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Analytical Design of Double-Chirped Mirrors with
Custom-Tallored Dispersion Characteristics

Nicolai Matuschek, Franz X. &tner, and Ursula Kelletmember, IEEE

Abstract—We present a theory for the analytical design of do not answer important questions such as “Is it possible to
double-chirped mirrors with special dispersion characteristics. design chirped mirrors with some arbitrarily chosen dispersion
A simple analytical equation takes an arbitrarily desired group characteristics?” or “What is a good starting structure for a

delay dispersion (that also includes possible higher order disper- _, . - S
sion) as an input function and gives the chirp law as an output. chirped mirror that can be used for computer optimization,

The chirp law determines the local Bragg wavelengths in the diven the desired reflectance and GDD of the mirror?”
mirror. It allows the calculation of the thicknesses of the high- Recently, we developed a theory for chirped mirror analysis

and low-index layers if the double chirp of the layers in the front  that resulted in the double-chirped mirror (DCM) design
part of the mirror is taken into account. We use this method to technique [7], [8]. The theory, which is based on an exact

design a highly dispersive double-chirped semiconductor Bragg . .
mirror and a double-chirped TiO »—SiO, mirror for higher or- coupled-mode analysis [9], allows for an easy and still pre-

der dispersion compensation in optical parametric oscillators CiSe calculation of the group delay and GDD by using the
operating in the visible spectral range. The design formulas are WKB approximation. In the case of weakly index-modulated

applicable to general chirped Bragg gratings and provide insight nonuniform grating structures (e.g., chirped fiber gratings), the
into the reasons why certain dispersion characteristics might be usefulness of the WKB approach has been already demon-
impossible 1o aCh'e_ve' _ _ strated by Poladian and Sigeal.[10], [11]. In this paper, we
_Index Terms—Chirped mirrors, coatings, coupled-mode analy- yse our analytical expressions and derive the chirp law for the
sis, dielectric films, dispersion control, thin-film devices, ultrafast design of mirrors with an arbitrary dispersion characteristic
optics, WKB analysis. . . . g
This paper widely uses the notation and results derived
in [8] and is organized as follows. In Section Il, the main
I. INTRODUCTION results of [8] are summarized in a self-contained manner. In

APID advances in ultrashort pulse generation have re€ction lll, a differential equation for the chirp law, given
Rsulted in sub-10-fs pulses from Ti:sapphire lasers [1]-[4} desired GDD, is derived within certain approximations.

It became evident that the main limitation to short pulsguPsequently, in Section IV, we use the analytical solution

generation is given by higher order dispersion. Chirped mirrap& this differential equation and explicitly determine the chirp

[5] provide a powerful and compact technique for dispe}‘f"_Wfor some analytically and some numerically solvable cases.

sion compensation. Additionally, they exhibit a broader higtiinally, in Section V, the applicability and use of the derived
reflectance range than standard quarter-wave Bragg mirrdf§mulas is demonstrated by investigation of two examples,
A chirped mirror introduces a controlled negative group deldy Semiconductor Bragg mirror with a constant negative GDD

dispersion (GDD) by increasing the local Bragg period of tHand a dielectric mirror for dispersion compensation in optical
mirror along the grating. parametric oscillators (OPQO’s). We discuss the final design of

However, so far there were no analytical laws for ththe dispersion compensating OPO mirrors obtained from the

chirping of the layer thicknesses for mirrors with a giveﬁheoretical starting desjgn after numerical refinement. These
dispersion characteristic. Therefore, the mirrors are often da&M's have the potential to support 6-fs pulses from an OPO

signed by time-consuming numerical optimization. The reasdh the visible [12].
for this lack in appropriate design formulas is that the standard
design methods for optical interference coatings were mostly
focused on their reflection and transmission properties butAccording to Fig. 1, a DCM is an optical interference
not on the phase properties of the coatings. There exist oglyating that in general consists of four multilayer subsections
a few papers concerning the phase properties of multilay#gposited on a substrate. For dispersion-compensating broad-
coatings by analytical means (see, for example, [6]). Most band high reflectors, the layer materials are dielectrics such
these results are only of a qualitative nature and give littes SiQ and TiO,. The first section of a DCM is a broad-
analytical insight into the design problem. Additionally, theyand antireflection (AR) coating, which typically consists of
8-14 layers and matches the subsequent optical coating to the
Manuscript received June 5, 1998; revised October 20, 1998. This wcﬁt(“?'e_”t medium [7]’_[8]' Her_e' we do no_t consider the problem
was supported by the Swiss National Science Foundation. of finding a proper high-quality AR coating (see, for example,
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Hodnggerberg-HPT E9, CH-8093 Zurich, Switzerland. of the m'rror un .er the assumption of perfect matching _tO
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Fig. 1. Schematic drawing of a DCM, which is composed of four multilayer S DR
sections. The different task of each section is described in the text. The 14 d 14
position in the mirror is determined by the variable wherem = 0 defines 2%m  Gbm - 5lLm
the beginning of the theoretical DCM structure directly after the AR coating. : ' Z
Light, with wavenumbet, is reflected at the wavenumber-dependent classical j 4
m=1 Zm m <1 m1

turning pointm (k).

Fig. 2. Refractive-index profile of a DCM composed of two different

. . . . layer materials with the indices, andni. The physical thickness of the
from the first layer following the AR-coating section and W&ymmetrically defined index steps is given BY ) = dym + dim.

calculate all quantities with respect to this layer, which weheredy,;,,,, denotes the physical thickness of the high-/low-index layer
assume to be made of the low-index material. at the (—m)th index step.
The double-chirp section is necessary for the avoidance of

Gires—Tournois-like oscillations in the group delay. Doublgonnection to the: coordinate is given viam = dz/A(zn),
chirping means that the local Bragg wavelength of the ind%ereA(zm) = dym + dym is the physical thickness of the
grating and the local coupling of the incident wave to thydividual index step at positios,,. Thus, in (1), the thickness
reflected wave are chirped simultaneously. This corresporgfsy complete index step is normalizedAan = 1. Note that

to an adiabatic matching of the impedance of the Bragge place the mirror on the negative side of theaxis, i.e.,
grating to the low-index Iayer at the front, as discussed m < 0, wherem = 0 defines the beginning of the mirror
[7], [8]. In the subsequent simple-chirp section (Fig. 1), onlsee Fig. 1). As we have recently shown, a chirped mirror
the Bragg wavelength is chirped. This means that the higl-exactly described by the coupled-mode equations (1) even
and low-index layers are quarter-wave layers for maximuggy arbitrarily high index differences of the layer materials,

reflection of waves with a Wavelength close to the local Bragg the exact normalized Coup"ng coefficient and detuning
wavelength. The fourth section is a quarter-wave Bragg mirrgpefficients are used [8], [9].

with fixed Bragg Wavelength. The third and fourth sections are In [8]’ we used the WKB approximation to derive the

optional and depend on the special design problem considemlowing expression for the phasg, of the wave reflected
However, they are necessary to obtain high reflectances oggra DCM with an ideally matched front part of the mirror,

a wavelength range as broad as possible. which is achieved by the double-chirp section:
The following theoretical derivation of the chirp law, as

presented in Sections Ill and IV, deals only with the double- - 0

chirp and simple-chirp sections of the DCM and does not  ¢:(k) = 3 +2'/ g(m) dm,  me€[m,0] (2)

include the quarter-wave section. The reason is that wave- m

lengths around the fixed Bragg wavelength of the quarter-wa\\/ﬁth

section are reflected approximately at the same position In

the mirror. This leads to an almost vanishing dispersion and

the one-to-one mapping of the wavelength with its point a(m) = V=Up = /&*(m) — 2(m). (3)

of reflection (classical turning point) is lost. However, the

quarter-wave stack at the end of the mirror can be considefd@re. % is the vacuum wavenumber. The propagation constant

as a continuation of the simple-chirp section in the case fin the grating is the square root of the negative scattering

a desired small amount of negative dispersion for the loR@tentially of the Schédinger equation, which is equivalent

wavelengths, as will be explained in more detail in Sectid® the coupled-mode equations (1), andis the right turning

V-C. point of the corresponding classical motion. The classical
The Bragg grating is decomposed into symmetrically déurning points are defined by the condition

fined index steps [7], [8], and the discrete variaplen) € N

counts the index steps of the chirped Bragg grating (see Fig. q(my) Lo= §(my) = +r(my). (4)

2). In [7] and [8], we found an exact description of a chirped

Bragg grating by exact coupled-mode equations of the formy, he following, we consider only generic potentials with one

d (Am)\ _.[=8(m) —r(m)\ {A(m) L or t\_/vo cla_ssical turning points [8, F?g. 6],_wh_ere the rig_ht

am\B(m) ) ~ ¢ K(m) 8(m) B(m) (1) turning p0|nt_ corresponds to the positive sign in (4). In Fig.

3, the negative potentiat U, and the effective wavenumber

where A and B are the slowly varying amplitudes of theq are shown for a typical DCM for a wavelength in the high-

forward and backward propagating waves, respectively. Hereflectance region. The arehin the figure corresponds to the
m is considered to be a continuous variable, where tlmtegral that has to be calculated when evaluating (2).
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1.4 which agree with the coefficients from standard coupled-mode
1oL =7 theory [14]. Here, we have introduced the Fresnel reflectivity
0
L 151 _
10 T~ =M (8)
0.8 AA nL+n1
0.6

wheren;, andn, are the refractive indices of the high- and

0.4r low-index layer materials, respectively. In the following, we
0.2 q denote
0.0 > 2m ™
-0.2k —— . ”IZI R ( ) )\B(m) nhdh,rn + nldl,rn
-25 -20 -15 -10 -5 0
m as the local Bragg wavenumber ang = 2 - (nydym +
Q‘ W:: SmoloCh > oubleCh > n1dy ) as the corresponding local Bragg wavelength, where
uarter-Wave imple-Chirp ouble-Chirp ; : i h
Section Section Section dn» andd; ., are the physical layer thicknesses of the high

and low-index layers, respectively, at thiem)th index step
Fig. 3. The effective propagation constastr) in the grating is the square (see Fig. 2)_
root of the negative scattering potential/o(m ). The phase of the reflected
light is essentially given by twice the areaunder they(m)-curve, according
to (2). The area has to be integrated from the beginning of the nfico= 0)  B. Chirp Laws for the Bragg Wavenumber
to the right classical turning point. In the zeroth-order approximation, one . . . .
has to integrate over the absolute value of the detuning coeffipiént)|. Using the approximations (5)—(7), we derive the group delay
The error in the phase due to this approximation is indicated by the additiofighm (2)
areaAA. The curves in this figure are obtained for a typical wavelength in

the high-reflectance range of a dielectric DCM. 2 0
Te(h) = c Ok O
[ll. ANALYTICAL DERIVATION OF THE CHIRP LAW __2 ’ <3|5(m)|) dm
. . . . . c o\ Ik
In this section, we derive approximate expressions for the e (k)
group delay and the GDD, based on (2). The relation for the _2m 0 1 dm
GDD can also be interpreted as a differential equation for the c me (k) kB (M)
classical turning point of the Bragg grating as a function of 1 /0
wavenumber, if a certain GDD is desired. = E/ w“ Ag(m) dm (10)

wherec = w/k is the velocity of light in vacuum with the
L _ ) . . angular frequencyw. Note that the second equality holds
Generally, it is not possible to derive analytical expressiopg,5;se the integrand (3) vanishes at the classical turning point
for the GDD due to the complicated integrandm) = according to (4). Thus, we first built the derivative of (2) with
V62 — r? in (2). Therefore, we expand the square root in @uspect to wavenumber, and afterwards we applied the zeroth-
Taylor series according to order approximation (5). The approximate group delay (10) has
a simple physical interpretation. It is the optical path length
- <1/2> < mQ)T’ (5) for a wave traveling from the mirror surface to the classical

62(m) — w2(m) = 18] - Y

A. Approximation of the WKB Formulas

=\ T2 turning point and back. From (10), we obtain the GDD
19
GDD(E) = - = Ty(k)

and take only the zeroth-order terfi| for an analytical
- . . . . 27 a
estimation of the phase properties. The expansion (5) is always = — 55—
possible sinc&? < §2 in the interval[m., 0]. Fig. 3 also shows c?hp(mq(k)) Ok
the errorAA in the integral (2) in zeroth-order approximation. The meaning of this equation is twofold. The equation
Note that, in the impedance-matched case considered here dif§vs one to calculate the dispersion if the Bragg wavenumber
propagation constagtand its approximatiof| have the same is given as a function of the index steps(m), which
tangent at the beginning of the mirror, i.ez = 0. also specifies the classical turning point as a function of
In principle, one has to use the exact coupling and detuniggavenumber. The equation can also be interpreted as a first-
coefficients for the calculation of the phase integral. Howevesyder differential equation for the classical turning point if a
for an analytical treatment of the DCM dispersion, furthegertain dispersiod@DD(k) is desired. Here, we are interested
approximations are necessary. Therefore, in this paper, we {$ehe second interpretation, since it gives us the Bragg

k). (11)

the expressions wavenumber for the index steps, and therefore the layer
thicknesses, for a desired dispersion characteristic. Thus, we
k(m) =Ko = —2r = const. (6) Write

k g c?
o(m) =w- <W — 1) @) %mt(k) = —mk -GDD(k) 12)
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where we have used the equation for the classical turning paiot(9), the optical thickness as a function of the index step. At
first, (17) might look surprising, since it contains the product

kp(mg(k)) = #k & k(kp) = <1 - M) kg (13) kg GDD(kg) and not onlyGDD(kg), because that would
1— M n relate to the change of the group delay over a distance of the
g index steps, if each step would have equal optical length. But

which follows from condition (4) with the approximations (6)this is not the case, and the optical thickness of|thgh step

and (7). Equation (13) shows that, for negligible couplingg proportional to the inverse ofg.

coefficients, the incident wave is reflected at the point where

the wavenumber equals the Bragg wavenumber. This happens IV. ANALYTICAL EXAMPLES

where the approximate detuning coefficient vanishes accordin

to (7). 17)
The general solution of the differential equation (12) is giveg '

by

9n this section, we analytically discuss examples for using

A. Analytically Invertible Examples

(k) = c? ) ./kE-GDD(E) Jk (14) For some simple cases of the desired GDD, the chirp law

~2(7 — |ro can be derived explicitly. This is the case for a GDD that
Rbeys a power law of the form

k
ko

where a is an arbitrary integration constant. This equatio
determines the classical turning point for a given wavenumber
k. By using (13), which connects the Bragg wavenuniheat

the classical turning point with the wavenumbethe classical

turning point can be written as a function of the correspondir{éere’ Do blsrktheF abso'ﬂte (\;?Dllljje tﬁf EE_eddezlredd_ GDD. at
Bragg wavenumber. Thus, we get the following inverse la avenumboeto. or such a » (€ third-order dispersion

for chirping the Bragg wavenumber with positien in the \(%_OD) is given by

.,
GDD(k):—D0-< ) Dy>0,7y€R.  (18)

mirror: D -1
, . TOD(k) = _'Vko : <kﬁ> . (19)
5 o ok )
m(ks) = a — — <1 - M) | ks -GDD(Es) dEs. TrN _
2m 4l One can see that the TOD is positive fpk 0, negative for

(15) ~ >0, and vanishes foy = 0. If we substitute (13) into (18),

) ) ) the calculation of the integral in (17) results in
Note that the index at the variablen is no longer necessary,

since we considem as an independent variable. The inte- & |0l "Dy Y
: ; . " m(kg)=— —[1—-— — - kp  dkp
gration constant is determined by a boundary condition—for 27 T AR .
example, the Bragg wavenumber at the beginning of the ( 2D Ik v+1
mirror. Hence, we have a condition of the form ——OW <1 - —0>
2r(y 4+ 2)kg 7r
) o I R T
where k5** denotes the maximum Bragg wavenumber of a k2 Dy Joma
chirped mirror that produces a negative GDD. In that case, _2(7r ~Tro]) -1 < In >7 v=-2

the Bragg wavenumber is a monotonically decreasing function (20)
with respect to the negativer axis.
Using (16), we obtain the following closed-form solutiorThe inverse relationship leads to (21), shown at the bottom

for the turning point: of the page, where we have used= —|m/|. Note that the
) ) jomax chirp law for the casey = —2 follows directly from the case
m(ks) = C_<1 _ M) / ks GDD(kp) dkg. (17) v # —2 in the limit v — —2. As an example, to obtain a
2 . kB constant negative GDDy = 0), one has to chirp the Bragg
This equation allows us to calculate the position of the ind&¥@venumber according to the following square root law:
step at which the Bragg wavenumber has the valgein i
order to achieve the given GDD. The inverse of this equation kg(m) = kg™ - \/1 5 maes I (22)
determines the Bragg wavenumber and, therefore, according ¢ Do(m — [0 J(k5)

27r"/+2(,y + 2)k“r 1/(v+2)
kgax 1= 2 _ +1 1(1)1ax 2 |m| Y 7£ -2
2 Do(m — |ro| )7+ (K57
kg(m) = (21)
max 2(7T _ |I‘E |)
kg™ - exp <_c2D—0k§|m| . v=-2
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which is a rather unexpected result. An example using this
analytical chirp law will be discussed in detail in Section V-
A in the context of the design of a chirped semiconductor
mirror. Reference [15] shows a comparison of group delays
with different TOD’s obtained when using (21) for different =
values of the chirp exponent. £
Since we will want to compare the exact calculated group
delay with the group delay obtained from the WKB solution, 1}
we give the group delay for the chirp law (21) according to
(10) by using (21) and (13) for the evaluation of the integral
and determination of the classical turning point. The result, , o
(23), is shown at the bottom of the page. In the Same way . CiP st unich gves (e ragg wauerumber o cragg waueenat

mentioned above, the case= —1 follows from they # —1  dispersive DCSM. In the case of a desired constant GDD, the chirp law with

case in the |imit’y — 1. respect to Bragg wavenumber is a square root function according to (22). For
the example discussed in the text, the chirp law has been used only over the
first 60 index steps.

B. Taylor Expansion of the Desired Dispersion Characteristic
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In general, the relationship (17) cannot be inverted. How- V. NUMERICAL EXAMPLES
ever, we can always compute the index sigpm) as a
function of Bragg wavelength if the dispersion is given ag Double-Chirped Semiconductor Mirror

a Taylor expansion around a center wavenummiier ) _ ) _
Here, we discuss the design of a double-chirped semi-

< 1 conductor mirror (DCSM) with a constant negative GDD.
GDD(k) = ZJD(UH)C”(/C— ko)¥ This example illustrates the method and demonstrates the
v=0 "’ applicability of the theory not only to the design of chirped

e 1 (v " o dielectric mirrors but also to the design of chirped Bragg
- Z Z o <H>D(v+2)c (=ko)*™"k". (24) gratings in general. However, we do not discuss the problem of
v=0u=0 matching the DCSM to air and the improvement of the design
by computer optimization. A complete design including these
issues is described in Section V-B.
Here, we use the constant refractive indiegs= 3.0 and
, v € Nop. (25) nu = 3.5, which are close to the refractive indices of AlAs and
k=ko GaAs, respectively, at around 1050 nm. For these indices, the
oo ) ) . approximate coupling coefficient s, ~ —0.154, according
Substitution of (13) into (24) and integrating the GDD acg, () we desire a constant GDD. Thus, (22) is used as the
cording to (17) finally leads to chirp law for the Bragg wavenumber. For the desired GDD,
a typical absolute value ob, = 1000 fs® is assumed. A

1 o~y 1 v v v di i | t this order of magnitude is desired in man
kn) = = D, v+2( L yu—h ispersion value a g y
CIEES Y {U!(W) (1) Derare 20

Here, we have introduced the dispersion coefficients

1 oo
Diyss) = — ——GDD
wt2) = = g GPDF)

70 =0 applications where large amounts of dispersion have to be
1 compensated for within a single bounce on the mirror. The
. <1 _ M) ) ((ﬁ%lax)/i-l—Q _ k{;”) } (26) region of high reflectance and constant dispersion should be
g centered at around 1050 nm. The value for the minimum Bragg
wavelength is set to2i® = 980 nm, which corresponds to
Once this expression has been obtained and plotted, thenaximum Bragg wavenumber @&f}** = 27/980 nm =
inversion can always be obtained by inspection. In SectiémMl pm1!.
V-B, we discuss the complete design of a DCM starting from Fig. 4 shows the Bragg wavenumber and Bragg wavelength
the analytical equation (26). This will show the usefulnessith respect to the normalized distance in the mirror, obtained
of this approach for the analytical determination of an initidbr the values above. Obviously, the Bragg wavenumber
design that is already very close to the desired dispersidacreases to zero &t:| ~ 280. Thus, with the chirp law
characteristic. used here, one can only chirp the Bragg wavenumber over a

cDo 150\ "
o { () e ] e
0

Tg(k) = (23)

knlax
cDoko-ln{<1—M> B }, v=-1
T k
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1.00 TABLE |

099k f I TN I B CENTER WAVELENGTH AND DISPERSIONCOEFFICIENTS ACCORDING TO (24),
' [ FOR THE DESIRED GDD OF A DIELECTRIC DCM THAT CAN BE USED FOR
0.98 - — DisPERSIONCOMPENSATION IN AN OPO, As DESCRIBED IN THE TEXT
g 0% » AU a7 2 3 o 5 61
*§ 0.96 | . 0T (nml | D), [5°]| Dig. [£5°] | Dyyy, [fs*]| D)0 [f5°]| Dy 165
= ' 615 447 -21.0 -23 -6.0 3.5
a8
increase with a higher power law, e.g., with an exponent 2,
would lead to unrealistically thin high-index layers in the front
part of the mirror. Additionally, a double chirp which is too
0 000 i050  Tioo 1150 200 strong would superimpose an additional dispersion effect that
Wavelength, nm is undesired for the demonstration of the method described
@ here.
As can be seen from Fig. 5(a), the high-reflectance range
: N has a bandwidth of more than 100 nm. However, due to the
400 [~ |——— Theoretical Design (with Eq. (22)) — . . .
L |- Desired Group Delay long matching section, a part of the high-reflectance range
K WKB Solution (Eq. (23)) N . .
5 20F i has been lost on the short wavelength side. This is why the
© minimum Bragg wavelength was chosen as short as 980 nm.
0 ; | | Fig. 5(b) shows the group delay and GDD. Obviously, the
1000 ' ' theoretical design is very close to the desired group delay
' ' ' ' ' ' ' and GDD, respectively. The designed GDD oscillates around
500 —— Theoretical Design (with Eq. (22)) . F
S A Desired GDD the desired constant value. The average value is in excellent
S 500 agreement with the desired value. The oscillations are due to
3 -1000 imperfections in the double-chirp section and could be further
1500 reduced by methods such as numerical optimization. One has
2000 s ! ‘ ! . 1 s to note that the desired group delay is only determined up to

1000 1040 1080 1120 1160

a constant offset value. Therefore, we adjust the desired group
Wavelength, nm

delay for one wavelength. The dash—dotted line in Fig. 5(b)
() is the group delay obtained from the WKB solution (23) for
Fig. 5. Reflectance, group delay, and GDD of a double-chirped semicondgle analytical chirp law (22}y = 0). The constant difference

tor Bragg mirror using the chirp law shown in Fig. 4. The thickness of th : : :
high-index layer was chirped as described in the text. (a) The bandwidth%?tween the adJUSted group delay and the WKB solution is

the highly reflective region is about 100 nm. (b) The designed GDD (sol@bout 50 fs. This difference is explained by the assumption

line) oscillates around the desired constant GDD (dashed line). The differesfe a constant coupling coefficient, according to (6). As we
between the designed group delay (solid line) and the group delay obtai ; ; ;

from the WKB solution (dash—dotted line) is mostly due to the assume ,gcussed in [8], that approximation leads to an almost constant
constant coupling coefficient. ifference between the exact computed group delay and the

WKB solution. However, this is irrelevant for the physically

maximum distance of about 280 index steps. However, duef®st important quantity, which is the GDD.
practical limitations arising from semiconductor growth (e.g.,
with MOCVD), the number of index steps cannot be much
larger than 100. Thus, for a demonstration, we use 60 indBx
steps. For the computation of the mirror properties, the BraggHere, we discuss the complete design of a dielectric DCM
wavenumber has to be taken at 60 discrete points defingith a desired dispersion characteristic, given as a Taylor
by |m| — 0.5 with |»| = 1,2,---,60. The reflectance and expansion (24) up to sixth order. The center wavelength
phase properties upon reflection are exactly calculated wahd dispersion coefficients are summarized in Table I. Six
the transfer matrix formalism. bounces on this mirror should compensate for the material
Fig. 5 shows the mirror reflectance, group delay, artispersion introduced by a 2-mm-long BBO crystal and 1 mm
GDD, where all properties are calculated without consiaf fused silica [12]. It is of considerable interest to have broad-
ering the index jump to an ambient medium. In order tband dispersion compensating mirrors at around 600 nm for
avoid undesired oscillations, the impedance was matched vehort-pulse OPO'’s [16], [17] and optical parametric amplifiers
slowly over the first 50 index steps by an appropriate slogOPA’s) [18], [19] in that wavelength range.
tapering of the coupling coefficient [7], [8]. Thus, the design For the numerical evaluation of (26), the maximum Bragg
presented here consists of only two parts, the double-chigavenumber was chosen to U&y** = 27/500 nm ==
section (50 index steps) and a simple-chirp section (10 ind&2.57 xm~!. For the coupling coefficient, we used the constant
steps). Here, the coupling coefficient was increased almesiuer, = —0.481, which is obtained from (6) for the indices
linearly via the thickness of the high-index layers according; = 1.50 and n, = 2.45. These indices are close to the
to dy,mm/(2kp(50)ny)(|m|/50)1-5. The reason is that anindices of SiQ and TiO, at wavelengths aroundl = 600 nm.

Design of a Double-Chirped Dielectric Mirror
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Fig. 6. Chirp law for a dielectric DCM with a desired GDD, as summarized @
in Table I. The minimum Bragg wavelength was chosen to be 500 nm. At 0.0 - L =0
|m| ~ 24, the inverse chirp law is not invertible due to the increase of the 400 500 600 700 800
desired GDD for longer wavelengths [see Fig. 7(b)]. Also shown are the 23 Wavelength, nm
discrete points at which the chirp law was evaluated in order to generate the
theoretical designs shown in Fig. 7. The dashed vertical line symbolizes the @
position in the mirror where all wavelengths around the Bragg wavelength are
reflected, when a quarter-wave section follows after the simple-chirp section. -10
20 - Designed =1
o a0\ ool Desired
. » 0= ]
Fig. 6 shows the Bragg wavenumber and Bragg wavelength  + 4| e /\v/\\/
again as a function of the position in the mirror. One can see 3 5 \ /\C_/\/ %
that, for this example, (26) is not a one-to-one function. This 60 4 .
means that, an| = 24, the inverse chirp law (24) is locally 70
not invertible. The occurrence of this phenomenon is discussed 10 |
in detail in Section V-C. Thus, using this law, one can chirp the B o5 \ o ~ ’
Bragg wavenumber only over a maximum number of 24 index 5 o |
steps. In order to generate a mirror design with not too many 5 sLo |
layers, the design presented here was chirped over 23 index < 10 | | ' |
steps. The 23 discrete points for the Bragg wavenumbers, 550 600 650 700
where the chirp law is evaluated, are also shown in Fig. 6. Wavelength, nm
Fig. 7 shows the mirror properties for a final design that (b)

can be faprlcated_' This quIQn IIS aCh'eYed by stgrtlng frolqb. 7. Broad-band design of a DCM that is useful for dispersion com-
the analytical design obtained with the discrete points for tipensation in an OPO. The designed reflectance, group delay, and GDD are
Bragg wavenumber from Fig. 6. Additionally, the pr0b|errqlbtained using the chirp law shown in Fig. 6. The thickness of the high-index

of matching to air is solved by putting a broad-band Alggyer was chirped as described in the text. The mirror properties are shown

fter adding an AR coating on top of the mirror structure and a subsequent
coating on top of the mirror [7], [8]. Finally, the designcomputer refinement. (a) The mirror is highly reflective over a bandwidth of
performance is improved by computer optimization with _about 250 nm. The desig_ned group delay (solid Iine)_ is extremely smoo_th and
. . L IS very close to the desired group delay (dashed line) over a bandwidth of
standard gradient algorithm from [20]. It is important to NOtEhout 180 nm. (b) The designed GDD (solid line, upper plot) oscillates around
that, for the refinement procedure and calculation of the fin@ak desired GDD (dashed line, upper plot) with an amplitude of about 6—7
mirror properties, the wavelength dependence of the refractfyein that range. The lower plot shows the difference between the designed
L . . and desired GDD.
indices as well as the absorption and scattering losses have
to be taken into account. In contrast, this is not necessary for
the determination of the discrete Bragg wavenumbers fromFig. 8 shows the physical layer thicknesses of the starting
(26), because these effects are considered to be small. Fordbsign and of the final design after computer optimization.
generation of the analytical initial design, the thickness of thehe total design consists of 54 layers, in which 46 layers
high-index layer was almost linearly chirped over the first 18ave been used for the theoretical DCM structure and 8 layers
index steps according i@, ,,, = 7/(2kg(10)ny)(|m|/10)1-9%.  for the AR coating. The layer thicknesses of the AR coating
Fig. 7(a) shows the reflectance and group delay of the firmde only shown after optimization. The reason is that we
design. The reflectance is high over a bandwidth of 250 nstarted from a 12-layer AR coating, but during the optimization
(500-750 nm), and the group delay is very smooth overpaocedure it was possible to eliminate the two thinnest layers
bandwidth of about 180 nm (540-720 nm). In this rangef the AR coating leading to an effective reduction of 4
the deviation from the desired group delay is only 0.14 fayers. The figure illustrates two facts. The first observation
(rms). As is demonstrated by Fig. 7(b), the designed GDB that the analytical initial design of the DCM does not
oscillates around the desired GDD in this region, with acthange very much during optimization. Most corrections to
oscillation amplitude o&6-7 f&. Although the starting design the starting design occur in the AR coating in the front part of
is computer optimized, the oscillations in the GDD cannot kiee total mirror. The other observation is that the different
removed completely. The reason is that the AR coating dossctions of the DCM can still be clearly identified. In the
not allow the generation of a perfect matching to the ambieAR coating, the layer thicknesses seem to change randomly,

medium (air) over a bandwidth of 180 nm. whereas the double-chirp section starts with very thin high-
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250 [ T T e e is left, are clearly indicated by plotting and analyzing the
; —O— Low-Index Layer Starting Thickness Chirp |aW, derived from (21) or (26) As an example, the
200~ o R e o oo noninvertible region in Fig. 6 at a finite Bragg wavelength
—O— High-index Layer After Optimization is a consequence of the increase of the desired GDD with

150, respect to wavelength [see Fig. 7(b)]. In fact, the critical Bragg

wavenumber at which this happens corresponds exactly to the
wavenumber where the desired GDD becomes positive. Using
the values for the design discussed in Section V-B, the critical
Bragg wavenumber i$g® ~ 4.56 pm~! (A ~ 1378 nm)

and the wavenumber for vanishing dispersion is found to be
kot 2 3.86 pm~! (A9 = 1628 nm). These wavenumbers
are connected via (13). Now, it is quite easy to understand what
happens. As long as the desired GDD is negative, the Bragg

Fig. 8. Layer thicknesses of the DCM design corresponding to the mirr(,)\yavem'lmtJer is a monotonically decreasing function. When
properties shown in Fig. 7. The thicknesses of the high- and low-index laye

S . 2. . . .
are shown before and after computer optimization. The layer thicknesses oftthg desired GDD becomes positive, the direction of the chirp
AR coating are only shown after optimization because the two thinnest layétas to be changed, which means that the Bragg wavenumber
of the AR coating are removed during the refinement procedure. Obviousghoum now increase. Of course. the formulas derived from
the different sections of a DCM can still be clearly identified even afte\|;V . ’ e ..
computer optimization. KB solutions cannot cover this case. Additionally, the fast

chirp for the longer wavelengths also explains the problem of

) o ] ] keeping the reflectance at a high level, as is demonstrated by
index layers with increasing thicknesses along the DCM. Thge gecrease of the reflectance with respect to wavelength [see

thickness of the low-index layers decreases in the doub[el—g_ 7()]).
chirp section. In the simple-chirp section, the thicknessesa qyarter-wave section following the simple-chirp section
of the high- and low-index layers increase simultaneouslygars a possible solution over a limited wavelength range
The stability of the starting design against changes due e the noninvertible region is reached. The quarter-wave
the optimization procedure is understood by the fact thategyck solves both problems: it increases the reflectance and
sufficiently good AR coating can be designed over a bandwidl, ys 1o an almost vanishing dispersion for wavelengths around
of about 180 nm at wavelengths around 600 nm. If one trigse corresponding Bragg wavelength. Thus, in such a case, the
to extend the bandwidth with smooth dispersion propertiggaqg mirror can be considered as the “natural” continuation
beyond the bandwidth of the AR coating, the optimizatiogs ihe simple-chirp section, symbolized by the dashed vertical
will significantly change the layer thicknesses of the DCNjq in Fig. 6. The Bragg wavelength of the quarter-wave
structurg. .Additionally, the ampIiFude of the .oscillation in th&ection is a free parameter which can be adjusted to achieve
GDD will increase with the required bandwidth. maximum performance. It should be chosen much smaller
The mirror design presented here will be manufactured jRa, Azt and close to the last value used in the simple-chirp

the near future. If the properties of the fabricated mirrors Willation. However. this method works only over a restricted
be close to the designed properties, ultrashort laser pulses fr\ﬁﬁ\/elength range.

an OPO with a duration of about 5-7 fs can be expected [12].-1he conclusion is that, if the inverse chirp law is not invert-

. . ible in the region of interest, as described above, the design
C. Unfavorable Choice of the Desired method proposed in this paper will not lead to an appropriate
Dispersion Characteristic theoretical starting design for later computer refinement. A

The analytical discussion of the dispersion behavior ®Pssible solution is to change the desired dispersion char-
DCM's gives insight into reasons why certain dispersiofcteristic or to add a quarter-wave stack after the simple-
characteristics might be difficult, if not impossible, to achiev&hirp section. On the other hand, the failure of producing a
For example, such a situation arises if the absolute valuefggsonable initial design indicates that an optimum design for
the desired second-order dispersion coefficip, is chosen @ high-reflectance coating with the desired dispersion might
too low or too high, or if the ratio between the differenfiot exist.
dispersion coefficientsd)(, ;) is chosen in an unfavorable
way. Generally, one has to chirp relatively slowly to obtain a
high amount of negative dispersion and relatively quickly for
a small amount. As a consequence, in the first case, one need&e have presented an analytical design method for DCM’s
many index steps to achieve a broad enough high-reflectamcgeneral chirped Bragg gratings with a given dispersion char-
bandwidth. In the second case, it is possible that the reflectamteristic. Problems in the mirror design that may arise due to
is reduced due to the fast chirp over a small number of index unfavorable choice of the desired GDD are indicated by the
steps. Thus, for given materials, there is always an optimwuarresponding chirp law. The chirp law also directly indicates
range for the dispersion, over which a high reflectance ahdw many layers have to be used for the theoretical design
smooth GDD can be achieved simultaneously. in order to achieve the desired dispersion characteristic over a

The great advantage of the design method describedgiven bandwidth. The applicability of our design method has
this paper is that situations, in which the optimum randeeen demonstrated by two examples, a semiconductor and a

1007
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50

[o] A IS ¢ S

Layer

Air ! l Substrate

AR Coating Double-Chirp Section Simple-Chirp Section

VI. CONCLUSION
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dielectric DCM. As has been shown, the analytical desigr-
achieved by this method are very close to the desired des
goals and can be used as excellent starting designs fo
subsequent computer optimization
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