this section, we analytically discuss examples for using
(17).

A. Analytically Invertible Examples

For some simple cases of the desired GDD, the chirp law
can be derived explicitly. This is the case for a GDD that
obeys a power law of the form

(18)

Here, is the absolute value of the desired GDD at
wavenumber . For such a GDD, the third-order dispersion
(TOD) is given by

(19)

One can see that the TOD is positive for negative for
and vanishes for . If we substitute (13) into (18),

the calculation of the integral in (17) results in

(20)

The inverse relationship leads to (21), shown at the bottom
of the page, where we have used . Note that the
chirp law for the case follows directly from the case

in the limit . As an example, to obtain a
constant negative GDD , one has to chirp the Bragg
wavenumber according to the following square root law:

(22)

(21)
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which is a rather unexpected result. An example using this
analytical chirp law will be discussed in detail in Section V-
A in the context of the design of a chirped semiconductor
mirror. Reference [15] shows a comparison of group delays
with different TOD’s obtained when using (21) for different
values of the chirp exponent.

Since we will want to compare the exact calculated group
delay with the group delay obtained from the WKB solution,
we give the group delay for the chirp law (21) according to
(10) by using (21) and (13) for the evaluation of the integral
and determination of the classical turning point. The result,
(23), is shown at the bottom of the page. In the same way as
mentioned above, the case follows from the
case in the limit .

B. Taylor Expansion of the Desired Dispersion Characteristic

In general, the relationship (17) cannot be inverted. How-
ever, we can always compute the index step as a
function of Bragg wavelength if the dispersion is given as
a Taylor expansion around a center wavenumber

(24)

Here, we have introduced the dispersion coefficients

(25)

Substitution of (13) into (24) and integrating the GDD ac-
cording to (17) finally leads to

(26)

Once this expression has been obtained and plotted, the
inversion can always be obtained by inspection. In Section
V-B, we discuss the complete design of a DCM starting from
the analytical equation (26). This will show the usefulness
of this approach for the analytical determination of an initial
design that is already very close to the desired dispersion
characteristic.

Fig. 4. Chirp law, which gives the Bragg wavenumber or Bragg wavelength
as a function of the normalized positionjmj in the mirror, for a highly
dispersive DCSM. In the case of a desired constant GDD, the chirp law with
respect to Bragg wavenumber is a square root function according to (22). For
the example discussed in the text, the chirp law has been used only over the
first 60 index steps.

V. NUMERICAL EXAMPLES

A. Double-Chirped Semiconductor Mirror

Here, we discuss the design of a double-chirped semi-
conductor mirror (DCSM) with a constant negative GDD.
This example illustrates the method and demonstrates the
applicability of the theory not only to the design of chirped
dielectric mirrors but also to the design of chirped Bragg
gratings in general. However, we do not discuss the problem of
matching the DCSM to air and the improvement of the design
by computer optimization. A complete design including these
issues is described in Section V-B.

Here, we use the constant refractive indices and
which are close to the refractive indices of AlAs and

GaAs, respectively, at around 1050 nm. For these indices, the
approximate coupling coefficient is according
to (6). We desire a constant GDD. Thus, (22) is used as the
chirp law for the Bragg wavenumber. For the desired GDD,
a typical absolute value of fs is assumed. A
dispersion value at this order of magnitude is desired in many
applications where large amounts of dispersion have to be
compensated for within a single bounce on the mirror. The
region of high reflectance and constant dispersion should be
centered at around 1050 nm. The value for the minimum Bragg
wavelength is set to nm, which corresponds to
a maximum Bragg wavenumber of nm

m .
Fig. 4 shows the Bragg wavenumber and Bragg wavelength

with respect to the normalized distance in the mirror, obtained
for the values above. Obviously, the Bragg wavenumber
decreases to zero at . Thus, with the chirp law
used here, one can only chirp the Bragg wavenumber over a

(23)
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(a)

(b)

Fig. 5. Reflectance, group delay, and GDD of a double-chirped semiconduc-
tor Bragg mirror using the chirp law shown in Fig. 4. The thickness of the
high-index layer was chirped as described in the text. (a) The bandwidth of
the highly reflective region is about 100 nm. (b) The designed GDD (solid
line) oscillates around the desired constant GDD (dashed line). The difference
between the designed group delay (solid line) and the group delay obtained
from the WKB solution (dash–dotted line) is mostly due to the assumed
constant coupling coefficient.

maximum distance of about 280 index steps. However, due to
practical limitations arising from semiconductor growth (e.g.,
with MOCVD), the number of index steps cannot be much
larger than 100. Thus, for a demonstration, we use 60 index
steps. For the computation of the mirror properties, the Bragg
wavenumber has to be taken at 60 discrete points defined
by with . The reflectance and
phase properties upon reflection are exactly calculated with
the transfer matrix formalism.

Fig. 5 shows the mirror reflectance, group delay, and
GDD, where all properties are calculated without consid-
ering the index jump to an ambient medium. In order to
avoid undesired oscillations, the impedance was matched very
slowly over the first 50 index steps by an appropriate slow
tapering of the coupling coefficient [7], [8]. Thus, the design
presented here consists of only two parts, the double-chirp
section (50 index steps) and a simple-chirp section (10 index
steps). Here, the coupling coefficient was increased almost
linearly via the thickness of the high-index layers according
to . The reason is that an

TABLE I
CENTER WAVELENGTH AND DISPERSIONCOEFFICIENTS, ACCORDING TO (24),

FOR THE DESIRED GDD OF A DIELECTRIC DCM THAT CAN BE USED FOR

DISPERSIONCOMPENSATION IN AN OPO,AS DESCRIBED IN THE TEXT

increase with a higher power law, e.g., with an exponent 2,
would lead to unrealistically thin high-index layers in the front
part of the mirror. Additionally, a double chirp which is too
strong would superimpose an additional dispersion effect that
is undesired for the demonstration of the method described
here.

As can be seen from Fig. 5(a), the high-reflectance range
has a bandwidth of more than 100 nm. However, due to the
long matching section, a part of the high-reflectance range
has been lost on the short wavelength side. This is why the
minimum Bragg wavelength was chosen as short as 980 nm.
Fig. 5(b) shows the group delay and GDD. Obviously, the
theoretical design is very close to the desired group delay
and GDD, respectively. The designed GDD oscillates around
the desired constant value. The average value is in excellent
agreement with the desired value. The oscillations are due to
imperfections in the double-chirp section and could be further
reduced by methods such as numerical optimization. One has
to note that the desired group delay is only determined up to
a constant offset value. Therefore, we adjust the desired group
delay for one wavelength. The dash–dotted line in Fig. 5(b)
is the group delay obtained from the WKB solution (23) for
the analytical chirp law (22) . The constant difference
between the adjusted group delay and the WKB solution is
about 50 fs. This difference is explained by the assumption
of a constant coupling coefficient, according to (6). As we
discussed in [8], that approximation leads to an almost constant
difference between the exact computed group delay and the
WKB solution. However, this is irrelevant for the physically
most important quantity, which is the GDD.

B. Design of a Double-Chirped Dielectric Mirror

Here, we discuss the complete design of a dielectric DCM
with a desired dispersion characteristic, given as a Taylor
expansion (24) up to sixth order. The center wavelength
and dispersion coefficients are summarized in Table I. Six
bounces on this mirror should compensate for the material
dispersion introduced by a 2-mm-long BBO crystal and 1 mm
of fused silica [12]. It is of considerable interest to have broad-
band dispersion compensating mirrors at around 600 nm for
short-pulse OPO’s [16], [17] and optical parametric amplifiers
(OPA’s) [18], [19] in that wavelength range.

For the numerical evaluation of (26), the maximum Bragg
wavenumber was chosen to be nm

m . For the coupling coefficient, we used the constant
value which is obtained from (6) for the indices

and . These indices are close to the
indices of SiO and TiO at wavelengths around nm.
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Fig. 6. Chirp law for a dielectric DCM with a desired GDD, as summarized
in Table I. The minimum Bragg wavelength was chosen to be 500 nm. At
jmj � 24; the inverse chirp law is not invertible due to the increase of the
desired GDD for longer wavelengths [see Fig. 7(b)]. Also shown are the 23
discrete points at which the chirp law was evaluated in order to generate the
theoretical designs shown in Fig. 7. The dashed vertical line symbolizes the
position in the mirror where all wavelengths around the Bragg wavelength are
reflected, when a quarter-wave section follows after the simple-chirp section.

Fig. 6 shows the Bragg wavenumber and Bragg wavelength
again as a function of the position in the mirror. One can see
that, for this example, (26) is not a one-to-one function. This
means that, at , the inverse chirp law (24) is locally
not invertible. The occurrence of this phenomenon is discussed
in detail in Section V-C. Thus, using this law, one can chirp the
Bragg wavenumber only over a maximum number of 24 index
steps. In order to generate a mirror design with not too many
layers, the design presented here was chirped over 23 index
steps. The 23 discrete points for the Bragg wavenumbers,
where the chirp law is evaluated, are also shown in Fig. 6.

Fig. 7 shows the mirror properties for a final design that
can be fabricated. This design is achieved by starting from
the analytical design obtained with the discrete points for the
Bragg wavenumber from Fig. 6. Additionally, the problem
of matching to air is solved by putting a broad-band AR
coating on top of the mirror [7], [8]. Finally, the design
performance is improved by computer optimization with a
standard gradient algorithm from [20]. It is important to note
that, for the refinement procedure and calculation of the final
mirror properties, the wavelength dependence of the refractive
indices as well as the absorption and scattering losses have
to be taken into account. In contrast, this is not necessary for
the determination of the discrete Bragg wavenumbers from
(26), because these effects are considered to be small. For the
generation of the analytical initial design, the thickness of the
high-index layer was almost linearly chirped over the first 10
index steps according to .

Fig. 7(a) shows the reflectance and group delay of the final
design. The reflectance is high over a bandwidth of 250 nm
(500–750 nm), and the group delay is very smooth over a
bandwidth of about 180 nm (540–720 nm). In this range,
the deviation from the desired group delay is only 0.14 fs
(rms). As is demonstrated by Fig. 7(b), the designed GDD
oscillates around the desired GDD in this region, with an
oscillation amplitude of 6–7 fs . Although the starting design
is computer optimized, the oscillations in the GDD cannot be
removed completely. The reason is that the AR coating does
not allow the generation of a perfect matching to the ambient
medium (air) over a bandwidth of 180 nm.

(a)

(b)

Fig. 7. Broad-band design of a DCM that is useful for dispersion com-
pensation in an OPO. The designed reflectance, group delay, and GDD are
obtained using the chirp law shown in Fig. 6. The thickness of the high-index
layer was chirped as described in the text. The mirror properties are shown
after adding an AR coating on top of the mirror structure and a subsequent
computer refinement. (a) The mirror is highly reflective over a bandwidth of
about 250 nm. The designed group delay (solid line) is extremely smooth and
is very close to the desired group delay (dashed line) over a bandwidth of
about 180 nm. (b) The designed GDD (solid line, upper plot) oscillates around
the desired GDD (dashed line, upper plot) with an amplitude of about 6–7
fs2 in that range. The lower plot shows the difference between the designed
and desired GDD.

Fig. 8 shows the physical layer thicknesses of the starting
design and of the final design after computer optimization.
The total design consists of 54 layers, in which 46 layers
have been used for the theoretical DCM structure and 8 layers
for the AR coating. The layer thicknesses of the AR coating
are only shown after optimization. The reason is that we
started from a 12-layer AR coating, but during the optimization
procedure it was possible to eliminate the two thinnest layers
of the AR coating leading to an effective reduction of 4
layers. The figure illustrates two facts. The first observation
is that the analytical initial design of the DCM does not
change very much during optimization. Most corrections to
the starting design occur in the AR coating in the front part of
the total mirror. The other observation is that the different
sections of the DCM can still be clearly identified. In the
AR coating, the layer thicknesses seem to change randomly,
whereas the double-chirp section starts with very thin high-
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Fig. 8. Layer thicknesses of the DCM design corresponding to the mirror
properties shown in Fig. 7. The thicknesses of the high- and low-index layers
are shown before and after computer optimization. The layer thicknesses of the
AR coating are only shown after optimization because the two thinnest layers
of the AR coating are removed during the refinement procedure. Obviously,
the different sections of a DCM can still be clearly identified even after
computer optimization.

index layers with increasing thicknesses along the DCM. The
thickness of the low-index layers decreases in the double-
chirp section. In the simple-chirp section, the thicknesses
of the high- and low-index layers increase simultaneously.
The stability of the starting design against changes due to
the optimization procedure is understood by the fact that a
sufficiently good AR coating can be designed over a bandwidth
of about 180 nm at wavelengths around 600 nm. If one tries
to extend the bandwidth with smooth dispersion properties
beyond the bandwidth of the AR coating, the optimization
will significantly change the layer thicknesses of the DCM
structure. Additionally, the amplitude of the oscillation in the
GDD will increase with the required bandwidth.

The mirror design presented here will be manufactured in
the near future. If the properties of the fabricated mirrors will
be close to the designed properties, ultrashort laser pulses from
an OPO with a duration of about 5–7 fs can be expected [12].

C. Unfavorable Choice of the Desired
Dispersion Characteristic

The analytical discussion of the dispersion behavior of
DCM’s gives insight into reasons why certain dispersion
characteristics might be difficult, if not impossible, to achieve.
For example, such a situation arises if the absolute value of
the desired second-order dispersion coefficient is chosen
too low or too high, or if the ratio between the different
dispersion coefficients is chosen in an unfavorable
way. Generally, one has to chirp relatively slowly to obtain a
high amount of negative dispersion and relatively quickly for
a small amount. As a consequence, in the first case, one needs
many index steps to achieve a broad enough high-reflectance
bandwidth. In the second case, it is possible that the reflectance
is reduced due to the fast chirp over a small number of index
steps. Thus, for given materials, there is always an optimum
range for the dispersion, over which a high reflectance and
smooth GDD can be achieved simultaneously.

The great advantage of the design method described in
this paper is that situations, in which the optimum range

is left, are clearly indicated by plotting and analyzing the
chirp law, derived from (21) or (26). As an example, the
noninvertible region in Fig. 6 at a finite Bragg wavelength
is a consequence of the increase of the desired GDD with
respect to wavelength [see Fig. 7(b)]. In fact, the critical Bragg
wavenumber at which this happens corresponds exactly to the
wavenumber where the desired GDD becomes positive. Using
the values for the design discussed in Section V-B, the critical
Bragg wavenumber is m nm)
and the wavenumber for vanishing dispersion is found to be

m nm). These wavenumbers
are connected via (13). Now, it is quite easy to understand what
happens. As long as the desired GDD is negative, the Bragg
wavenumber is a monotonically decreasing function. When
the desired GDD becomes positive, the direction of the chirp
has to be changed, which means that the Bragg wavenumber
should now increase. Of course, the formulas derived from
WKB solutions cannot cover this case. Additionally, the fast
chirp for the longer wavelengths also explains the problem of
keeping the reflectance at a high level, as is demonstrated by
the decrease of the reflectance with respect to wavelength [see
Fig. 7(a)]).

A quarter-wave section following the simple-chirp section
offers a possible solution over a limited wavelength range
when the noninvertible region is reached. The quarter-wave
stack solves both problems: it increases the reflectance and
leads to an almost vanishing dispersion for wavelengths around
the corresponding Bragg wavelength. Thus, in such a case, the
Bragg mirror can be considered as the “natural” continuation
of the simple-chirp section, symbolized by the dashed vertical
line in Fig. 6. The Bragg wavelength of the quarter-wave
section is a free parameter which can be adjusted to achieve
maximum performance. It should be chosen much smaller
than and close to the last value used in the simple-chirp
section. However, this method works only over a restricted
wavelength range.

The conclusion is that, if the inverse chirp law is not invert-
ible in the region of interest, as described above, the design
method proposed in this paper will not lead to an appropriate
theoretical starting design for later computer refinement. A
possible solution is to change the desired dispersion char-
acteristic or to add a quarter-wave stack after the simple-
chirp section. On the other hand, the failure of producing a
reasonable initial design indicates that an optimum design for
a high-reflectance coating with the desired dispersion might
not exist.

VI. CONCLUSION

We have presented an analytical design method for DCM’s
or general chirped Bragg gratings with a given dispersion char-
acteristic. Problems in the mirror design that may arise due to
an unfavorable choice of the desired GDD are indicated by the
corresponding chirp law. The chirp law also directly indicates
how many layers have to be used for the theoretical design
in order to achieve the desired dispersion characteristic over a
given bandwidth. The applicability of our design method has
been demonstrated by two examples, a semiconductor and a
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dielectric DCM. As has been shown, the analytical designs
achieved by this method are very close to the desired design
goals and can be used as excellent starting designs for a
subsequent computer optimization.
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10 fs mirror-dispersion-controlled Ti:sapphire laser,”Opt. Lett., vol. 20,
pp. 602–604, 1995.

[3] I. D. Jung, F. X. K̈artner, N. Matuschek, D. H. Sutter, F. Morier-Genoud,
G. Zhang, U. Keller, V. Scheuer, M. Tilsch, and T. Tschudi, “Self-
starting 6.5 fs pulses from a Ti:sapphire laser,”Opt. Lett., vol. 22, pp.
1009–1011, 1997.

[4] D. H. Sutter, I. D. Jung, F. X. K̈artner, N. Matuschek, F. Morier-Genoud,
V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Self-starting 6.5-fs
pulses from a Ti:sapphire laser using a semiconductor saturable absorber
and double-chirped mirrors,”IEEE J. Select. Topics Quantum Electron.,
vol. 4, pp. 169–178, 1998.

[5] R. Szip̈ocs, K. Ferencz, Ch. Spielmann, and F. Krausz, “Chirped
multilayer coatings for broadband dispersion control in femtosecond
lasers,”Opt. Lett., vol. 19, pp. 201–203, 1994.

[6] A. V. Tikhonravov, P. W. Baumeister, and K. V. Popov, “Phase
properties of multilayer coatings,”Appl. Opt., vol. 36, pp. 4382–4392,
1997.
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