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1. INTRODUCTION

Recent advances in ultrashort pulse generation have
pushed pulse durations down to a few femtoseconds
[1]. Some of the shortest pulses generated to date have
a width equivalent to about two optical cycles [2–6].
When pulse durations approach this regime, the com-
monly used approach of the slowly varying envelope
approximation (SVEA) starts to fail. Nonlinear optical
effects, such as second-harmonic generation, are then
expected to depend not only on the envelope structure
of the pulses but also on the structure of the electric
field itself, including its relative phase to the envelope,
which has been referred to as the absolute phase.
Recently, some first experimental evidence for the fail-
ure of the SVEA was reported [7]. In that study, the
energy distribution of electrons generated by multipho-
ton ionization (MPI) was investigated. An anticorrela-
tion of the electron energies was detected between MPI
electrons ejected in opposite directions. This effect was
only observed for the very shortest 6-fs pulses available
in that study, but not for longer pulses. However, a
direct correlation with measurements of the relative
phase between the carrier and envelope has not been
experimentally confirmed yet.
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For a simple estimation of the severity of phase
effects of few-cycle pulses, we separate the carrier and
envelope, assuming that
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absolute phase [8] of the pulse. For the computations in
Fig. 1, we have chosen

(3)

where 

 

A

 

0

 

 and 

 

A

 

1

 

 have been chosen to fulfill the above-
mentioned criteria. To evaluate the carrier–envelope-
phase sensitivity of 

 

η

 

(

 

n

 

)

 

, we calculate the quantity

(4)

Figure 1 depicts the behavior of 
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 for pulses of
one to eight cycles in duration and nonlinear optical
effects up to order 
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 = 50. For pulse durations of more
than three cycles and 
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≤

 

 6, it appears virtually impos-
sible to measure any deviation of the quantity from
zero. With current technology and pulses of two or
more cycles in duration, one has to employ highly non-
linear processes for a measurable effect. In this regime,
the strongest effects are expected for high-harmonic
generation processes, where 

 

n

 

 can be on the order of
100 or greater. For low-order processes, such as sec-
ond-harmonic generation or two-photon absorption, a
noticeable phase-dependence is only expected for
pulses approximately one cycle or less in duration.
These considerations make it clear that, with current
ultrafast technology, direct observation of the break-
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down of the SVEA is more likely to be detected with
amplified short pulses than at the oscillator level, where
sub-two-cycle pulses are required for a measurable
effect. In this paper, we will first describe methods to
monitor changes of the absolute phase. We will then
discuss jitter measurements of the phase between the
pulse carrier and envelope in a femtosecond laser. We
will trace back the origin of this noise. Based on the
understanding of the underlying noise mechanisms, we
describe the setup of a femtosecond oscillator with a
rigorously controlled drift of the absolute phase.

2. BASIC DEFINITIONS

The relative phase between the carrier and envelope
of an ultrashort pulse (the carrier-envelope-offset phase
or CEO phase [9]) changes on propagation through a
dispersive medium. The envelope travels at group
velocity 
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), whereas the under-
lying electric field structure, i.e., the carrier, propagates
at phase velocity 
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. This means that a pulse will
undergo a permanent change of the CEO phase in a dis-
persive medium. When propagating through a dispersive
material with an index of refraction 
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) along an axis 
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the pulse will accumulate a CEO phase change of
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 is the length of the dispersive material. Note
that it is the first-order dispersion term 
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gives rise to differing group and phase velocities in a
medium. A case of particular importance is propagation
through a laser cavity, as used in the generation of
ultrashort pulses. In such a cavity, the pulse accumu-
lates the CEO phase change of Eq. (5) every round trip
and 
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 takes the role of twice the cavity length. For a typ-
ical Ti : sapphire laser cavity, such as that described in
[6], the roundtrip phase shift between the carrier and
envelope from the 2.3-mm Ti : sapphire crystal, a 3-m
air path, and the prism compressor can be estimated as
about 250 optical cycles. However, only the fractional
part of this phase shift is included in the 
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as the cavity dispersion does not vary, the CEO phase
will evolve strictly linearly with a constant phase
change 
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. For the
following, it is useful to define the CEO frequency [9]:

(6)

In the case of constant intracavity dispersion, this
CEO frequency is constant. Note that even the tiniest
changes of intracavity dispersion will give rise to a
measurable change of the CEO frequency. In the case
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of the above-mentioned Ti : sapphire laser, e.g., a 10–6

change of cavity dispersion will already cause a 25-kHz
shift of the CEO frequency. This consideration immedi-
ately demonstrates the necessity to shield the laser cav-
ity from environmental influences when excessive fluc-
tuations of the CEO frequency need to be avoided.

3. MEASUREMENT OF THE CEO PHASE

The electric field structure of an optical pulse cannot
be directly accessed by any measurement. In the fol-
lowing, we will describe how the CEO phase can be
accessed by an indirect measurement employing het-
erodyning of two different harmonics of the laser field.
We will also show how the CEO and absolute phase are
related to each other.

The field of a short laser pulse can be written as

(7)

where ωc is the (angular) carrier frequency, A(t) is the
envelope function, and ϕ0 is the absolute phase of the
pulse. In the spectral domain, we can rewrite Eq. (7) as

(8)

The field of the second-harmonic of (ω) is then
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Fig. 1. Sensitivity to carrier–envelope effects ∆(n) as a func-
tion of pulse duration for nonlinear processes of different
order n. Orders n = 2, 3, and 4 are designated by SHG, THG,
and 4HG, respectively. The bottom axis refers to the
FWHM duration of the intensity envelope of the pulse in
optical cycles, i.e., in units λ/c. The top axis designates
pulse duration in femtoseconds for a center wavelength of
the pulse of 800 nm (Ti : sapphire wavelength range). The
time axes of the electric field representations in the bottom
part of the graph are centered at the respective pulse width
on the pulse width axis of the plot. 
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(9)

where the proportionality factor γ includes the second-
order susceptibility and a constant phase shift. Note

that the second-harmonic field  is centered at 2ωc

while the fundamental field  reaches its maximum at
ωc. The main consequence of Eq. (9) is that absolute
phases add up in sum-frequency generation processes.
In the same way, absolute phases will subtract in differ-
ence-frequency generation processes. This is well
known for optical rectification in the generation of THz
waves [10] and can also be employed to generate mid-
IR waveforms with a static absolute phase. Parametric
amplification may also be used to generate pulses with
static ϕ0 [11].

Let us consider a delayed superposition of both

fields  and  at a frequency ω in the area of spec-
tral overlap of the fundamental and second harmonic:

(10)

In the following, we will only consider the cosine
term, which gives rise to a spectral interference signal
if the delay ∆t is chosen a nonzero value. Detection of
this interference signal allows the determination of the
absolute phase ϕ0 in principle. Dispersive effects, how-
ever, will typically prevent a direct determination of the
absolute phase using spectral interferometry. Still, this
method allows the monitoring of shot-to-shot changes
of ϕ0, as has been described in [12–14]. This method
requires acquisition of a complete spectrum per indi-
vidual laser shot. Therefore, spectral interferometry
cannot be directly used with MHz repetition rates of
oscillators. In the latter case, let us reconsider Eq. (10)
with ∆t = 0 and a varying absolute phase ϕ0(t). In the
case of a linear phase evolution ϕ0(t) = 2πf0, the inter-
ference term in (10) gives rise to a beat signal with con-
stant frequency f0. This beat signal is exactly synchro-
nous with relative phase changes between the carrier
and envelope of the pulse propagating through the laser
cavity. One can therefore identify the frequency of the
beat note as f0 = fCEO. The connection to the previously
defined CEO phase is then given by

(11)
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=  Ã ω( )
2

γ2
Ã
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which also holds in the more general case of varying
intracavity dispersion. Note that neither the spectral
interferometry method for single shot CEO phase mea-
surement [12] nor the narrowband heterodyning
schemes [9] used with mode-locked oscillators allows
determination of the absolute phase. In fact, all meth-
ods monitor changes in the absolute phase with time,
which is effectively proportional to the CEO phase
according to Eq. (11).

4. MEASURING AND STABILIZING 
THE CEO FREQUENCY 

OF A FEMTOSECOND LASER

For experimental realization of the heterodyne
detection scheme, we additionally broaden the laser
output spectrum through white-light continuum gener-
ation in a microstructure fiber [15], regardless of the
laser used. To some extent this may be disputable,
because pulse fluctuations may also give rise to
changes in the CEO phase via an amplitude-to-phase
coupling mechanism inside the fiber [16]. This may
appear particularly cumbersome because of the much
higher nonlinearity of the microstructure fiber. How-
ever, as the fiber is placed outside the laser cavity, non-
linear or thermally induced phase changes will not add
up as they do for intracavity, as will be shown in more
detail below. This means that a change of first-order
dispersion in the laser gain crystal affects the CEO fre-
quency, whereas a change of dispersion in the fiber
affects only the CEO phase in a single pass. For mea-
suring the CEO frequency, we heterodyne the funda-
mental and the second harmonic of the microstructure
fiber continuum [17]. For frequency-doubling of the
long-wavelength components at 1060 nm, an LBO
crystal is used to generate the second harmonic with
noncritical phase matching. Given the 1-cm crystal
length, one calculates a phase-matching bandwidth of
about 4 nm. Note that all modes within the phase-
matching bandwidth contribute to the beat signal. Fun-
damental and SHG components at 530 nm are hetero-
dyned in a Michelson interferometer. Careful optimiza-
tion of the arm lengths in this interferometer is required
for detection of the beat signal. Experimental parame-
ters of the laser were set to ensure maximum intensity
and stability of the continuum components at 1060 and
at 530 nm.

Figure 2 shows the setup employed and a typical rf
spectrum measured by this setup. The CEO beat note
and its mirror frequency are clearly visible at 35 and
65 MHz. The measured signal level is 45 dBc in a
300 kHz bandwidth. In our experiments, we found a
signal level of at least 30 dBc necessary for reliable
locking of the carrier-envelope-offset frequency. In the
unstabilized laser with prism dispersion compensation,
the frequency of this beat note may change very rapidly
by up to several MHz in one second. This behavior is
most likely due to air turbulence and is already strongly
reduced by enclosing the laser in a box. Excursions of
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the CEO frequency are further decreased by switching
over to a prismless laser setup. With these improve-
ments and still without any active stabilization, the
CEO frequency stays within a 500-kHz interval for
observation times of several minutes. Given the high
sensitivity of the CEO frequency towards environmen-
tal changes, alignment of the cavity, etc., the CEO fre-
quency of a femtosecond oscillator can be controlled in
many different ways. Tilting of the end mirror in the
prism arm of the laser was described as one of the first
methods to adjust the CEO frequency [18]. While this
has the advantage of orthogonalizing control of the cav-
ity group and phase delay, this control is typically lim-
ited by the inertia of the mirror to below 1 kHz. Also, it
cannot be used in prismless cavities. We control the
CEO frequency by changing the laser pump power
instead [19]. Figure 3 shows a transfer function, i.e. the
measured change of CEO frequency induced by an
acoustooptic amplitude modulator, which is located
between the pump laser and Ti : sapphire laser. The
physical mechanism behind this means of control is a
change of the refractive index of the Ti : sapphire gain
crystal, which can either be induced by temperature
changes or self-refraction. To alleviate a comparison
with theoretical estimates in Section 6, we plot the
transfer function in units of the frequency change over

the change in the intracavity peak intensity (Hz m2/W).
Clearly, a transition from a thermally dominated regime
at low modulation frequencies to a self-refraction
regime at kHz modulation frequencies can be seen. In
the latter case, the transfer coefficient levels out at
about 10–8 Hz m2/W, whereas thermal contributions can
give rise to about five-times stronger amplitude-to-
phase coupling in the oscillator.

The combination of the measurement scheme and
the control via modulation of the pump power is used
to establish a phase lock of the CEO frequency to an
external reference oscillator. The schematic setup of the
servo loop is depicted in Fig. 4. The measured CEO
beat signal is isolated and amplified and then mixed
with a reference oscillator using a double-balanced
mixer (MiniCircuits ZP3). The intermediate frequency
signal is then fed into the input of the pump power mod-
ulator. The overall loop gain is adjusted for a sufficient
phase margin to suppress parasitic oscillation of the
servo loop. For stabilized operation, the laser pump
power is adjusted within less than 1% of the maximum
power. This range is typically found sufficient with the
high passive stability of the prismless oscillator and
allows for minutes of stabilized operation. A coarse
adjustment of the CEO frequency can be achieved by
slightly tilting a thin Brewster-angled intracavity glass
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Fig. 2. Measurement and stabilization setup employed in the experiments. AOM: acoustooptic amplitude modulator. Note that the
modulator is operated near 100% transmission and only a small portion of the pump beam is deflected onto a beam dump. XTAL:
Ti:sapphire laser crystal. OC: output coupling mirror. MSF: microstructure fiber, used for spectral broadening beyond one optical
octave. SHG: 1-cm long LBO frequency-doubling crystal, noncritically phase-matched for the generation of 530-nm light at 155°C.
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and several spurious component been generated by nonlinearities in the electronics. 
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plate, which is also used for fine tuning of intracavity
dispersion. One limitation of the current loop design is
the acoustic delay between the actuator and optical
beam inside the modulator. Still, we reach a servo loop
bandwidth of 30 kHz, which is superior to any mechan-
ical adjustment of the CEO frequency. The perfor-
mance of the servo loop in terms of residual phase noise
will be characterized in the following section.

5. CEO FREQUENCY NOISE

From the discussion so far, it should be clear that the
carrier–envelope phase of a femtosecond oscillator is
extremely sensitive towards any kind of environmental
influence and also towards changes in the laser param-
eters, such as pulse duration or power fluctuations. In
the following, we present measurements of the carrier–
envelope-phase noise of a laser oscillator. From these
measurements, one can judge the severity of the noise
problem. It is also helpful to reach an understanding of
the mechanisms behind the carrier–envelope-phase
noise before attempting to stabilize the CEO phase. We
set up the heterodyne detection scheme as previously
described in detail. In most of the experiments, we use
a Ti:sapphire oscillator similar to the setup described in
[6]. One variant of the laser uses a sequence of two

fused silica prisms in combination with chirped mirrors
for dispersion compensation. Alternatively, we use the
same laser converted to a prismless scheme, in which
only chirped mirrors are employed for dispersion com-
pensation. Both lasers deliver pulses in the 10- to 20-fs
duration regime with a few 100 mW of output power.
For the calculation of amplitude-to-phase coupling
effects, the peak intensity inside the 2.3-mm long
Ti:sapphire gain crystal is the decisive parameter. This
value was measured as 4.5 × 1011 W/cm2 for the laser
with prisms and 1012 W/cm2 for the prismless laser.
Except for the mirrors used in the laser, the pump
geometry and the mechanical setup were left widely
unchanged to allow for a comparison of the two lasers.

To further quantify the CEO phase noise, we elec-
tronically convert the CEO frequency into a voltage by
employing a phase-locked loop. This voltage is then
spectrally analyzed with a dynamic signal analyzer
(HP3562A). Multiplying the measured voltage noise
by the conversion factor of the frequency-to-voltage
converter yields the single-sideband frequency noise

density  in units Hz/  vs. offset frequency
f. Figure 5 shows measurements of the CEO noise of
the unstabilized laser with intracavity prisms and the
prismless laser with and without stabilization. All mea-
surements are composed of several sweeps with differ-
ent spectral resolutions and are combined in a logarith-
mic plot, covering the range from 1 Hz to 100 kHz. The
noise spectra typically show some discrete components
at line frequency harmonics and a broad background
reaching up to several kHz in the offset frequency. The
laser with intracavity prisms shows by far the worst
noise behavior, with a pronounced maximum centered
at about 500 Hz. The prismless laser shows a more than
ten-times improved passive stability. A further reduc-
tion of the noise can be achieved with active stabiliza-
tion, which is shown for comparison and will be dis-
cussed below. For further interpretation of the results, it
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Coupling coefficient, 10–8 Hz m2/W

Fig. 3. Transfer function dfCEO/dI measured as a function of
modulation frequency. The modulation of the intracavity
peak intensity at the location of the Ti:sapphire gain crystal
(XTAL) was achieved by modulating the pump power with
the AOM shown in Fig. 2. The modulation index was kept
at a perturbational level. This ensures stable operating
parameters of the laser but does not fully suppress interfer-
ence by laser noise at some isolated frequencies. For com-
parison, the theoretical estimate derived from the dispersion
of the Kerr effect is also shown as a dashed line. Higher
experimental values at low frequencies are explained by
thermal contributions to the transfer function. 
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Fig. 4. Schematic setup of the stabilization experiments.
One of the beat signals shown in the inset to Fig. 2 is iso-
lated by a bandpass filter. The signal is mixed with the ref-
erence oscillator and fed back to the pump power modula-
tion. The servo loop gain is adjusted to provide a sufficient
phase margin for stable operation of the loop. 
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is useful to convert the measured data into phase noise
densities and to calculate rms values using

(12)

Effectively, the integration can only be carried from
a variable lower bound flow to the highest available off-
set frequency displayed in Fig. 5. However, as the noise
rolls off very rapidly at high frequencies, the 100-kHz
bandwidth of our analyzer does not preclude significant
contributions to the rms phase jitter. In the case of
active stabilization of the CEO frequency, a direct mea-
surement of the phase noise density with an rf lock-in
is generally far superior to the frequency-to-voltage
conversion scheme described before. As a phase refer-
ence is available, a homodyne measurement provides
much more reliable information at low offset frequen-
cies. These homodyne noise measurements can be eas-
ily extended into the mHz range. We directly measured
the phase noise jitter  with a Stanford SR844 rf
lock-in (phase sample frequency 20 kHz). This is also
shown in Fig. 5, together with the data calculated from
the  measurements for the free-running oscillator.
From the comparison of the traces in this graph, one can
see that, for integration times (1/flow) well below a mil-
lisecond, the phase noise is always below 2π. Depend-
ing on the passive stability of the setup, the cumulated
phase noise reaches 2π in the vicinity of flow = 1 kHz.
For a stable and effective phase lock, a roughly ten-times
greater servo bandwidth is needed, i.e., fservo > 10 kHz.
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The unstabilized curves exhibit a divergence towards
zero frequency roughly following a 1/f dependence. In
contrast, our measurements indicate that the CEO
phase of the stabilized oscillator is always kept within
an rms range of 20 mrad relative to the reference oscil-
lator, regardless of integration time.

While a residual jitter of  = 0.02 rad is clearly
the lowest value reported in the literature for extended
observation times, one has to be well aware of the lim-
itations of the measurement scheme employed. First, it
has to be noted that, in the above measurements, the
noise diagnostics and the stabilization circuitry were
completely separated to allow for an independent check
of the quality of the stabilization. However, the optical
part of the measurement setup was not duplicated in
these experiments. In particular, air turbulence in the
Michelson interferometer may cause spurious drift
components in the measured signal. We expect this not
to be a severe effect, and it can be easily avoided by
switching to a common path interferometer as used in
single-shot CEO measurements. Another spurious con-
tribution may stem from amplitude-to-phase coupling
effects inside the microstructure fiber. From the CEO
frequency noise-density measurements, one can esti-
mate how much phase noise the very same element
with identical amplitude-to-phase coupling causes if
placed outside the laser cavity

(13)

This means that a sweep of the CEO frequency of an
oscillator of one free spectral range corresponds to a
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Fig. 5. Left: Carrier–envelope frequency noise density  as a function of offset frequency f. Right: rms phase noise  as

a function of lower integration bound flow. Both plots show the same three cases: a laser with intracavity prisms (top trace), a free-
running prismless laser (middle trace), and a stabilized laser (bottom trace). The top two traces of the right graph were directly
derived from the frequency noise measurements on the left side employing the f /U converter shown in Fig. 2. The bottom trace in
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single-pass CEO phase change of 2π. Integrating over
the frequency noise densities in Fig. 5, we can deter-
mine an estimate for the rms frequency jitter (20 Hz–
100 kHz). We determine  ≈ 10 kHz for the prism-

less laser and  ≈ 100 kHz for the laser with prisms.
Employing Eq. (13), this translates into extracavity con-
tributions to the phase noise of  ≈ 0.6 and 6 mrad,
respectively. This value would result if intracavity and
extracavity amplitude-to-phase coupling have equal
values. In other words, the extracavity coupling effects
have to be at least 1000 times stronger than the intrac-
avity effects to cause a loss of phase coherence between
the input and output of the fiber in a 20-Hz bandwidth.
This consideration is augmented by a recent measure-
ment of fiber phase noise contributions, which were
determined as  ≈ 0.5 rad in a 30-mHz bandwidth
[16]. From both these observations, we conclude that
the relative CEO phase drift between the fiber input and
output is expected to be negligible within a 1-Hz band-
width. One has to be aware, however, that the CEO
phase of the continuum and of the laser itself may
slowly drift apart on longer time scales, despite the sta-
bilization. Similarly, interferometer noise may give rise
to a slow drift on the time scale of minutes or above, but
this can be greatly reduced in a common-path interfer-
ometer. These slow phase drift mechanisms should
require some care in precision frequency metrology
applications and have to be avoided. Further experi-
ments are required to provide more precise information
on the relative strength of the drift effects.

6. THE PHYSICAL ORIGIN 
OF CARRIER–ENVELOPE FLUCTUATIONS

In the previous sections, we analyzed carrier–enve-
lope phase noise in great detail. From the observations
reported so far, three main conclusions have to be
drawn:

1. Lasers with intracavity prism sequences exhibit
approximately ten-times higher noise levels than
prismless oscillators.

2. There is evidence for nonlinear optical effects
converting amplitude fluctuations of the laser into CEO
phase fluctuations.

3. There are indications of fast and slow amplitude-
to-phase coupling mechanisms. The fast mechanisms
are most likely to be explained by self-refraction.
Slower contributions may stem from thermally induced
refractive changes.

In this paper, we want to focus on the self-refraction
contribution to the phase noise. A detailed analysis of
additional contributions caused by beam pointing fluc-
tuations in intracavity prism sequences was reported in
[20]. A closer comparison of thermal contributions to
theory would require detailed modeling of the temper-
ature profile in the gain medium. At low noise frequen-

δ f CEO

δ f CEO

δϕCEO

δϕCEO

cies, the influence of atmospheric turbulence and pres-
sure variations may give rise to phase noise contribu-
tions that are uncorrelated with power changes. The
situation at higher noise frequencies, in contrast, is
much cleaner and appears to be ruled by a single mech-
anism. This is confirmed by the observed reduction of
laser power noise at frequencies above 2 kHz when
activating the phase lock. At lower frequencies, such a
reduction is not observed. These observations have also
been reported by other groups [19]. It is well known
that the refractive index of a dielectric material changes
at high laser intensities [22]. Typically, the description
of self-refraction is reduced to self-phase modulation
along the axis of propagation, i.e., to a pure effect on
the phase velocity vϕ of a medium. In certain cases,
such as extremely short pulses, a nonlinear deformation
of the pulse’s envelope also needs to be considered.
This is usually referred to as self-steepening and also
effects the group velocity vg of the dielectric medium.
In the following, we want to find an estimate of how
much the CEO phase of a pulse is affected by a change
in laser intensity. For this purpose, we use the formal-
ism developed in [23] for direct estimation of the linear
dispersion of the Kerr effect in the frequency domain.
This paper gives an analytic approach to calculating the
frequency dependence of nonlinear refraction. At pho-
ton energies below half the band gap, the main contri-
bution to nonlinear refraction stems from the Kramers–
Kronig term induced by two-photon-absorption. Closer
to the band gap, additional components have to be con-
sidered, such as Raman- and Stark-effect terms. Based
on the complete model presented in [23], we calculated
the nonlinear effect on the average group-phase offset
of sapphire at a wavelength of 800 nm as ωdn2/dω = 8 ×
10–21 m2/W. This formalism also estimates self-refrac-
tion as n2 = 3 × 10–20 m2/W, which agrees very well
with experimental data [24]. The computed group-
phase offset leads to a theoretical value of dfCEO/dI =
4 × 10–9 Hz per W/m2 for our laser. This agrees well
with the measured value dfCEO/dI ≈ 10–8 Hz m2/W in
Fig. 3.

7. CONCLUSIONS

We have investigated fluctuations of the CEO phase
in oscillators and explained some of the major driving
forces behind this type of phase noise. On short time
scales, nonlinear refraction is the main effect convert-
ing amplitude fluctuations into phase variations in
prismless lasers. Additional effects caused by beam
pointing fluctuation may be present in laser with intra-
cavity prism sequences. As these effects can be much
stronger than pure self-refractive mechanisms, prism-
less femtosecond oscillators should be used whenever
the CEO stability is a concern. Based on our analysis,
we achieved a phase lock of the CEO frequency to an
external rf reference oscillator. The residual phase jitter
between the laser and reference was found to be less
than 20 mrad for integration times up to a minute. This
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small jitter corresponds to a timing jitter between the
carrier and envelope of approximately 10 attoseconds.
The demonstrated control of the CEO phase with
attosecond residual timing jitters is an important pre-
requisite for experiments in extreme nonlinear optics
and precision frequency metrology.
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