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A passively modelocked 832 nm vertical-external-cavity surface-
emitting laser, producing pulses of a duration of 15.3 ps at a repetition
rate of 1.9 GHz, has been demonstrated. A fast surface-recombination
semiconductor saturable absorber mirror, with a bi-temporal absorption
recovery characteristic, consisting of fast and slow time constants of 1.5
and 200 ps, respectively, was used to form the pulses.

Introduction: Optically pumped vertical-external-cavity surface-emit-
ting semiconductor lasers (OP-VECSEL) are a distinct class of semicon-
ductor laser, which utilise optical pumping to allow the optical
properties of the device, as well as the thin disc nature, to be fully
exploited for applications such as high-power operation, intracavity
frequency doubling and modelocking, with no compromises made for
electrical properties, such as is necessary in electrically pumped
VCSELs [1]. Passively modelocked OP-VECSELs have generated
near-transform-limited pulses of 260 fs duration using the optical
Stark effect [2], and have been operated at repetition rates in the 1–
50 GHz range [2, 3] at wavelengths around 1 mm. Passively modelocked
picosecond-pulse OP-VECSELs have also been demonstrated around
1550 nm [4] and 1.3 mm [5]. At 850 nm an actively modelocked OP-
VECSEL producing pulses of �100 ps duration has been reported [6].
We report the first demonstration of a passively modelocked OP-
VECSEL operating at 832 nm, producing pulses of a duration of 15.3 ps.

OP-VECSELs are low-gain lasers and hence all cavity elements must
be designed to have a low insertion loss. Semiconductor saturable absor-
ber mirrors (SESAMs) used to modelock OP-VECSELs must be
designed with this in mind. One previously demonstrated design is the
fast surface recombination SESAM. A single quantum well is placed
2 nm from the air interface of a structure grown under optimal growth
conditions. The presence of a high concentration of trap sites owing to
As at the air interface provides fast recombination, and therefore a
surface recombination SESAM can be designed to have a significant
modulation depth and fast recovery time whilst minimising non-satur-
able losses. This type of SESAM design has previously been demon-
strated to be capable of producing stable modelocking at operating
wavelengths near 1040 nm [2].

Experiment: A Z-shaped laser cavity with a fundamental pulse rep-
etition frequency of 1.9 GHz was used in this work, consisting of a
25 mm radius of curvature, 0.7% output coupler, the gain sample
acting as a folding mirror, a second cavity folding mirror with a
radius of curvature of 20 mm and the SESAM as the second end
mirror. The mode radii on the SESAM and the gain structure were cal-
culated to be 11.2 and 40 mm, respectively, ensuring that the intra-cavity
pulse saturated the SESAM faster than the gain, leading to stable
modelocking.

The laser gain structure contains 15 6 nm-thick GaAs/Al0.2Ga0.8As
quantum wells positioned at the antinodes of an anti-resonant micro-
cavity formed between a 30-pair Bragg reflector and the air surface.
The Al0.2Ga0.8As barriers also act as pump absorber layers. A similar
structure has been used with an intracavity heat-spreading plate to
demonstrate 0.5 W of continuous-wave power at 850 nm, optically
pumped with 2.9 W of 670 nm power [7]. In this demonstration we
dispensed with the heat-spreading plate to avoid intracavity etalon
effects and pumped the unprocessed wafer with up to 2 W of light
from a pair of commercial 670 nm diodes, focused into an optical
spot with dimensions of 100 � 200 mm.

The SESAM consisted of an AlAs/Al0.2Ga0.8As DBR, a spacer layer
of GaAs0.75P0.25, a 4.8 nm GaAs quantum well and a 2 nm-thick
capping layer of GaAs0.79P0.21. A schematic of the SESAM structure
is shown in Fig. 1. The spacer layer thickness was chosen so that the
quantum well was located 0.68.l/4 from the interface with the DBR.
The GaAsP capping layer is vital for fast carrier recombination in this
quantum well system as it allows a high surface concentration of As
defect sites, which are primarily responsible for providing the surface
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recombination states. Pump probe measurements were performed on
the SESAM using a titanium–sapphire laser operating at 855 nm to
measure the absorption recovery time. The pump pulses had an incident
fluence on the SESAM of 100 mJcm22. Fig. 2 shows the reflected probe
signal against delay, revealing the absorption recovery characteristics of
the SESAM. The absorption recovery characteristics are bi-temporal
with a fast component with a recovery time of 1.5 ps, corresponding
to approximately 2/3 of the total absorption. The slow component of
the absorption recovers with a time constant of 200 ps.
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Fig. 1 Schematic of SESAM layer structure
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Fig. 2 Pump probe measurement of reflected probe beam intensity, showing
fast recovery time of 1.5 ps; slow component recovers with characteristic
time of 200 ps

The modelocked pulse train from the OP-VECSEL was characterised
using an optical spectrum analyser, autocorrelator and RF spectrum ana-
lyser. An optical spectrum and second harmonic intensity autocorrela-
tion of the output pulse train are shown in Fig. 3. The optical
spectrum is centred at 832.4 nm and has a width of 0.63 nm FWHM.
The autocorrelation gives a pulse duration of 15.3 ps assuming a
Lorentzian pulse shape. The pulses are approximately 20 times trans-
form limited, showing that these pulses are highly chirped. The
average output power of the laser was measured to be 5 mW, with an
incident pump power of 1.1 W.
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Fig. 3 Intensity autocorrelation of laser output, at average power of 5 mW,
showing measured pulse (circles) and Lorentzian fit (solid line) corresponding
to 15.3 ps FWHM duration
Inset: optical spectrum, with FWHM bandwidth of 0.67 nm

The low T0 of GaAs/AlGaAs quantum well systems leads to a high
degree of temperature sensitivity and reduced tolerance of temperature
increases in the pumped region. The local heating caused by the
absorbed pump light in this demonstration was non-optimal owing to
the mismatch between the pump spot and the laser mode, which
impairs efficiency. Experimentally, the sample mount was temperature
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controlled to 2338C to improve efficiency and provide optimal output
power. As a result of the low operating temperature, the gain structure,
designed to be anti-resonant at 208C, was in fact operating near a
micro-cavity resonance. This introduces a large amount of higher
order dispersion, leading to the long highly chirped pulses that were
observed.

Conclusions: We report the first demonstration of a passively mode-
locked OP-VECSEL operating at a wavelength of 832.5 nm. We also
report the design and characteristics of a fast surface recombination
SESAM for use in modelocked VECSELs at this wavelength, based
on a GaAs quantum well located 2 nm from the air interface, surrounded
by GaAsP barriers. Pulses of a duration of 15.3 ps were produced, with
an optical bandwidth of 0.63 nm FWHM. The pulses were 20 times
transform limited. In future work we will use a thin antireflection
coated diamond heat-spreader to improve the heat removal from the
active region, increasing efficiency and increasing the operating temp-
erature. This will lead to higher average powers and shorter pulse
durations.
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