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Abstract. We recently demonstrated that passive mode lock-
ing of a thin-disk Yb:YAG laser is possible and that this
concept leads to sources of femtosecond pulses with very
high average power. Here we discuss in detail the effect of
spatial hole burning on the mode-locking behavior of such
lasers. We have developed an efficient numerical model and
arrive at quantitative stability criteria which agree well with
experimental data. The main result is that stable soliton mode
locking can in general be obtained only in a certain range of
pulse durations. We use our model to investigate the influence
of various cavity parameters and the situation for different
gain media. We also consider several methods to reduce the
effect of spatial hole burning in order to expand the range of
possible pulse durations.

PACS: 42.60.Fc; 42.55.Rz; 42.55.Xi

Until recently, the average output power of passively mode-
locked all-solid-state lasers was limited to below 1 W. Partic-
ularly in the sub-picosecond domain, the usually quite poor
thermal properties of the available broadband gain media pre-
cluded the generation of higher powers. Only a short while
ago we have shown [1] that thin-disk Yb:YAG lasers [2],
which had been demonstrated to generate up to≈ 100 W of
nearly diffraction-limited continuous-wave power [3], can be
passively mode-locked using a semiconductor saturable ab-
sorber mirror (SESAM) [4–6]. In this first demonstration, we
obtained 16 W of average power in 0.7-ps pulses. Further-
more, we have shown that the concept is power-scalable so
that substantially higher output powers should be possible
in the near future. As mentioned already in [1], spatial hole
burning (SHB) has a strong effect on the mode-locking be-
havior because it leads to inhomogeneous gain saturation. In
this paper, we discuss this effect in detail.

The effect of SHB on the mode-locking behavior of lasers
(although not specifically of thin-disk lasers) has already been
discussed in other papers, in particular in [7, 8]. It was found
that SHB can facilitate the generation of shorter pulses, al-

though the time–bandwidth product may be deteriorated. It
was not anticipated that stable soliton mode locking [9] of
a laser with SHB may be possible only in a narrow range
of pulse durations, as we observed in our experiments with
a thin-disk laser [1]. We can quantitatively explain this ob-
servation with a new model, which is at the same time sim-
pler and numerically more efficient than the model used
in [8], because it makes use of the fact that the pulse spec-
trum is more or less fixed in a soliton mode-locked laser
where the pulse is shaped mainly by group-delay dispersion
and self-phase modulation. We derive quantitative stability
criteria, based on the calculation of the effective gain of
a continuous-wave (cw) background (often called the ‘con-
tinuum’ in soliton theory) and of double pulses, which can
compete with the (desired) single-soliton pulse in the laser
cavity.

The paper is organized as follows. First, in Sect. 1 we
briefly describe the setup of a thin-disk laser and present an
efficient numerical method to calculate the spectral shape of
the saturated gain. In Sect. 2 we discuss how this spectral
shape can favor the formation of double pulses and thus desta-
bilize the mode-locking process. We will show that stable
mode locking is possible only if the parameters of the sat-
urable absorber are properly chosen. In particular, for a given
degree of absorber saturation there is a lower limit for the
modulation depth (maximum reflectivity change), set by the
tendency for unstable double pulsing, as well as a higher limit
set by Q-switching instabilities [10, 11]. As both the lower
and the upper limits depend on the soliton-pulse duration,
the cavity dispersion must be appropriately chosen. We will
mainly concentrate on a slightly modified version of the laser
described in [1], but also discuss possible changes of the de-
sign and their effect on the mode-locking behavior. In Sect. 3
we discuss the effect of SHB in thin-disk lasers with other
gain media, both those with a smaller and with a larger ampli-
fication bandwidth, and show that this leads into regimes with
qualitatively different behavior. Finally, in Sect. 4 we con-
sider various methods to reduce the effect of SHB in mode-
locked thin-disk lasers, which can be desirable to obtain mode
locking in a larger range of pulse durations.
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1 Gain in a thin-disk laser

First we briefly discuss the geometry of a thin-disk laser
head (Fig. 1), which has been described in more detail in [2].
The Yb:YAG disk with a thickness in the order of 0.2 mm
has a highly reflecting coating on the side which is attached
to the cooling finger. Thus the laser beam always generates
a standing-wave pattern in the disk, regardless of the type of
laser cavity (ring or standing-wave), and SHB unavoidably
occurs. The outer disk surface has an anti-reflection (AR)
coating. For mode-locked operation, the disk surfaces are
wedged by≈ 0.1◦ in order to definitely eliminate the disturb-
ing effect of residual reflections. An optical arrangement [12]
consisting of a parabolic mirror and three roof prisms is used
to obtain multiple passes of the pump radiation through the
thin disk, in order to obtain efficient pump absorption despite
the small absorption per double pass through the thin disk.
A consequence of this is that the pump intensity is approxi-
mately constant along the beam axis.

In pulsed operation, the average intensity distribution in
the thin disk is a standing-wave pattern with full contrast near
the reflecting end. Because of the finite pulse bandwidth, the
contrast decreases towards the other (anti-reflection-coated)
end. At each location in the disk, the excitation level of the
active ions is determined by the pump and local laser intensi-
ties. The spectral shape of the gain for a double pass through
the disk is determined not only by the overall excitation in the
gain medium, but is also directly affected by standing-wave
effects because each spectral component of a beam is associ-
ated with a simple (full-contrast) standing-wave pattern. The
period of this pattern depends on the frequency, and the local
intensity of the mode pattern determines how strongly the
spectral component interacts with the excited ions.

The dynamics of a laser with SHB in the gain medium can
be very complicated because the lasing spectrum depends on
the spectral shape of the gain, while the latter again reacts to
changes in the pulse spectrum. We avoid these complications
in our model by assuming a steady state with a given aver-
age laser power and soliton-pulse duration (and thus a given
spectral width). In the experiment, the pulse duration and the
shape of the spectrum are largely determined by the total
(negative) intracavity dispersion and self-phase modulation,
as we use soliton mode locking. For the given laser power and
spectral width, we calculate the spectrum of the saturated gain
and use this to determine whether or not the given state can
be stable. This approach is numerically much more efficient
than the simulation of the temporal evolution of arbitrary las-
ing spectra over a huge number of cavity round-trips (as used,
for example, in [8]). Also we will show that it gives additional
physical insight.

For the sake of the efficiency of our numerical calcula-
tions, we use a number of approximations. The thin disk is

Fig. 1. Geometry of a thin-disk laser head. The laser beam is reflected at the
disk, and the pump optics arrange for, for example, eight double passes of
the pump radiation through the disk

assumed to act as the end mirror of a standing-wave cavity,
because a slight folding angle would make only a small differ-
ence in the period of the standing-wave pattern. Instead of the
Gaussian transverse profile of the laser beams, we use a top-
hat transverse intensity distribution so that the intensities are
functions only of the coordinatez, the distance from the re-
flecting end of the thin disk. Effectively we average between
the stronger effect of SHB on the beam axis and the weaker
SHB in the wings of the spatial profile. The pump inten-
sity is assumed to be constant, because the pump absorption
in a single pass through the thin disk is small, and efficient
pump absorption is achieved only through multiple passes
of the pump radiation. Moreover, we approximate the gain
spectrum of Yb:YAG near 1030 nm with a Gaussian function
with a full width at half maximum (FWHM) of 1.55 THz or
5.5 nm. This quite accurately fits the gain spectrum near the
gain maximum within the typical pulse bandwidth, whereas
some deviations outside this bandwidth are not relevant. The
laser transition is assumed to be homogeneously broadened.
We also use a Gaussian function for the intracavity spectral
power densitypL(ν), although this shape somewhat differs
from the spectrum of a soliton (sech2), which has stronger
wings. In effect, we tend to slightly overestimate the effect
of SHB. The Gaussian functions allow us to solve a substan-
tial part of the problem analytically so that the numerical part
becomes significantly less time-consuming. A final approx-
imation is that we neglect energy migration in the Yb:YAG
disk, which is difficult to quantify. Due to the relatively high
Yb3+ doping level (typically 8–9 at.%), we expect some en-
ergy migration to occur, which should somewhat smoothen
the distribution of excited ions and thus reduce the effect of
SHB.

We now discuss the details of the calculations. The intra-
cavity laser radiation is characterized by the spectral power
density

pL(ν) = 2

√
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π
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∆νL
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[
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∆νL

)2
]

, (1)

a Gaussian function with the peak at frequencyν0 and the
FWHM ∆νL, which is normalized so that the intracavity laser
powerPL is

PL =
+∞∫
0

pL(ν)dν . (2)

Because the gain per round-trip is moderate, we assume
a constant power along the propagation direction. For each
frequency componentν, there is a fully modulated standing-
wave pattern, so that the spectral density of the local laser in-
tensity (taking into account the superposition of the counter-
propagating waves) is

iL(z, ν) = 2
pL(ν)

A

[
1−cos

4πnνz

c

]
. (3)

Here we have introduced the beam cross-sectionA and the re-
fractive indexn of the gain medium (n = 1.82 for YAG). We
have assumed the phase jump at the reflecting coating to be
π, i.e. to be independent of the frequency, which is reasonable
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given the limited pulse bandwidth. The total laser intensity at
a distancez from the reflecting coating is then

IL(z) =
∞∫

0

iL(z, ν)dν, (4)

and this integration can be performed analytically due to the
Gaussian pulse spectrum. We obtain

IL(z) = 2
PL
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[
1−exp
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(
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c

]
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(5)

This function represents a standing-wave pattern which is
fully modulated for smallz and continuously loses contrast
for largerz.

Now we calculate the local excitation level, or more pre-
cisely the fractionN2 of the Yb3+ ions which are in the
excited state. (N2 can vary between 0 and 1.) The laser cross-
sections are assumed to depend on the frequencyν according
to

σ
(L)
abs(ν), σ

(L)
em (ν) ∝ exp

[
−4 ln 2

(
ν− ν0

∆νg

)2
]

. (6)

We assume such a dependence for both the emission and
absorption cross-sections, which is a good approximation
within a bandwidth of a few nanometers, as can be seen
from the McCumber relations [13]. The peak is at the same
frequencyν0 as the peak of the laser spectrum. In a first ap-
proximation, which is justified if the laser bandwidth is much
smaller than the gain bandwidth, we would neglect the finite
gain bandwidth and calculate the excitation levelN2 simply
from the pump intensity and the total local laser intensity
IL(z), using the laser cross-sections at the peak wavelength.
A simple way to take into account the finite gain bandwidth is
to replaceIL(z) by an effective intensityIL,eff (z), calculated
in the same way asIL(z) except that an additional Gaussian
factor exp

(
−4 ln 2(ν− ν0)

2/∆ν2
g

)
is included in the inte-

grand. This factor takes into account the reduced interaction
for frequencies away from the center frequency. By combin-
ing the two Gaussians in the integral we obtain
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(7)

with the reduced bandwidth∆ν−2
eff := ∆ν−2

L +∆ν−2
g . The nor-

malized local excitationN2 can then be calculated from the
rate equations of a 3-level medium, using the effective inten-
sity IL,eff (z) together with the peak cross-sections:
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,

(8)

where the superscripts (P) and (L) refer to the pump and laser
beams, respectively, the renormalized intensities are defined
by Ĩ (P,L) = I (P,L)/hν(P,L), and all cross-sections apply to the
frequencyν0. We have used the fact that all Yb3+ ions are
either in the excited or in the ground-state Stark manifold.
Note that (7) and (8) allow us to calculate without performing
a time-consuming numerical integration over all frequencies.

From the excitation we obtain the frequency-dependent
gain for a double pass through the disk:

G(ν) = 2Ndop

d∫
0

[
N2(z)σ

(L)
em (ν)− (1− N2(z))σ

(L)
abs(ν)

]

×
[
1−cos

4πnνz

c

]
dz . (9)

Here,Ndop is the doping density andd is the thickness of the
disk. The oscillating factor in (9) accounts for the standing-
wave pattern for the frequencyν, which modulates the inter-
action of a probe wave of frequencyν with the excited ions.
This factor is responsible for the fact that the spectrum of the
saturated gain deviates from the ‘natural’ gain spectrum of the
Yb3+ ions. Finally, the effective gain for a pulse with spectral
power densitypL(ν) is

Geff =
∫

G(ν)pL(ν)dν∫
pL(ν)dν

. (10)

This gain, calculated for the soliton pulse with given duration,
must balance the cavity losses. In our model, we fulfill this
condition by adjusting the pump intensity. We will later inves-
tigate in detail for which range of pulse bandwidths the result-
ing gain spectraG(ν) (from (9)) lead to stable situations, and
how the stability range depends on various parameters.

We note that the integrand in (9) is a function with fast
oscillations. For an efficient numerical evaluation we used
the fact that the integrand is a nearly periodic function over
a length of a few standing-wave periods. It is thus advisable
to define a function which is the integrand averaged over one
standing-wave period (by numerical integration), and then
to integrate this relatively smooth function over the whole
crystal length. In this way the saturated gain spectrum can
be calculated within a few seconds on a standard personal
computer, and a large number of configurations can be inves-
tigated within a reasonable time. Note that the algorithm used
in [8] needs far more computation time, but of course it is
more general in the sense that it can be applied to lasers which
do not operate in the soliton mode-locked regime or are based
on media with more complicated gain spectra.

2 Results for the Yb:YAG thin-disk laser

Here we quantitatively discuss a thin-disk Yb:YAG laser
which has been slightly modified compared to the laser de-
scribed in [1]. The setup is shown in Fig. 2. The output-
coupler transmission has been increased toTout = 8%, and the
total cavity loss is estimated to be 10% per round-trip. As
the Yb:YAG disk (thicknessd = 220µm, refractive indexn =
1.82) is a folding mirror in the standing-wave cavity, it ampli-
fies a circulating pulse twice per round-trip, and the effective
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Fig. 2. Setup of the thin-disk laser. DM= dispersive mirror, SESAM=
semiconductor saturable absorber mirror. The prism near the output coupler
is used to fine-tune the dispersion

gain per double pass through the disk must be 5%. The pump
power is always adjusted to generate this gain. The mode area
on the disk isA = 10−6 m2, corresponding to a mode radius
of 0.56 mm. For an output power ofPout = 15 W, we use an
effective intracavity power of 2Pout/Tout = 375 W, where the
factor 2 accounts for the fact that gain saturation occurs in
two double passes per round-trip. Dispersion compensation
is accomplished not with an adjustable (but slowly drifting)
GTI (Gires–Tournois interferometer) as described in [1], but
with 10 bounces per round-trip on three dispersive mirrors
with a group-delay dispersion of≈ −400 fs2 at 1030 nm per
bounce. An additional prism near the output coupler [14, 15]
allows for the fine adjustment of the total intracavity dis-
persion and self-phase modulation and thus the soliton-pulse
width. The SESAM is of a low-finesse design with 0.9%
modulation depth, a saturation fluence of 0.1 mJ/cm2, and
a recovery time of≈ 100 ps [1]. The pulse-repetition rate is
35 MHz.

The typical soliton-pulse duration of 0.63 ps corresponds
to a bandwidth of 1.8 nm. In Fig. 3 we plotted the calculated
spectra of the saturated gain per round-trip (two double passes
through the disk) for different pulse bandwidths as well as the
corresponding pulse spectra, and now discuss whether these
cases correspond to stable situations. For the smallest band-
width of 1 nm, a pronounced dip in the center of the gain
spectrum occurs. This results from the fact that frequency
components with an offset of≈ 0.3 THz (≈ 1 nm) from the
line center, still well within the natural gain bandwidth of
1.55 THz, can exploit regions with weak gain saturation (and
thus high excitation level) near the AR-coated end of the crys-
tal. This effect becomes weaker for broader pulse bandwidths.
For the large pulse bandwidth of 2.5 nm, the dip disappears
because the pulse spectrum is broad enough to largely ‘wipe
out’ the standing-wave pattern near the AR-coated end. Still
there is some broadening of the gain spectrum. Note that
even in this situation there are still regions with weakly satu-
rated gain near the reflecting end of the disk, but these could
be probed only by frequency components outside the natural
gain bandwidth. In Fig. 4 we plotted the minimum and max-
imum normalized excitation levels (within a standing-wave
period) along the propagation direction for different pulse
bandwidths. (The standing-wave period is too small to permit
plotting the oscillating excitation level itself.) The excitation
maxima are quite high near the reflecting end (left side of
the graph), because in this region the standing-wave pattern
is fully modulated and the gain is not saturated in the nodes
of this pattern. For 2-nm pulse bandwidth the standing-wave
pattern is largely wiped out near the AR-coated end of the

12

10

8

6

4

2

0

G
  

(%
)

-1.0 -0.5 0.0 0.5 1.0

dν (THz)

1 nm
1.5 nm

2 nm
2.5 nm

1 nm
1.5 nm

2 nm

2.5 nm

pulse
spectra

gain
spectra

Fig. 3. Spectra of the saturated gain per round-trip (two double passes
through the disk) for different pulse bandwidths, and the corresponding
Gaussian pulse spectra (alldotted)

0.30

0.20

0.10

0.00n
o
rm

a
liz

e
d
 i
nv

e
rs

io
n

 d
e

n
s
it
y

1.00.80.60.40.20.0

normalized position along the beam axis

1 nm

2 nm
3 nm

Fig. 4. Minimum and maximum normalized excitation levels along the
propagation direction, for 1-nm (solid curves), 2-nm (dashed curves), and
3-nm (dotted curves) pulse bandwidth. Theleft and right parts of the
graph correspond to the reflecting and the AR-coated ends of the crystal,
respectively

crystal (right side of the graph). The pulse bandwidth required
to wipe out the standing-wave pattern near the AR-coated end
is inversely proportional to the disk thickness. It has been dis-
cussed, for example in [7], that this bandwidth is in the order
of c/(2nd ), i.e. the free spectral range of the disk (if it were
used as an etalon).

In the experiments, stable mode locking was achieved
only for a pulse bandwidth in the range of approximately
1.7 nm to 2 nm. Outside this range, a rather unstable regime
with a tendency for the generation of multiple pulses in
the cavity (and large power fluctuations) was observed. In
the following we will examine the reasons for this obser-
vation. Consider first the case with only 1-nm pulse band-
width, which can not be stable for several reasons. First of
all, a cw background with a frequency offset of≈ 0.3 THz
will see 1.7% more gain per round-trip. This gain advantage
of the cw background can not be compensated by a SESAM
with only 0.9% modulation depth. Therefore we would ex-
pect that a cw background can grow in power and soon
destabilize the soliton. Second, the soliton could split into
two solitons each of half the energy, thus also half the
bandwidth, and these two pulses could optimize their gain
by slightly shifting their peak wavelengths. Third, the ori-
ginal soliton itself would not be spectrally stable because
a shift of the spectrum to either side would increase the
gain. Of course, any substantial change of the pulse spec-
trum will after some time result in changes of the gain
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spectrum, and this is why the operation is unstable in such
cases.

Now consider the case with a pulse bandwidth of 2.5 nm.
As the dip in the saturated gain spectrum disappears, no
pulse can optimize its gain by shifting its spectrum. How-
ever, a pulse with half the bandwidth, as obtained by splitting
the soliton into two solitons with half the energy, experi-
ences 0.43% more gain per round-trip. Such pulses have only
slightly more loss at the SESAM due to the weaker absorber
saturation. If the temporal distance of the pulses is smaller
than the recovery time of the SESAM (≈ 100 ps), this differ-
ence of loss is even smaller, but only for the second pulse.
Finally, a cw background has 0.5% more gain, but also expe-
riences a substantially higher loss at the SESAM.

We have seen that several modes of operation can compete
with the desired mode, which is a single-soliton pulse. The
latter can be stable only if no other mode has a gain advantage
which can not be compensated by the SESAM. We thus arrive
at the following conditions for stable soliton mode locking:

1. A small shift of the pulse spectrum towards shorter or
longer wavelengths should decrease the effective gain, so
that the pulse is spectrally stable.

2. The difference between the maximum of the saturated
gain curve (which could be exploited by a cw background)
and the effective gain for the pulse must not exceed a cer-
tain value, which depends mainly on the modulation depth
of the SESAM and its recovery time.

3. The difference between the effective gain for two soli-
tons with half the bandwidth (and optimized spectral pos-
ition) and the effective gain for the wanted soliton pulse
must not exceed a certain value, which depends mainly
on the modulation depth of the SESAM and the degree of
SESAM saturation.

In the following, we discuss this in detail. In Fig. 5 we have
plotted the gain advantage per round-trip (compared to the
desired single pulse) for a cw background, for double pulses
(with each pulse having half the energy, half the bandwidth,
and optimized spectral position), and for a single pulse with
optimized spectral position, all as functions of the pulse band-
width. We see that according to condition 1, stable mode
locking with less than 1.6-nm bandwidth is impossible, be-
cause the pulse would not be spectrally stable. We further
see that a cw background (condition 2) always has the larg-
est gain advantage, as to be expected, and that this curve has
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a minimum for a pulse bandwidth of slightly below 2 nm.
With a SESAM modulation depth of 0.9%, a gain advantage
of the cw background in the order of 0.5% could be toler-
ated because much of the cw background experiences the loss
of an essentially unsaturated SESAM. The gain advantage of
double pulses (condition 3) is always smaller than for a cw
background, and yet double pulses can more easily compete
with the single pulse because they can saturate the SESAM
nearly as much as the single pulse. For a quantitative estimate,
we consider the energy lossq(Ep) of a pulse on the SESAM
(modulation depth∆R and saturation energyEsat) as a func-
tion of the pulse energyEp [10]:

q(Ep) = ∆R
[
1−exp

(−Ep/Esat
)] Esat

Ep
. (11)

Note that this is not the loss of the absorber after passage of
the pulse, but rather the fractional energy loss of the pulse it-
self. Equation (11) can be derived from the evolution equation

dq

dt
= − P

Esat
q (12)

for the loss of a slow saturable absorber, withq(0) = ∆R and
q � 1. Introducing the saturation parameterS = Ep/Esat, we
obtain

q(S ) = ∆R (1−exp(−S )) /S , (13)

which is roughly∆R/S for S ≥ 3. If the SESAM is oper-
ated with a typical value of, for example,S = 8, the loss of
a pulse with half the energy (i.e.S = 4), will be larger by
≈ ∆R/8, which is≈ 0.1% in our case. From Fig. 5 we see
that only for a pulse bandwidth near 1.8 nm, this loss dif-
ference is large enough to suppress the formation of double
pulses. This is in remarkable agreement with the mentioned
experimental observations.

Note that even a different type of soliton mode-locked
laser without SHB would exhibit the described instability ac-
cording to condition 3 at large pulse bandwidths, and this in-
stability usually sets a lower limit to the achievable pulse du-
ration. For a laser with weak SESAM saturation, condition 2
may be the limiting factor. The instability for small pulse
bandwidths (long pulses), however, occurs only with SHB
and again usually acts through condition 3. It is instructive to
examine Fig. 6, which shows the same curves as Fig. 5 but
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for a hypothetical laser with the same parameters but without
SHB. Here, the gain advantage of both a cw background and
double pulses becomes very small for a small enough pulse
bandwidth. On the other hand, for a large pulse bandwidth
(e.g. 2 nm) such a laser would be more difficult to mode-lock
than the laser with SHB. With the given SESAM, we would
expect to achieve at most a 0.9-nm pulse bandwidth, or 1.2-ps
soliton-pulse duration. This is because SHB leads to a sat-
urated gain spectrum which is broader than the natural gain
spectrum. As this spectrum still has a quite smooth shape,
stable bandwidth-limited solitons can be formed.

Returning to the laser with SHB, we have shown that sta-
ble mode locking can be achieved only in a certain range of
pulse bandwidths and thus pulse durations, with the width of
this range depending on the parameters of the gain medium
(cross-sections, gain bandwidth, and crystal length), the in-
tracavity intensity, and the SESAM parameters. Apparently
there could be situations where stable mode locking is not
possible at all, and the described Yb:YAG thin-disk laser is
indeed not far from such a point. It is therefore interesting to
know how the stability range could be expanded. An obvious
choice is the use of a SESAM with larger modulation depth,
which is more capable of discriminating against cw back-
ground and double pulses. However, any significant increase
beyond the currently used 0.9% would lead to Q-switched
mode locking (QML) [10, 11]. The same problem excludes
the possibility of using a larger spot size on the SESAM,
which would increaseEsat, decrease the saturation param-
eter S, and thus help to suppress double pulses. A some-
what faster recovery time would help to suppress a growing
cw background, but not double pulsing, which seems to be
the more severe problem. Only a recovery time below the
pulse duration (i.e. a fast saturable absorber) would help, be-
cause this would strongly favor a single pulse (against double
pulses) due to its higher peak intensity. In a semiconductor
absorber, a certain part of the saturation recovers by intraband
thermalization within≈ 100 fs, but another part results from
carrier recombination and trapping, which can not occur on
a sub-picosecond time scale, except if the material is grown
at rather low temperatures and increased non-saturable losses
are accepted [16, 17]. We therefore see that only a fast ab-
sorber, based, for example, on the Kerr effect, could in prin-
ciple allow for mode locking in a broader range of pulse
durations, although Kerr-lens mode locking introduces addi-
tional difficulties, in particular operation of the laser cavity
near a region of instability. On the other hand, no slow sat-
urable absorber could be expected to be significantly superior
to the SESAM used in our experiments, because the crucial
parameters (modulation depth and saturation parameter) are
already optimized.

We also investigated the effect of reducing the total cavity
loss from 10% to 5%, where we assumed the average output
power to stay unchanged. With half the gain, gain-filtering ef-
fects are reduced. On the other hand, gain saturation in the
thin disk and thus the SHB effect become stronger. Figure 7
shows that the latter effect is less important: the gain advan-
tages for both double pulses and a cw background are signifi-
cantly reduced. However, in order to take advantage of this,
the spot size on the SESAM should be increased because oth-
erwise the saturation parameterS would rise (as an effect of
the increased intracavity pulse energy) and the discrimination
against double pulses would be reduced. Indeed we observed
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Fig. 7. Similar to Fig. 5, but for reduced cavity losses of 5% (instead of
10%)

in experiments that modifying the output-coupler transmis-
sion alone has little effect on the stability range for mode
locking. Also note that a decreased output-coupler transmis-
sion helps to avoid Q-switching instabilities [11] and thus
would allow us to employ a SESAM with higher modulation
depth, which would significantly expand the stability range.
However, this also tends to reduce the laser efficiency if para-
sitic cavity losses can not be reduced.

We also consider modifying the crystal thickness. The
further development of high-power diode lasers with better
spatial beam quality will allow us to construct thin-disk laser
heads with an increased number of passes of the pump radi-
ation through the disk. This allows for a further reduction of
the disk thickness, with beneficial effects on the thermal prop-
erties, mainly a further reduction of thermal lensing. Figure 8
shows how various parameters change when the crystal thick-
ness is reduced. The effective pump power (adding the con-
tributions from all passes) is always adjusted to achieve the
same gain of 5% per double pass through the disk, and is in-
dicated by the circles. The squares show the pulse bandwidth
for which the gain advantage for double pulses (usually the
main challenge) is at its minimum, while the triangles indi-
cate how large this gain advantage is at this point. Compared
to the original situation with 220-µm disk thickness, a re-
duced thickness of≈ 100µm would allow for slightly shorter
pulses, while the stability against double pulsing would be
slightly reduced. However, for a further reduced disk thick-
ness of, for example, 50µm, the stability against double puls-
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Fig. 8. Variation of the disk thickness.Rectangles: pulse bandwidth with
minimum gain advantage for double pulses.Triangles: minimum gain ad-
vantage (in %o = 0.1%) for double pulses.Circles: effective pump power
needed to generate 5% of gain per double pass
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ing becomes much better, while the optimum pulse duration
would then be longer (≈ 1 ps). With 40-µm disk thickness or
less, arbitrarily long pulses become possible. In this regime,
which may be reached in the future, the effect of SHB be-
comes weaker because there are no more wavelength compo-
nents within the gain bandwidth which can exploit the regions
of undepleted gain.

A higher doping level of the crystal would also allow us
to reduce the crystal thickness. In addition, it should increase
the effect of energy migration and thus reduce the effect of
SHB. On the other hand, it can reduce the laser efficiency by
enhancing quenching effects. The currently used doping level
(9%) already seems to be close to the optimum.

Another parameter which can be modified is the cavity
length, which determines the repetition rate of the laser. If
we make the cavity longer, this does not directly affect the
SHB effect which depends only on the average intensity in
the thin disk. However, the intracavity pulse energy rises (if
the output-coupler transmission is not changed), and the spot
size on the SESAM should be increased to keep the satura-
tion parameterS unchanged. Still the Q-switching tendency is
reduced, as can be shown with the equations of [11], so that
a SESAM with higher modulation depth can be employed.
The thereby increased heat load on the SESAM is no problem
as the spot size is also increased; it only somewhat decreases
the laser efficiency. The higher modulation depth finally gives
more stability against double pulsing. Thus we find that the
double-pulsing instability can be reduced by increasing the
modulation depth of the SESAM and using a relatively long
laser cavity. Indeed our Yb:YAG thin-disk laser has already
been designed to operate with a quite low repetition rate of
35 MHz.

3 Results with other gain media

We finally discuss the effects of spatial hole burning on the
mode locking of thin-disk lasers with other gain media, hav-
ing larger or smaller amplification bandwidths. We will see
that the effect of SHB is very different in these cases and
mainly depends on the parameterγ := nd∆νg/c, which is
half the ratio of the FWHM gain bandwidth and the free spec-
tral range of the disk (if used as an etalon). For the Yb:YAG
laser, we haveγ = 2.1. Here, the natural gain bandwidth is
just sufficient to form pulses which can largely wipe out the
standing-wave pattern in the disk. For Nd:YAG, where the
gain bandwidth is only 0.5 nm, we get a much smaller value
of γ . For the modeling we use numbers which are simi-
lar to those in previous experiments with continuous-wave
TEM00 thin-disk Nd:YAG lasers [18]. (A passively mode-
locked thin-disk Nd:YAG laser has not yet been demon-
strated.) Because of the weaker pump absorption, a larger
disk thickness of 350µm is needed, which leads toγ = 0.28.
The laser is assumed to have 12 W of average output power
with an output-coupler transmission of 5%. The laser-beam
radius in the thin disk is 1.1 mm. As in the previous cases, we
plotted the gain advantage of a cw background and of double
pulses as a function of the spectral width of the laser emis-
sion (Fig. 9). As in the hypothetical case of Yb:YAG without
SHB (Fig. 6), these gain advantages become very small as the
pulse bandwidth gets small, so that stable mode locking could
be achieved for arbitrarily long pulses. Figure 10 shows that
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a dip in the saturated gain spectrum can not be formed, even
for very narrow pulse spectra, because for all wavelengths
within the gain bandwidth, the standing-wave patterns are so
similar that none of these waves can exploit the regions of un-
depleted gain in the crystal. There is only some broadening of
the gain spectrum. The lasers considered in [7, 8] all operated
in this regime.

The situation is different for Nd:YVO4. This medium
has about twice the gain bandwidth of Nd:YAG. Due to the
large cross-sections, a somewhat thinner disk can be used. We
simulated a case with a 280-µm thin disk (γ = 0.52), a beam
radius of 1.1 mm in the disk, and 10 W of output power
through an output coupler with 20% transmission (increased
compared to the Nd:YAG laser because of the higher achiev-
able gain). The results (Fig. 11) show that stable mode lock-
ing should be possible for a pulse bandwidth near 0.32 nm,
corresponding to a pulse duration of about 3.7 ps. The min-
imum required modulation depth of the SESAM is≈ 2%,
somewhat higher than for the discussed Yb:YAG laser. How-
ever, this should not constitute a problem since the intracavity
power is relatively small and the Q-switching tendency is
weak due to the large cross-sections of Nd:YVO4. For this
reason, we expect the mode locking of a thin-disk laser with
Nd:YVO4 to be easier to achieve than with Yb:YAG. We also
note that with a reduced disk thickness one could generate
arbitrarily long pulses, as discussed for Yb:YAG in Sect. 2.

We also briefly discuss the possibility of mode locking
thin-disk lasers based on gain media with a larger gain band-
width compared to Yb:YAG. This might lead to high-power



274

3.0

2.5

2.0

1.5

1.0

0.5

0.0

g
a

in
 a

d
va

n
ta

g
e

  
(%

)

0.60.50.40.30.20.10.0

pulse bandwidth  (nm)

Nd:YVO4

cw background

double pulses

shifted pulse

Fig. 11. Similar to Fig. 5, but for a Nd:YVO4 laser

lasers with pulse durations of 200 fs or below. The main chal-
lenge is that such gain media typically have relatively poor
thermal properties. Also, large enough laser cross-sections
are required to suppress QML. In addition, large enough
pump and laser cross-sections and a high enough doping level
are needed in order to keep the disk thickness reasonably
small. Finally, the medium has to have sufficient mechanical
strength so that a thin disk can be mounted on the cooling fin-
ger. At this point it is not yet clear which material will be most
suitable for a< 0.5-ps thin-disk laser, although Yb-doped
tungstate crystals like Yb:KGW or Yb:KYW [19] seem to
be the most promising candidates, with a small quantum de-
fect, even slightly higher laser cross-sections than Yb:YAG,
and a fairly large bandwidth. Also, some other parameters
(disk thickness, mode sizes, output coupling etc.) will have
to be optimized for such a laser and are not yet known.
We thus investigate the effect of SHB in a laser based on
a hypothetical gain medium, which is assumed to have the
same properties as Yb:YAG except that the gain bandwidth
is 40 nm (instead of 5.5 nm). We also assume the same op-
erating parameters as for the first Yb:YAG laser discussed
in Sect. 2 and obtainγ = 17. Figure 12 shows that stable
mode locking should be easily achieved for≈ 7-nm pulse
bandwidth (corresponding to≈ 160-fs pulse duration). Here
the gain advantage particularly for double pulses is signifi-
cantly weaker than for the original Yb:YAG laser. This is
because the standing-wave pattern in the disk can easily
be wiped out with a bandwidth which is still smaller than
the natural gain bandwidth. On the other hand, SHB does
not significantly reduce the possible pulse duration in this
regime: the improvement compared to Yb:YAG is smaller
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Fig. 12. Similar to Fig. 5, but for a hypothetical laser material like Yb:YAG
except that the gain bandwidth is 40 nm

than may be naively expected from the increase of amplifica-
tion bandwidth.

4 Methods to reduce the effect of spatial hole burning

We have seen that spatial hole burning in thin-disk lasers can
help to generate shorter pulses, but also can strongly limit
the range of pulse durations which can be realized. It would
therefore be desirable to eliminate this effect in some cases,
for example if the aim is the generation of longer pulses, or if
a larger range of pulse durations is required.

It is clear that using a ring cavity will not have the desired
effect as in a thin-disk laser there is always the superposi-
tion of counter-propagating waves in the gain medium. One
might also think of employing polarization effects. Any po-
larization state can be decomposed into two orthogonal linear
components, and these can be seen as generating two in-
dependent standing-wave patterns in the disk. The phase of
these standing-wave patterns is determined by the boundary
conditions at the reflecting surface of the disk, so that both
standing waves are always in phase (and thus can not can-
cel each other) unless a polarization-dependent phase change
could be introduced near the reflecting end. For this purpose
one could bond the thin disk to a quarter-wave plate and make
the reflecting coating on the latter [20]. As the heat then has
to flow through the quarter-wave plate, thermal lensing effects
are increased. This effect could be limited by making a thin
zero-order wave plate from a strongly birefringent material
with good thermal conductivity.

In Sects. 4.1 and 4.2, we propose two other methods and
investigate their potentials.

4.1 Use of a filter

As the problem – unstable mode-locking behavior outside
a narrow range of pulse durations – results from a distortion
of the saturated gain spectrum, it appears natural to counteract
this by using an additional wavelength filter in the laser cav-
ity. It is obvious that this method should work if the filter re-
sponse is designed so as to flatten the effective gain spectrum.
However, it is not obvious to what extent this method can
work with filters of a given simple spectral shape, how tight
the fabrication tolerances would be, and how large the range
of possible pulse duration becomes. Therefore we studied var-
ious cases by including different filter functions in the model
described above.

4.1.1 Gaussian filter. One of the simplest filter functions,
which is often approximated by real filters, is a Gaussian
where the filter transmission is

TF(ν) = exp

[
−4 ln 2

(
ν − ν0

∆νF

)2
]

. (14)

The only variable parameter is the FWHM filter bandwidth
∆νF. We first investigated the behavior for an Yb:YAG laser
with the same parameters as the first laser modeled in Sect. 2.
In Fig. 13, we plotted the gain advantage for double pulses
versus pulse bandwidth for various values of∆νF. All curves
have been truncated for short wavelengths, where the pulses
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would not be spectrally stable. First considering relatively
weak filters (bandwidth of 17 nm or larger), we see that the
optimum pulse bandwidth is reduced with decreasing fil-
ter bandwidth, as one would expect. However, the minimum
gain advantage for double pulses is not reduced, but even
slightly increased. This means that the use of a Gaussian fil-
ter would allow us to generate longer pulses, but an absorber
with a slightly increased modulation depth would be required,
and the stability range would be further reduced. Certainly
the filter will not make stable mode locking easier to achieve.
Also note that for a filter with, for example, 17-nm bandwidth
the filter loss would make it necessary to increase the pump
power by 16% to achieve the same output power as without
the filter. This is partly because of the loss at the filter and
partly because for narrow-band emission there are regions of
largely undepleted gain in the disk.

Note, however, that for considerably smaller filter band-
widths the situation becomes totally different. Then the situ-
ation is similar to the Nd:YAG laser of Sect. 3: there are
no more frequencies within the filter bandwidth which have
a sufficiently modified standing-wave period to make use
of regions with undepleted gain. For a filter bandwidth of
≈ 5.8 nm, stable mode locking should be possible for any
pulse bandwidth between 0 and 0.24 nm (Fig. 13). (Filters
with less than 5.8-nm bandwidth would further reduce the
achievable pulse bandwidth.) The filter is now strong enough
to prevent the formation of a dip in the saturated gain spec-
trum even for an arbitrarily small pulse bandwidth. (Note that
the spectral width of the dip is mainly determined by the free
spectral range of the disk, not by the pulse bandwidth.) In-
terestingly, the filter will not introduce any significant loss
if the pulse bandwidth is below≈ 0.05 nm, and yet serves
to stabilize the pulses against the growth of other spectral
features. Nevertheless the laser efficiency is significantly re-
duced because a narrow-band beam can not access all the
excited ions in the disk. The pump power has to be increased
by ≈ 9% compared to the case without the filter and 1.8-nm
pulse bandwidth, for example, in order to obtain the same
average output power.

4.1.2 Fabry–Perot filter. The reason why a Gaussian filter
(as discussed in Sect. 4.1.1) with moderate filter bandwidth
does not provide more stability against double pulsing, can be
understood as follows. In order to remove the dip in the sat-
urated gain spectrum, the filter bandwidth can not be much

larger than the free spectral range of the disk. For such a nar-
row bandwidth, however, the filter inevitably increases the
steep drop of gain outside the two maxima of the spectrum.
Consequently, the double-pulsing instability limits the pulse
bandwidth to quite small values.

For more stability against double pulsing in a regime with
larger bandwidth, a smoother shape of the net-gain spectrum
is required. To achieve this, we need a filter which helps to at-
tenuate the gain maxima near the dip without increasing the
drop of gain outside this region. It is apparent that a Fabry–
Perot filter could fulfill this requirement if its free spectral
range is chosen appropriately (somewhat larger than that of
the disk) and a resonance occurs for the center frequency of
the pulses. We have also modeled this case and found that
for optimized filter parameters this indeed works very well.
For example, we set the Fabry–Perot mirror reflectivities to be
0.36% and its free spectral range to be 2.2 nm. Here, a pulse
bandwidth of 1 nm is achieved, and the gain advantage for
double pulses is reduced to 0.05%, which is significantly
less than without the filter (0.08% in the optimum case of
1.8-nm bandwidth, or 1.5% for 1-nm bandwidth). The result-
ing net-gain spectrum (Fig. 14) is quite flat. The filter loss is
acceptable; it raises the demand of pump power for the same
output power by 7%. Note, however, that the fabrication tol-
erances for the Fabry–Perot filter would be quite tight: the
reflectivity should be 0.36±0.05%.

We also tried to optimize the parameters of the Fabry–
Perot filter for a smaller pulse bandwidth of 0.2 nm and found
that this does not work. The reason is that for this narrow
bandwidth the shape of the spectral response of a Fabry–Perot
filter is no longer suitable to produce an approximately flat
net-gain spectrum.

4.2 Use of different reflection angles

Here we propose another scheme which significantly reduces
the effect of SHB, without requiring additional specially de-
signed optical components. The principle is to use a specially
designed laser cavity with multiple bounces of the laser beam
on the disk, with the reflection angles chosen so that the
standing-wave pattern is at least partially wiped out. It turns
out that for a typical disk thickness of 220µm a difference
in angles of a few degrees, which can easily be achieved,
is sufficient for this purpose. Figure 15 shows an example
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Fig. 15. Example for a cavity design with two different reflection angles on
the disk. M1 and M2 are two flat mirrors, which can be the output cou-
pler and the SESAM. Dispersive mirrors can be used to adjust the cavity
dispersion

for the design of such a cavity. It is interesting to note that
this method alone would not be sufficient to achieve single-
frequency operation of a thin-disk laser, because in single-
frequency operation there is always a standing-wave pattern
in the disk, which only becomes more complicated if a cavity
with several reflections on the disk is used. In a mode-locked
laser, however, the cavity arm lengths are so much longer
than the spatial extent of the pulses that there can be no in-
terference of the contributions from the passes with different
reflection angles. We can thus calculate the pattern of excita-
tion in the disk just by adding the intensity (not amplitude)
patterns which result from the passes with different angles.
This fact, which is easy to understand in the time domain,
could also be explained in the frequency domain, although
only in a more sophisticated way, which we do not discuss
here.

A rough estimate of the required reflection angles can be
obtained as follows. Each beam with a reflection angleαj (in
the crystal, relative to the normal direction) and a vacuum
wavelengthλ creates a standing-wave pattern in the disk with
a period

Λj = λ

2n cosαj
. (15)

If we choose a cavity with two anglesα1 andα2 so that∣∣∣∣ d

Λ1
− d

Λ2

∣∣∣∣= 2nd

λ
|cosα1 −cosα2| = 1/2 , (16)

the corresponding standing-wave patterns will be just out of
phase near the non-reflecting end of the disk (with thick-
nessd). For a 220-µm-thick disk this condition is fulfilled, for
example ifα1 = 1◦ andα2 = 2.29◦. Then the resulting excita-
tion pattern is smooth near the AR-coated end, if the powers
in both beams are the same. Still there remains a significant
oscillation of the excitation level in the middle of the crys-
tal. It is thus better to choose a somewhat larger difference of
angles.

For a more comprehensive study we generalize the model
described in Sect. 1. We consider two beams with differ-
ent angles, where the total intensity pattern is calculated by
adding the contributions for both angles, as discussed above.
The resulting gain is also the sum of the contributions from
the two angles. We then have chosen a parameter set for
a Yb:YAG laser (the most critical case) which is similar to
the first parameter set discussed in Sect. 2, except that we as-
sume a standing-wave cavity where the pulse passes the disk
four times per round-trip, with two different anglesα1 and
α2. The cavity loss is doubled, i.e. 20%, because we have
twice the small-signal gain per round-trip and can thus choose
a higher output-coupler transmission. The modulation depth

12

10

8

6

4

2

0

g
a

in
 a

d
va

n
ta

g
e

1086420

β2 (deg)

β1 = 2°
(α1 = 1.1°)

Fig. 16. Gain advantage of cw background versus the external angleβ2 for
fixed β1 = 2◦. (The gain advantage for double pulses is very similar.) All
curves have been truncated for shortwavelengths, where the pulses would
not be spectrally stable

of the SESAM should also be doubled to 2%. We keepα1
fixed at 1.1◦ (corresponding toβ1 = 2◦ outside the crystal)
and vary the external angleβ2 of the second beam.

First we consider a beam with narrow bandwidth (0.1 nm),
corresponding to relatively long pulses (11 ps). Figure 16
shows the gain advantage of a cw background (which is
hardly different from the gain advantage for double pulses
in this case) as a function of the angleβ2. While (16) would
suggest a value ofβ2 = 4.24◦, we see that the optimum is at
β2 = 4.8◦. Here, the gain advantage of the cw background
is 1.2%, which is much less than withβ1 = β2. However,
the gain advantage of double pulses is also about 1.2%, and
this is roughly six times more than can be tolerated when
the modulation depth of the SESAM is in the order of 2%.
A significantly higher modulation depth can not be employed
because of Q-switching instabilities. We thus see that the use
of two different angles is still not enough to allow for mode
locking with arbitrarily long pulses.

The situation gets less critical if the pulse bandwidth be-
comes larger. In Fig. 17 we have plotted the gain advantage
for double pulses versus pulse bandwidth for different values
of β2. As in Fig. 13, all curves have been truncated for small
bandwidths, where the pulses would not be spectrally stable.
We see that the best situation is achieved forβ2 = 5◦ and
a pulse bandwidth around 1.1 nm. Here the gain advantage for
double pulses is only≈ 0.034%, i.e. much less than without
the use of two different reflection angles. With 2% modu-
lation depth, about 0.2% gain advantage for double pulses
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could be tolerated. This means that, for example, forβ2 = 5◦
one can achieve stable mode locking with a pulse bandwidth
in the range of 0.95 nm to 1.47 nm, corresponding to pulse
durations in the range of≈ 0.8 ps to 1.2 ps. This is a signifi-
cantly improved stability range compared to the situation with
only one reflection angle.

For the generation of even longer pulses, this method can
be combined with the use of a Gaussian filter as discussed in
Sect. 4.1.1. For example, Fig. 18 shows the gain advantages
of double pulses and a cw background for the same situation
as in Fig. 17, but with an additional Gaussian filter of 20-nm
bandwidth. With a SESAM of 2% modulation depth, a gain
advantage for double pulses of about 0.2% should be tolera-
ble, so that stable mode locking should now be possible for
pulse bandwidths between 0.4 nm and 0.75 nm, correspond-
ing to pulse durations between 1.5 ps and 2.8 ps. For less than
0.4-nm bandwidth, the pulses would not be spectrally stable.

If we further reduce the filter bandwidth to 14 nm
(Fig. 19), the stability range gets much larger: now the pulse
bandwidth can be varied anywhere between 0 and 0.54 nm
if the condition is that the gain advantage for double pulses
should be smaller than 0.2%. We compare this to the situation
of Fig. 13 (Sect. 4.1.1). There, a filter with< 6-nm band-
width was required, and the maximum pulse bandwidth was
only 0.24 nm. Also, the reduction of laser efficiency is signifi-
cantly weaker if we use two reflection angles, because in this
case we can access most of the excited ions in the disk.

Of course, another possibility would be to use a cavity
with three (or even more) different reflection angles on the
disk. This should lead to further increased stability ranges of
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Fig. 19. Same as Fig. 18, but for a filter bandwidth of 14 nm

mode locking. However, this approach is more complex, and
we do not discuss it further here.

5 Conclusions

We have investigated the effect of spatial hole burning on the
mode-locking behavior of thin-disk lasers based on different
gain materials. We have shown that this depends very much
on the parameterγ := nd∆νg/c, which is half the ratio of the
FWHM gain bandwidth and the free spectral range of the disk
(if used as an etalon). For the Yb:YAG laser which has al-
ready been experimentally demonstrated, we haveγ = 2.1,
where the pulse bandwidth can be just sufficient to largely
wipe out the standing-wave pattern. The calculations explain
with good quantitative agreement why stable mode locking
can be achieved only in a narrow range of pulse durations.
The generation of longer pulses, i.e. with smaller bandwidth,
is prohibited by the formation of a dip in the inhomoge-
neously saturated gain spectrum, which can favor both a cw
background and double pulses as competitors to the desired
single-soliton pulse. On the other hand, shorter pulses are pro-
hibited by the limited gain bandwidth, much as is the case in
any other soliton mode-locked laser. The minimum achiev-
able pulse duration is shorter than it would be without spatial
hole burning. In the case of Yb:YAG, this improvement is
a factor of the order of 2. The simulations as well as ex-
perimental results [1] show that in the soliton mode-locked
regime this reduction of pulse duration is possible without
a deterioration of the time–bandwidth product.

For Nd-doped gain media, typical values ofγ are well be-
low 1. For Nd:YAG, withγ = 0.28, a dip in the saturated gain
spectrum can not be formed, even for narrow pulse spectra,
and stable mode locking should be achievable for arbitrar-
ily long pulses. The lasers discussed in [7, 8] all operated in
this regime, which may also be reached with Yb:YAG if the
disk thickness is reduced to≈ 50µm. For Nd:YVO4, with
a larger bandwidth than Nd:YAG and a somewhat larger value
of γ = 0.52, SHB is important and again allows only for
pulse durations in a certain range, in this case around 3.7 ps.
Compared to Yb:YAG, the stability requirement can be more
easily achieved because the much higher laser cross-sections
permit the use of a saturable absorber with higher modulation
depth, without Q-switching instabilities occurring.

On the other hand, Yb-doped gain media with larger gain
bandwidths (and thus much larger values ofγ ) should al-
low stable mode locking with< 200-fs pulse duration, pro-
vided that a medium with sufficiently good thermal and me-
chanical properties and also with large enough laser cross-
sections is found. For such a material, the tendency for dou-
ble pulsing is expected to be significantly weaker than for
Yb:YAG, provided that the optimum pulse bandwidth is cho-
sen. Longer pulses, however, can again not be generated in
such configurations.

We have also discussed various methods to reduce the ef-
fect of SHB. This is of interest particularly if the generation
of longer pulses or a larger range of possible pulse durations
is desired. We found that in the case of Yb:YAG a Gaus-
sian filter in the laser cavity will allow for the generation
of longer pulses, but will not increase the range of possible
pulse durations or increase the stability against double puls-
ing, except if the filter bandwidth is below a certain value
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where arbitrarily narrow pulse bandwidths are possible. This
regime is similar to the one for gain media with small am-
plification bandwidth (i.e. small values of the parameterγ ).
Better results even with relatively short pulses could be ob-
tained with optimized Fabry–Perot filters where, however, the
fabrication tolerances would be rather tight. Finally, we pro-
posed to use laser cavities where different reflection angles
on the disk occur. This significantly expands the range of
possible pulse bandwidths, although arbitrarily long pulses
can still not be generated in the considered cases. For arbi-
trarily long pulses, a filter can be used in addition, without
the filter parameters being very critical. Compared to the
situation with the filter alone, the stability range of mode
locking as well as the laser efficiency are then significantly
improved.
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