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Double-chirped semiconductor mirror for dispersion compensation
in femtosecond lasers
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A double-chirped mirror structure with broadband negative dispersion was realized with
semiconductor technology. The necessary high precision of the fabrication was achieved by using
special calibration structures. A single reflection on the obtained low-loss mirror produces sufficient
negative dispersion for dispersion compensation in a femtosecond laser cavity. In this way we
demonstrate 200 fs pulses from a compact Nd:glass laser without any additional dispersion
compensation. ©1999 American Institute of Physid$§0003-695(99)00341-]

The generation of femtosecond pulses in a laser cavity Such double-chirped mirrors have so far been realized in
usually requires operation in the regime of negative grouprio,/SiO, dielectric mirror technology. The very high accu-
delay dispersioiGDD) of the laser cavity where soliton-like racy of this technology lead to mirrors with high reflectivity
pulses can be formed. The most common way to provideind precisely controlled dispersion in a bandwidth of up to
negative dispersion in a cavity is to insert a prism pair; 400 nm. Such mirrors have been successfully used for the

alternat.ivgs to that are dispersive mi%rror structures. Giresgeneration of pulses with less than 10 fs durafiof.unfor-
Tournois interferometefGTI) structures have been used in tunately, the amount of negative dispersion which can be

various devices, including a semiconductor mirror with . . e . .
: . . 9 . generated with such a mirror is limited; a single reflection on
negative dispersicrand even a semiconductor saturable ab- . . .-
such a mirror is usually not sufficient to fully compensate the

. ﬁjispersion of a laser cavity so that typically several of these

but only in a limited bandwidth. Another approach, allowing MiTors (or multiple bounces between two chirped mirjors
for a much larger bandwidth and compensation of dispersiof@ve 0 be used in one laser cavity.

in higher orders, is to use special multilayer dielectric mir- In this letter we demonstrate the realization of a double-
rors. Computer optimized designs of multilayer dielectricchirped mirror structure in semiconductor technology. We
mirrors have been demonstratedhile the latest and most used GaAs and AlAs as high- and low-index materials with
promising kind of dielectric mirror for broadband dispersion good transparency in the dm-wavelength domain. As a
compensation, based on analytical work, is the double-
chirped mirro®” Such a device can provide excellent dis-
persion characteristics over a large bandwidth. Here a chirp
(spatial variation of the Bragg wavelength leads to a deeper
penetration of the longer wavelengths and thus to negative
dispersion. Initially the problem of chirped mirrors was that g 120
a chirp of the Bragg wavelength alone causes large oscilla-\fj
tions in the group delay which would make the mirror use-
less for femtosecond pulse generation. It was fSuritiat
these oscillations can be removed by introducing two addi-
tional techniques, resulting in a so-called double-chirped
mirror: First, in addition to the chirp of the Bragg wave-
length there is a chirp of the coupling streng¢tbntrolled via
the thickness ratio of high- and low-index laygrsvhich
smooths the transition from zero couplifgutside the mir- 0
ror) to full coupling in the mirror structure. Second, a broad-

band AR(antireflection coating removes the interference ef-

fects from the Fresnel reflection on the mirror/air interface. FIG. 1. Design of the GaAs/AlAs layer structure: analytical dedgplid

and dashed curyeand numerically refined values of AlAgircles and
GaAs (squares layer thickness. Layer number O corresponds to the GaAs
dElectronic mail: paschotta@ige.phys.ethz.ch substrate(The AR coating is not shown.
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FIG. 4. The diode-pumped laser that produced 200 fs pulses, using the
chirped semiconductor mirror. RG@adius of curvature, SESAM
=semiconductor saturable absorber mirror.
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sputtering. The TiQ/SiO, material system is required be-

FIG. 2. Calculateddotted ling and measurebolid line) group delay of the  cause the refractive indices of the semiconductor materials
Qispersive mirror, and calculatédashed linand measuretiashed-dotted are not suitable to achieve sufficiently low reflection over
line) reflection spectrum. this bandwidth.

We started from an analytical desfirfor the MOCVD-
consequence of the relatively small index ratio between thesgrown structure and a numerically obtained design for the
materials, the chirp of the Bragg wavelength has to beaR coating; we then numerically refined the whole structure
weaker than in typical TiQ/SiO, chirped mirrors because for optimum flatness of the GDIFig. 1). A high precision
otherwise a sufficiently high reflectivity would not be of the layer thicknesé~0.4 nm is required to avoid strong
achieved. Thus, a higher number of layer pairs is required fopscillations of the GDD. This accuracy is currently just
a given reflection bandwidth. While this may seem to be a,chieved in the MOCVD process. Directly before growing
serious limitation, such structures can be produced with highne actual mirror structure, we accurately calibrated the
accuracy and low optical loss using either metalorganiGyrowth rates for GaAs and AlAs layers by fabricating and
chemical vapor depositiotMOCVD) or molecular beam ep- o racterizing two periodic mirror structures where about

itaxy (MBE). Moreover, the weak coupling strength and the o, o 10%, respectively, of the optical thickness of a
weak chirp of the Bragg wavelength lead to a large negativ?

di . it the diff . tration d tfz%\yer pair was made of GaAs, and the rest of AlAs.
ISPErsion as It Increases the difierence in penetration dep Figure 2 shows the calculated and measured group delay
for a given pair of wavelengths. Therefore a single bounce

on such a mirror can generate sufficient negative dis ersio\r/1ersus wavelength, measured with a white light interferom-
9 g P eter, as well as the reflection spectrum. In the GDD trace, the

for dispersion compensation in a femtosecond laser cavityd it f the desi ¢ b
Another attraction of using semiconductor materials is the ewa.lons rom the design per ormance ecome more appar-
nt (Fig. 3). However, they are still small enough to allow

potential for integration with a saturable absorber, resultingfe i ) . .
in a double-chirped SESAM which could be used in a comJor femtosecond generation; the soliton-like pulses simply

pact femtosecond laser cavity and would at the same timgXPerience the average value of the GDD within their optical
provide negative dispersion for soliton-like pulses and stabiP@ndwidth as long as the phase differences between different

lize the soliton mode-locking procebs. wavelength components, caused by the wiggles in the GDD

Our dispersive mirror was designed for a group delaycurve, are much smaller thanr2
dispersionNGDD) of —750 f€ in a 40 nm bandwidth around To demonstrate the usefulness of our dispersive mirror,
1055 nm. It consists of 60 GaAs/AlAs layer paiggown on ~ We used a diode-pumped Nd:glass femtosecond laser similar
a GaAs substrate with MOCVID having a total physical to the one described in Ref. 12. Instead of a prism pair, we
thickness of~10 um. On top of this structure, an AR coat- used one reflection on the chirped semiconductor mirror for
ing with 3 layer pairs of TiQ/SiO, was made with ion beam
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