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Femtosecond pulse generation with a diode-
pumped Yb3+:YVO4 laser
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A diode-pumped Yb:YVO4 laser has been passively mode locked for the first time, to our knowledge. 120 fs
pulses with an average output power of 300 mW and a peak power as high as 14.5 kW are obtained by use
of a semiconductor saturable-absorber mirror for passive mode locking. The optical spectrum has a 10 nm
bandwidth (full width at half-maximum) and is centered at 1021 nm. © 2005 Optical Society of America
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Yb3+-doped crystals are attractive materials for high-
power directly diode-pumped femtosecond lasers.1

The highest output powers in the mode-locked re-
gime have been demonstrated with Yb:YAG crystals,2

having a comparatively high thermal conductivity of
11 W/mK. However, the emission bandwidth of this
material limited the pulse duration to 700–800 fs, or
to 340 fs in a low-power laser.3 Much shorter pulses
(near 100 fs and less) were obtained with a number of
crystals with a broader emission band, such as Yb-
doped KYW, KGW, GdCOB, BOYS, etc.,4–10 and with
Yb:glass.11 However, these materials have a low ther-
mal conductivity of approximately 2–3 W/mK, which
severely limits their potential for high-power opera-
tion. Recently, what is believed to be the first demon-
stration of a femtosecond laser based on Yb-doped
CaF2, which has a thermal conductivity near
10 W/mK, was reported.12 Pulses as short as 150 fs
were obtained with this crystal. Very recently, effi-
cient continuous-wave laser operation has been dem-
onstrated with the new laser crystal Yb:YVO4,13,14

which exhibits strong absorption near 985 nm with a
bandwidth [full width at half maximum (FWHM)] of
,9 nm (that is suitable for pumping by commercially
available laser diodes), and a broad and smooth gain
spectrum comparable to that of the crystals men-
tioned above. The thermal conductivity of yttrium
vanadate crystals is 5.23 W/mK along the c axis and
5.10 W/mK along the a axis,15 i.e., lower than in
YAG; however, approximately 40% higher than, e.g.,
in the well-known KGW,4 whereas the gain spectrum
is smoother than for Yb:CaF2. Here we report for the
first time to our knowledge on femtosecond pulse
generation with a diode-pumped Yb:YVO4 laser that
is passively mode locked with a semiconductor
saturable-absorber mirror (SESAM).16,17

The laser experiments were carried out with a
simple delta cavity (Fig. 1). To obtain good alignment
stability, the laser cavity was designed to operate in
0146-9592/05/101150-3/$15.00 ©
stability zone I.18 As the gain medium we used a 2
-mm-thick Yb:YVO4 crystal with 3-at. % ytterbium
concentration at Brewster incidence. The crystal ori-
entation was chosen for p polarization sE icd where
the absorption and stimulated-emission cross sec-
tions have higher values than for s polarization, as
shown in our previous work.13 Absorption and
stimulated-emission cross-section spectra are pre-
sented in Fig. 2. An 8-W continuous-wave (cw) fiber-
coupled diode laser with a core diameter of 100 mm
and a numerical aperture of 0.22 operated around
980 nm with a spectral bandwidth of 6 nm was used
for longitudinal pumping of the gain medium along
the a axis. Longitudinal pumping through spheri-
cally curved mirror M1 has problems because of the
narrow spectral interval (of ,40 nm) between the
pump and the laser wavelengths. Because we used a
standard l /4 coating optimized for high reflectivity
at wavelengths longer than 1030 nm, mirror M1 had
a transmission of only 60% at 980 nm, and the maxi-

Fig. 1. Setup of the passively mode-locked diode-pumped
Yb:YVO4 laser.
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mum incident pump power at the crystal was re-
duced to 4.5 W. The pump beam was not polarized,
thus the maximum absorbed pump power was only
2.4 W (due to reflections from the Brewster-oriented
crystal surfaces and the difference between the ab-
sorption coefficients in s and p polarizations of the
Yb:YVO4 crystal13). The pump beam was focused
with four lenses to a spot with a 553110 mm radius
inside the laser crystal. The cavity mode radius in
the gain medium was close to the pump beam radius.
The Yb:YVO4 crystal was mounted on a copper heat
sink kept at 10 °C.

For passive mode locking we used a SESAM with a
15-nm-thick InGaAs quantum-well absorber, a stan-
dard antiresonant design,17 and a Bragg mirror cen-
tered at 1040 nm. The modulation depth was <1%. A
pair of SF10 prisms with a 45 cm spacing allowed us
to achieve a total negative group delay dispersion of
−3000 fs2 per round trip as needed for soliton mode
locking.19 Stable cw mode-locked operation was ob-
tained with an output coupler transmittance of ,3%.
The mode-locking threshold was 2.2 W of the ab-
sorbed pump power with a cavity mode radius at the
SESAM of 65 mm. The Yb:YVO4 laser produced up to
300-mW average output power with a pulse duration
of 120 fs at a central wavelength of 1021 nm. The in-
tensity autocorrelation and optical spectrum of the

Fig. 2. p-polarized absorption and emission cross-section
spectra of Yb3+:YVO4 at room temperature.

2
Fig. 3. Intensity autocorrelation (left) with a sech fit
Yb:YVO4 laser are presented in Fig. 3. The pulse
repetition rate was ,150 MHz, resulting in a peak
power of 14.5 kW. The time–bandwidth product was
<0.348, not far from the transform limit for soliton
pulses stpDn=0.315d. We did not observe any ten-
dency for Q-switched mode locking above the mode-
locking threshold. This is to the best of our knowl-
edge the first demonstration of a cw mode-locked
Yb:YVO4 laser.

In the cw regime, without prisms inside the cavity,
with a high reflector substituted for the SESAM, and
with an output coupler transmittance of 6.3%, a slope
efficiency with respect to the absorbed pump power of
45% was obtained with an output power of 370 mW
at 1019 nm. The maximum output power of 415 mW
with a slope efficiency of 38% at 1023 nm was ob-
tained for an output coupler transmittance of <3%.
The longer laser wavelength for lower cavity losses
results from the reabsorption losses at shorter wave-
lengths as a result of the three-level laser scheme of
the Yb3+ ion.20 The effective gain cross-section spec-
tra gsld of the Yb:YVO4 crystal as a function of exci-
tation parameter b have been calculated from the fol-
lowing expression20:

gsld = bssesld − s1 − bdsabssld, s1d

where b=Ne /Nt is the ratio of the number of excited
ions to the total number of ions, sse and sabs are the
stimulated-emission and absorption cross section, re-
spectively. The results are presented in Fig. 4. The
calculations show that gain of Yb:YVO4 has a broad
and smooth shape. Gain spectra with b=0.15 and
0.25 correspond to the cavity losses of the cw
Yb:YVO4 laser for output coupler transmittances of
3% and 6.3% with maxima at 1023 and 1019 nm, re-
spectively. Excitation parameter b in the mode-
locked laser was <0.2 (dashed line). For this value of
excitation parameter, the FWHM gain bandwidth is
<32 nm (with the gain maximum at 1021 nm), con-
firming the possibility of sub-100-fs pulse generation.
The narrower spectra of the pulses obtained in the
experiments can be explained with wavelengthde-
pendent losses of the cavity mirrors (which are due to
rapidly increasing transmission of mirror M1 at
shorter wavelengths).
and optical spectrum (right) of the Yb:YVO4 laser.
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In conclusion, we have demonstrated for the first
time to our knowledge femtosecond pulse generation
from a diode-pumped Yb:YVO4 laser passively mode
locked with a SESAM. Laser pulses of 120-fs dura-
tion were obtained with an average output power of
300 mW and a repetition rate of 150 MHz. We believe
that sub-100-fs pulses could be generated with this
crystal with optimized laser parameters (i.e., group
delay dispersion in the cavity and modulation depth
of a SESAM). Further, Yb:YVO4 looks promising for
high-power thin-disk femtosecond lasers because of
its extremely low heat generation (the quantum de-
fect is only 3.9% in the mode-locked regime) and com-
paratively good thermal conductivity. We believe that
a diode-pumped thin-disk Yb:YVO4 laser could pro-
duce more than 30-W average power and ,150-fs
pulse duration, while avoiding the need for pumping
through a dielectric mirror with high discrimination
of the closely located pump and laser wavelengths.

V. E. Kisel’s e-mail address is vekisel@ilc.by.
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