OPTICS LETTERS / Vol. 26, No. 2 / January 15, 2001

Spatially resolved amplitude and phase characterization of

femtosecond optical pulses

L. Gallmann, G. Steinmeyer, D. H. Sutter, and T. Rupp

Ultrafast Laser Physics Laboratory, Institute of Quantum Electronics, Swiss Federal Institute of Technology,
ETH Hénggerberg—HPT, CH-8093 Ziirich, Switzerland

C. Iaconis and I. A. Walmsley
The Institute of Optics, University of Rochester, Rochester, New York 14627
U. Keller

Ultrafast Laser Physics Laboratory, Institute of Quantum Electronics, Swiss Federal Institute of Technology,
ETH Hénggerberg—HPT, CH-8093 Ziirich, Switzerland

Received July 6, 2000

Ultrabroadband pulses exhibit a frequency-dependent mode size owing to the wavelength dependence of
free-space diffraction. Additionally, rather complex lateral dependence of the temporal pulse shape has been
reported for Kerr-lens mode-locked lasers and broadband amplifier chains and in frequency-domain pulse
shapers, for example. We demonstrate an ultrashort-pulse characterization technique that reveals lateral
pulse-shape variations by spatially resolved amplitude and phase measurements by use of spectral phase
interferometry for direct electric-field reconstruction (SPIDER). Unlike with autocorrelation techniques, with
SPIDER we can obtain spatially resolved pulse characterization even after the nonlinear process. Thus,
with this method the spectral phase of the pulse can be resolved very rapidly along one lateral beam axis in

a single measurement.
OCIS codes:

Several ultrashort-pulse measurement techniques,
such as frequency-resolved optical gating’? (FROG)
and spectral phase interferometry for direct electric-
field reconstruction®* (SPIDER), have emerged that
allow for full amplitude and phase characterization.
So far, amplitude and phase characterization tech-
niques have been used to perform spatially integrated
measurements. Ultrabroadband pulses, however, can
exhibit pronounced frequency-dependent mode sizes
(FDMS’s).> A FDMS leads to laterally changing spec-
tral content of the beam and, consequently, to lateral
dependence of the temporal pulse shape. Beams with
a pronounced FDMS require a careful interpretation
of spatially integrated measurements. It should be
noted that nonlinear optical processes, which are also
employed in most characterization methods, further
enhance the frequency-dependent variations with
their corresponding power law. Spatial distortions
can be rather complex in broadband amplifier chains
and in sub-10-fs Ti:sapphire lasers.’

In this Letter we discuss the influence of spatially
dependent pulse parameters on pulse characterization
and present a simple extension of a sub-10-fs SPIDER
setup’ that allows recording of spatial variations.
The SPIDER technique is particularly attractive for
this purpose because the spectral phase measurement
consists of only a single acquisition of a spectrum.
The noniterative reconstruction algorithm permits
rapid processing of the large amount of data that
results from the spatial resolution. The intrinsically
fast acquisition and reconstruction were previously
demonstrated in real-time variants of SPIDER with
refresh rates of up to 20 Hz.*° In addition, without
any prior knowledge of the FDMS, autocorrelation
measurements require spatial filtering before the
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nonlinear process, which strongly reduces signal
strength. In contrast, with SPIDER we can obtain
spatially resolved pulse characterization even after
the nonlinear process without any prior knowledge of
the FDMS. We performed spatially resolved SPIDER
measurements on our sub-10-fs Ti:sapphire laser.'

Spatial distortions of femtosecond pulsed beams
occur, for example, in pulse stretchers, amplifier
chains, and frequency-domain pulse shapers. Gener-
ally these effects become more severe with a larger
pulse bandwidth. Apart from these imperfections,
free-space diffraction of broadband beams is an in-
evitable source of a spatial structure that causes a
FDMS. For Gaussian beams, radius w as a function
of propagation distance z is given as

w(2) = \[Azo/m[1 + (2/20)*]"2, (1)

with wavelength A and confocal parameter z,. For
beams originating from a laser cavity, confocal param-
eter z¢ is a constant. Therefore the mode area is pro-
portional to the wavelength at a fixed distance z from
the focus. For the nearly 1-octave-bandwidth spectra
of sources in the 5-fs regime,!! this effect can lead to
spectral variations of the mode area of more than 50%.

For Kerr-lens mode-locked (KLM) lasers, complex
FDMS effects have been reported.” Inside the gain
medium of such a laser, the time-dependent Kerr lens
translates the temporal intensity profile of the pulse
into an accompanying spatial structure and vice versa.
Thus, in such a laser the FDMS is pulse-shape depen-
dent. Figure 1 shows measurements of the FDMS for
sub-10-fs pulses from a KLM Ti:sapphire laser.’® The
mode areas have been measured with a beam pro-
filometer and 10-nm-wide interference filters. The
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variation of spectral power density and mode area
with wavelength reflects the dispersion oscillations™
of the double-chirped mirrors used inside the cavity.
Small adjustments of intracavity dispersion alter the
temporal pulse shape in the Kerr medium, resulting
in significant variations of the FDMS.

In autocorrelation or cross-correlation techniques
using second-harmonic generation (SHG), such as
SHG-FROG, each frequency component of a pulse
is mixed with each frequency component of a gating
pulse in a convolutionlike manner [Fig. 2(a)l. Ideally
all these mixing processes occur with equal effi-
ciency. However, even with perfect phase-matching
conditions, the FDMS produces frequency-dependent
conversion efficiency. In the simple case of pure SHG
of quasi-monochromatic slices of the spectrum, for
example, a 41% increase in mode area (Fig. 1) already
reduces the second-harmonic signal by a factor of 2.
Such efficiency variations can result in erroneous
pulse characterization. Previously, the effect of the
FDMS of an ideal Gaussian beam [Eq. (1)] was taken
into account in SHG-FROG measurements.'? In
principle, any given FDMS can be accounted for in
the reconstruction algorithm. However, this becomes
increasingly difficult as the complexity of the mode
structure increases. This is especially true if the
mode structure changes significantly with minor ad-
justments of the laser, as is the case for the structures
shown in Fig. 1.

The SPIDER technique uses sum-frequency gener-
ation (SFG) of two broadband input pulses delayed
with respect to each other and two quasi-cw slices
of a strongly linearly chirped pulse. In the spectral
domain, each of these SFG processes corresponds to a
convolution of a broadband spectrum with delta-func-
tion-like spectrum [Fig. 2(b)]. As a result, the input
beam gets shifted in frequency space by the constant
frequency and multiplied by the spatial mode pattern
of that cw slice. The different frequencies of the two
cw slices generate a spectral shear between the two
broadband input spectra. A FDMS of the strongly
chirped pulse does not cause a frequency-dependent
efficiency as the same cw slice is mixed with each
frequency component of the broadband input pulse.
The SPIDER signal, which consists of the spectral
interference of the two spectrally sheared broadband
pulses, is affected only in its spatial intensity pattern,
fringe contrast, and an undetermined phase constant
but not in spectral fringe spacing. Because SPIDER
uses only spectral fringe spacing for spectral phase
reconstruction, spatially resolved SPIDER works
correctly even in the presence of significant FDMS
effects. Note that this implementation of SPIDER,
like all self-referenced phase-measurement techniques
demonstrated to date, cannot extract the linear phase
term. Thus this method is not suitable for the char-
acterization of phase-front distortions.

We implemented the spatial resolution in our setup
by imaging the SPIDER signal beam and the funda-
mental beam from the SFG crystal on the entrance
slit of a 0.3-m imaging spectrograph equipped with a
600-groove/mm grating and a two-dimensional 1024
by 128 pixel CCD camera. The SPIDER signal and

the fundamental beam were measured independently.
Simultaneous acquisition of both signals can be
achieved by the method described in Ref. 13. The
entrance slit provides the spatial resolution along
one axis, while the vertical CCD dimension resolves
the beam along the other axis. With the slit and
the CCD we obtain an absolute spatial resolution
of roughly 80 um in each direction. The number
of spatial sample points across the beam diameter
can be adjusted by the choice of the magnification
of the imaging optics. With this setup the spatially
resolved spectral phase along one lateral beam axis
is measured in a single acquisition. For access to
off-axis points, the beam can be either translated
sideways or rotated around its axis. Beam rotation
can be achieved with a Dove prism or by out-of-plane
reflection in an equivalent arrangement of mirrors.
Figure 3 shows the fundamental spectrum of our
sub-10-fs Ti:sapphire laser'’ measured at three spatial
positions relatively close to the beam center. With in-
creasing distance from the center the spectra shift to
longer wavelengths, which agrees favorably with the
trend expected from Eq. (1). For different operating
conditions of the laser, however, the KLM effect may
even reverse the tendency expected from free-space
diffraction. Under typical operating conditions of our
laser, we find the time-dependent Kerr lens to be the
dominant contribution to the FDMS (see Fig. 1). In
a similar measurement, shown in Fig. 4, we observe
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Fig. 1. Wavelength-dependent mode area of a sub-10-fs

KLM Ti:sapphire laser. The spectral variation of (solid
curve) the power density and (dashed curve and filled
circles) the mode area reflect the dispersion oscillations
of the double-chirped mirrors used inside the cavity.
The dashed—dotted line shows the qualitative behavior
expected from Eq. (1) (up to a scaling factor).
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Fig. 2. Schematic picture of the mixing processes occur-
ring in (a) broadband SHG and (b) SFG of a broadband
pulse with a quasi-cw spectral slice. In SHG many differ-
ent input wavelengths with differing spatial patterns are
contributing to the signal at a given wavelength, whereas
in SFG each individual spectral component of the signal is
generated by a single mixing process.
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Fig. 3. Three spectra measured at different lateral posi-
tions inside the beam. For comparison the spatially inte-
grated spectrum is also shown (shaded area).
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Fig. 4. Contour plot of the spatially resolved pulse spec-
trum. The contours are evenly spaced on a logarithmic
scale and start at 0.7% of the maximum value. Note the
complicated structure on the short-wavelength side.
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Fig. 5. Left, laterally varying temporal pulse shapes
normalized to the spectrally integrated beam intensity.
Right, to facilitate a direct comparison, two pulses (dotted
and dashed-dotted curves) are also shown normalized
to the same peak intensity. The differences are most
pronounced in the temporal wings of the pulses. Nev-
ertheless, the FWHM of the two pulses shown already
differs by more than 10%.

a highly irregular structure in the short-wavelength
part of the spectrum. We attribute this complicated
pattern to diffraction effects that are due to slight clip-
ping at one of the prisms, a situation that might go
unnoticed in the absence of spatial resolution.

The combination of the spatially resolved spectrum
and the spectral phase measurement gives one access
to the full lateral dependence of the pulse shape
(Fig. 5). The situation shown in Figs. 4 and 5 corre-
sponds to a spatially averaged transform-limited pulse

of 9.2-fs duration, slightly chirped to an averaged
duration of 11.6 fs. A clear trend is observed even
for the relatively insensitive FWHM duration. On
center, the pulse has a duration of 12.3 fs, in contrast
to an 11-fs duration in the wings. Note that these
variations result in systematically erroneous spatially
integrated measurements, with errors depending
on the specific technique and the power law of the
nonlinear process.

In this Letter we have demonstrated how to resolve
lateral variations of the spectral and temporal pulse
shape in the beam profile of a KLLM Ti:sapphire laser.
With the recently demonstrated high immunity of the
SPIDER technique to experimental noise, an accurate
pulse characterization is possible even in the low-
intensity spatial or spectral wings of a beam.'* The
accuracy of the method can be further improved by
suitable adaptation of the integration times to the
local intensity. Spatially resolved amplitude and
phase characterization should permit quantitative
analysis of spatial distortions and propagation effects
of femtosecond pulses. Additionally, this tool should
simplify the interpretation of experimental results
obtained with spatially structured beams.
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