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Abstract: We present the first full gain characterization of two vertical 

external cavity surface emitting laser (VECSEL) gain chips with similar 

designs operating in the 960-nm wavelength regime. We optically pump 

the structures with continuous-wave (cw) 808-nm radiation and measure 

the nonlinear reflectivity for 130-fs and 1.4-ps probe pulses as function of 

probe pulse fluence, pump power, and heat sink temperature. With this 

technique we are able to measure the saturation behavior for VECSEL gain 

chips for the first time. The characterization with 1.4-ps pulses resulted in 

saturation fluences of 40-80 µJ/cm
2
, while probing with 130-fs pulses 

yields reduced saturation fluences of 30-50 µJ/cm
2
 for both structures. For 

both pulse durations this is lower than previously assumed. A small-signal 

gain of up to 5% is obtained with this technique. Furthermore, in a second 

measurement setup, we characterize the spectral dependence of the gain 

using a tunable cw probe beam. We measure a gain bandwidth of over  

26 nm for both structures, full width at half maximum. 

©2012 Optical Society of America 

OCIS codes: (140.7260) Vertical cavity surface emitting lasers; (140.4050) Mode-locked 

lasers. 
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1. Introduction 

After the first demonstration of semiconductor saturable absorber mirror (SESAM) [1] 

modelocked vertical external cavity surface emitting lasers (VECSEL) in 2000 [2], the 

performance in terms of output power, repetition rate and pulse duration substantially 

improved during the following six years [3]. To date the shortest pulse duration generated by 

a VECSEL has been 60 fs at less than 35 mW average output power operating in multi-

pulsing [4] and 107 fs at 3 mW in fundamental modelocking [5]. A pulse repetition rate as 

high as 50 GHz was achieved at 100 mW average output power in 3.3-ps-pulses [6]. 

Recently, up to 6.4 W of average power with a 28-ps pulse duration was demonstrated with a 

MIXSEL (modelocked integrated external-cavity surface emitting laser), for which the 

SESAM is integrated into the VECSEL structure [7, 8]. Average power scaling in the 

femtosecond regime resulted in up to 150 mW in the sub-500-fs regime [9–12] and even 

more than 1 W with 784-fs pulses [12]. 

Ideally sub-500-fs pulses are required for compact frequency combs [13, 14] and 

biomedical imaging applications [15]. A quantitative understanding of the pulse formation 

process is essential for further power scaling and numerical simulations have been 

successfully used for a better understanding [16]. SESAM modelocked VECSELs experience 

strong dynamic gain and absorber saturation, which leads to a total nonlinear phase change 

that can be compensated with positive group delay dispersion (GDD) [17] in analogy to 

soliton modelocking [18]. This pulse formation process was confirmed experimentally in the 

picosecond regime [16]. Key parameters for the pulse formation, such as saturation fluence 

and modulation depth of the SESAM, can be characterized precisely [19], but gain saturation 

parameters of optically-pumped VECSEL structures have not been measured so far. 

Here we present the first full gain characterization of VECSEL gain structures that 

resulted in high-power femtosecond pulses [12] and broadly tunable femtosecond pulses at 

gigahertz pulse repetition rates [20]. Using two high-precision reflectivity measurement 

techniques we were able to characterize the saturation behavior and the small-signal gain and 

the spectral gain bandwidth. In contrast to previously assumed values of 160 µJ/cm
2
 [17] for 

the saturation fluence, we measured saturation fluences of 30-80 µJ/cm
2
 for our structures. 

Those are strongly dependent on the probe pulse duration [21], pump intensities and the 

temperature of the structure. Small-signal gain over 5% was measured with two different 

techniques and both structures exhibit a gain bandwidth of more than 26 nm, full width at 

half maximum (FWHM). 

2. VECSEL gain structures 

For the characterization of the gain properties two different samples were used. The basic 

design of the gain chip is shown in Fig. 1. 

A distributed Bragg reflector (DBR) for the pump wavelength (808 nm) reflects the 

unabsorbed pump light, reducing heat deposition in the structure and increasing efficiency. 

The DBR for the laser wavelength acts as a flat cavity mirror. 
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Fig. 1. VECSEL gain chip structure: a) Top part of epitaxial layer structure with the 

corresponding refractive index profile (black). The active region either consists of quantum 

dots (QDs) or quantum wells (QWs), which are placed in the antinodes of the standing wave 

pattern of the electric field (red) b) Full VECSEL structure with heat-spreader and DBRs for 

the pump and emission wavelength. On top of the active region a combined 

semiconductor/dielectric anti-reflection (AR) section is placed to achieve flat group-delay 

dispersion around the emission wavelength. 

The active region is grown on top of the laser DBR centered around 960 nm and QD- and 

QW-based structures are presented. Figure 1a presents the refractive indices of the QD-

structure and the corresponding standing wave pattern of the electric field. The QWs or QD 

layers are placed in the antinodes. The field enhancement Γ describes the normalized field 

strength averaged for the gain layers in the structure [22, 23]. In resonant structures without a 

top-coating Γ = 4, while Γ ≈ 0.3 holds for anti-resonant structures in GaAs. On top of the 

active region an anti-reflection (AR) section is grown and a fused silica (FS) layer is 

deposited by PECVD (plasma-enhanced chemical vapor deposition) (see Fig. 1b), which 

results in a field enhancement of Γ ≈ 1.2 and a flat GDD over 30-nm bandwidth centered at 

the lasing wavelength. 

Table 1. Comparison of the Properties of the Characterized VECSEL Structures 

VECSEL gain chip structure 1 structure 2 

growth MBE-grown 

Innolume GmbH, Germany 

MBE-grown 

FIRST cleanroom facility, ETH Zurich 

laser DBR 30-pair DBR AlAs/Al0.2Ga0.8As (adapted to 960 nm (QD) / 950 nm (QW)) 

pump DBR 15-pair DBR AlAs/Al0.2Ga0.8As (adapted to 808 nm) 

active region 7 groups of 9 indium arsenide (InAs)  

QD layers in GaAs 

Stranski-Krastanov growth [24] 

7 indium gallium arsenide (In0.17GaAs)  

QW layers (4.5 nm) in GaAs 

 

field enhancement 1.25 1.14 

AR coating 14-layer AR section: 

12 AlAs/Al0.2Ga0.8As layers; GaAs cap layer; PECVD-deposited fused silica layer 

modelocking results Pav = 1.05 W, τp = 784 fs, 

frep = 5.4 GHz [12] 

Pav = 169 mW, τp = 625 fs, 

frep = 6.5 – 11.3 GHz (tunable) [20] 

This supports the generation of ultrashort pulses [12]. For better heat-removal both 

structures were grown in reverse order and were soldered to a CVD-diamond or copper heat-

spreader. The substrate is removed with chemical wet-etching [25], before the FS layer is 

deposited. Table 1 presents structure and growth parameters of the two VECSELs under 

investigation. We refer to recent publications [12] and [20] for the more detailed description 

of both structures and the modelocked performance. 
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3. Theory of gain saturation measurements 

The following model for gain saturation in VECSEL structures is based on the one describing 

absorber saturation in SESAMs [26, 27]. This has been extremely successful to determine 

macroscopic parameters from the measurements of saturable absorbers in a broad range of 

probe pulse durations even though a very simple two-level approximation was used. These 

macroscopic parameters then can be used for pulse propagation simulations. For analytical 

calculations of gain saturation the band structure of the semiconductor gain medium can be 

approximated by a two-level system, where we neglect effects such as intra-band relaxations, 

trapping and recombination and also temperature-dependent effects and carrier diffusion in 

the gain structure. A traveling wave model is applied to a two-level system relying on rate 

equations. This holds for a long recovery time of the population inversion compared to the 

length of the pulse inducing the emission. With these assumptions a simple partial differential 

equation can be found for the dynamics of the gain with g << 1 [17, 28]: 

 ss

g sat

.
g gg g I

t Fτ
−∂ ⋅

= − −
∂

 (1.1) 

The saturation fluence Fsat is a macroscopic and material-dependent parameter. The 

parameter g is the gain coefficient, which is in the order of a few percent, gss is the small-

signal gain, which represents the gain coefficient without saturation effects, τg is the upper 

state lifetime of the gain and I the intensity of the amplified beam. Note that the power 

amplification factor is defined as G = exp(g) and all following gain coefficients are defined 

for power. The upper-state lifetime in semiconductor lasers is typically in the nanosecond 

regime, hence the amplified pulses are several orders of magnitude shorter and therefore 

spontaneous emission effects can be neglected within the interaction time with the pulse. 

Regarding very small fluences, the pulse energy Ep,in is increased by the power amplification 

factor for unsaturated gain: 

 ( )p,out p,in ss
exp .E E g=  (1.2) 

For higher pulse energies the general case for gain saturation is well described by the 

Frantz-Nodvik-equation [29]: 

 ( ) ( )sat

ss

sat

exp ln 1 exp exp 1 .
F F

g F g
F F

    
= + −      

     
 (1.3) 

The parameter Fsat is defined as the fluence, at which the gain has dropped to 

approximately (1-1/e) ≈ 63% of its initial value, assuming g < 10%. The Frantz-Nodvick 

equation is valid for both saturable gain and absorption. For a better comparison, the 

saturation fluences in SESAM characterization and gain saturation are defined identically 

[26]. 

Another important parameter that has to be taken into account is induced absorption (IA). 

It occurs not only for SESAMs [26, 30], but also for the VECSEL gain chips. For short pulse 

durations, two-photon absorption (TPA) is its main contribution. For longer pulse durations, 

other contributions induced by thermal effects, free-carrier absorption, and charge 

accumulation can become significant [26]. IA causes a drop in reflectivity at high fluences 

and this has to be included in the model function. In case of SESAM measurements, the 

saturation of the absorption and IA have opposite signs, which enable a simple separation of 

both effects [19]. In contrast, for optically-pumped VECSELs, both effects decrease the 

reflectivity, and it is very challenging to separate one effect from the other. 

Furthermore for a correct fit-function of the gain saturation behavior, an additional 

parameter has to be considered. The gain chip has a certain amount of losses (well below 

0.5%) in the unpumped and highly saturated state because of residual losses of the Bragg 
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mirror and scattering losses from rough interfaces [31]. The corresponding reflectivity is a 

small amount below 100% and is called Rns [3]. A reflectivity measurement without 

pumping, in which the gain chip shows SESAM-like reflectivity behavior, is used to 

determine the parameter Rns. 

Finally in analogy to the SESAM characterization presented by Haiml et al. [26] we need 

to take into account the Gaussian mode profile. The gain saturation model function relies on 

Eq. (1.3). The reflectivity model function R
FlatTop

 for a spatial flat-top intensity profile of the 

beam is 

 [ ]FlatTop sat ss

ns

ns sat 2

( ) exp ( ) ln 1 exp exp 1 exp ,
F R F F

R F g F R
F R F F

        
= = + − −       

         
(1.4) 

with the parameter F2 as the fluence at which the reflectivity dropped to (1/e) ≈37% because 

of effects of IA. Rss represents the reflectivity of the small-signal gain. A flat-top beam 

exhibits a constant spatial fluence of radius w defined as F = Ep/w
2
π. However in most cases 

the laser beam exhibits a spatial Gaussian intensity distribution F
Gauss

(r) = F0 exp(−2r
2
/w

2
). 

For the same pulse energy Ep, the peak fluence for a Gaussian beam is a factor of two higher 

than for the flat-top fluence and therefore saturation effects become significant at lower 

fluences. The adaption for a Gaussian intensity profile of the pulse is included in the fit by 

 

1

Gauss FlatTop

0

( ) d (2 ),R F zR Fz= ∫  (1.5) 

with z = 2F exp(−2r
2
/w

2
) and dz = −8r/w

2
 exp(−2r

2
/w

2
)dr. For the full mathematical 

description please refer to [26]. 

Taking into account all the parameters, Fig. 2 depicts the final model function R
Gauss

 and 

an additional curve for the reflectivity behavior without the influence of IA. Reflectivities 

larger than 100% can be regarded as amplification. 
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Fig. 2. Model for gain saturation: simulated reflectivity (black) is fitted to Eq. (1.5) (red 

dashed), accounting for a spatial Gaussian intensity distribution. From unpumped VECSEL 

measurements the parameter Rns can be extracted and inserted in Eq. (1.4). With this fit, the 

small-signal gain reflectivity Rss, the saturation fluence Fsat and the strength of induced 

absorption F2 are determined. Removing the influence of IA results in the pure gain saturation 

curve (blue). 

4. Experimental techniques 

4.1 Setup for gain saturation measurements 

A precise characterization of the saturation fluences of VECSEL gain chips requires a setup 

for measuring the reflectivity of a sample over a fluence range of typically four orders of 
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magnitude. The setup is an adaption to the high-precision reflectivity SESAM 

characterization presented by Maas et al. [19]. 

Figure 3a presents the measurement setup. The pulsed laser source for the experiments is 

a modelocked Ti:sapphire laser (Spectra Physics Tsunami), configurable to emit 130-fs or 

1.4-ps pulses at 960 nm. A Faraday isolator is used to avoid back reflections into the laser 

cavity, which can cause lasing instabilities. The combination of a controllable rotating and a 

fixed polarizing beamsplitter (PBS1) and (PBS2) allow for an adjustable change in fluence 

over four orders of magnitude while providing a transmission bandwidth of >100 nm. This is 

useful for spectral gain characterization, as described in Section 4.2. 

 

Fig. 3. Principle for gain saturation characterization: a) Measurement setup analogous to [19] 

with additional modifications for gain measurements: pump configuration with a 4 W pump 

diode at an angle of incidence of 45°; chopper 2 for adapted signal analysis, aperture and 

longpass-filter for suppression of the photoluminescence (PL) at PD1 b) Signal analysis 

scheme: Two phase-locked choppers (fchopper1 = 2 fchopper2) separate four distinguishable signals 

(top), which form the recorded signal (bottom). The PL of the gain chip is accounted for and 

the sample signal is finally compared to the signal of a high-reflective mirror of known 

reflectivity. 150 signal iterations yield the reflectivity of the gain chip. 

After passing chopper 2, the beam is split in a non-polarizing beam-splitter (BS1) and the 

output of one port is guided on a high-reflective mirror (M). The output of the other port is 

focused onto the sample (L1: f = 20 mm) to achieve spot sizes below 20 µm in diameter and 

thus fluences of up to 1.1 mJ/cm
2
 at the position of the device under test (DUT). The 

reflected beams from the DUT and the reference mirror M are overlapped in the third output 

port of the beam-splitter for detection with a standard fast photodiode (PD1) together with an 

adjustable trans-impedance amplifier and a digitizing card. A chopper wheel (chopper 1) is 

positioned such that the two ports of the beam-splitter are chopped synchronously. A 
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sensitive photodiode (PD2) is placed behind the HR to record long-term (> 5s) laser power 

fluctuations and control the absolute fluences at the sample position [19]. 

The reflectivity of the gain chip can be extracted by calibration using a dielectric mirror 

of known reflectivity. However, in the small fluence regime photoluminescence (PL) from 

the pumped structure has to be accounted for, as its intensity on PD1 can become comparable 

to the signal itself. We therefore use a configuration with two phase-locked choppers, in 

which chopper 2 rotates at half the frequency of chopper 1, which enables measuring the PL 

intensity. To further reduce the PL, a longpass filter (cut-off at 900 nm) and an aperture are 

introduced in front of the detector. Four different signal levels (see Fig. 3b) arise from the 

different chopper configurations and enable both triggering of the iterative data analysis and 

extracting the reflectivity of the pumped gain chip with 

 
( )

.
S PL PL Z

R
M Z

+ − −
=

−
 (1.6) 

Averaging over 150 signal iterations yields the final measurement point. 

The gain chip is pumped with a standard laser diode at 808 nm under 45°, resulting in an 

elliptical pump spot with a semi-minor axis of 60 µm. As the probe beam exhibits only 20 

µm diameter, a nearly constant pump intensity over the spatial extention of the probe is 

obtained. With a maximum pump power of 3.42 W, this results in an average pump intensity 

of 74 kW/cm
2
 at the probe laser spot. 

4.2 Setup for spectral gain characterization 

A full characterization of a VECSEL gain structure requires a measurement of the spectral 

behavior of the gain. A sufficiently large amplification bandwidth is crucial for the 

generation of ultra-short pulses and optimized cavity outcoupling rates can be obtained from 

the amount of unsaturated gain. 

pump
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time

PD1
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a) b)  

Fig. 4. Principle for spectral gain characterization: a) Measurement setup: The beam from a 

tunable cw Ti:Sapphire laser is split in a 50:50 beam-splitter. A reference signal is recorded 

directly on photodetector PD2. The beam of the other output arm is focused on the pumped 

gain chip and the amplified signal is recorded on detector PD1. b) Schematic signal from both 

detectors. A chopper is inserted to measure the signal-offset of PD1 to account for 

photoluminescence (PL). 

In contrast to a spectro-temporal technique under operating conditions [32] we present a 

characterization method that relies on a wavelength dependent reflectivity measurement of a 

pumped gain chip (Fig. 4a), presented in a similar way in [33]. The output of a commercial 

tunable cw Ti:sapphire laser (Spectra Physics 3900S) is attenuated to about 15 mW and then 

divided by a non-polarizing 50:50 beamsplitter. The signal of one arm is guided to a silicon 

photodetector (PD2), while the output of the other arm is focused (f = 20 mm) on the gain 

chip surface with a spot diameter below 25 µm. The gain chip is pumped with the same 

parameters as presented in Section 4.1. The tunable cw beam is amplified in the gain 

structure and the reflected signal is detected with an equivalent silicon photodiode (PD1). A 

chopper is inserted into the laser beam path to determine the offset level of both detector 

signals. A scheme of the recorded signal is depicted in Fig. 4b. For one data point, 200 
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iterations of the signal analysis are performed. Motorized wavelength tuning together with an 

optical spectrum analyzer enables feedback wavelength control. 

The recorded signal of the VECSEL gain chip SGC is calibrated with the signal from a 

high-reflective mirror SHR with a known reflectivity RHR [33]. The reflectivity of the gain chip 

can be described by 

 
HR,PD2 GC,PD1

GC HR

HR,PD1 CG,PD2

( ) ( )
( ) ( ) ,

( ) ( )

S S
R R

S S

λ λ
λ λ

λ λ
=  (1.7) 

where λ describes the probing wavelength. 

5. Experimental results 

5.1 Gain saturation measurements 

Using the setup described in the Section 4.1, a systematic study of the gain saturation 

behavior for different heat-spreading materials, pump intensities, pulse durations and heat-

sink temperatures was performed. Figure 5a shows a typical measurement of the VECSEL 

structure 1 (Table 1). 

Recently, we used for our pulse formation simulations a value of Fsat ≈160 µJ/cm
2
 for the 

gain, a typical value assumed in the literature [17]. As shown in Fig. 5b, we demonstrate that 

the gain structures actually saturate at much lower fluences in the range between 30 and  

80 µJ/cm
2
. The saturation fluences rise nearly linearly with increasing temperatures both for 

structure 1 on copper and diamond heat-spreaders, and structure 2 on copper for probing with 

1.4-ps pulses. In addition, we measured up to 5.1% small-signal gain (Fig. 5c) with this 

technique. The unsaturated gain is decreased for increasing temperatures of the heat sink. 

This will be discussed in Section 5.2. The influence of the temperature on the small-signal 

gain and the gain saturation is very pronounced. In the ps-regime for structure 1 slightly 

higher saturation fluences were found than for structure 2. The gain characteristics are 

dependent on growth influences. Thus it is very difficult to explain small deviations in 

measurements for both structures, as the spot-to-spot variation for one sample is in the same 

order of magnitude. 

For characterization with 130-fs pulses the saturation fluences were lower than for 

picosecond pulses. In this regime, carrier heating influences the carrier density and the 

description of the saturation behavior with a two-level system has to be replaced by a model 

with modified rate equations [21]. In [34], it was experimentally verified that shorter pulse 

durations result in decreased intra-cavity fluences because of enhanced gain saturation. This 

becomes even more significant for pulse durations in the regime of 100 fs and below. These 

results are in good agreement with our measurements. 
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Fig. 5. Saturation fluence measurement data for λcentr. ≈960 nm and Ip ≈57 kW/cm2: a) typical 

gain saturation measurement (QD/diam.): The measurement data (orange) are modeled to the 

fit function (red) and IA effects are extracted (black); important parameters: Fsat: 51 µJ/cm2, 

F2: 60.2 mJ/cm2, gss: 3.58%, Rns: 99.85%, Ths = 5°C, τp: 1.42 ps, λcentr.: 959.7 nm. b) saturation 

fluences in the range of 30-80 µJ/cm2: lower values for 130-fs probe pulses (dashed lines) than 

for 1.4-ps-pulses (solid line) c) small-signal gain up to 5%: decreased gain with rising heat-

sink temperatures. 

The improved heat-removal of diamond heat-spreaders can be seen in Fig. 6. As expected 

the pump intensity dependence in saturation fluence (see Fig. 6a) and small signal gain (see 

Fig. 6b) is reduced for the diamond heat-spreader. 
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Fig. 6. Influence of heat spreading material on gain parameters of structure 1 (varying heat 

sink temperatures and pump intensities): a) saturation fluences: left copper heat spreader right: 

diamond heat spreader b) left copper heat spreader right: diamond heat spreader. 

At longer pulse duration (i.e. 1.4 ps pulse duration), the effect of IA for the active 

VECSEL characterization was found to be in the range of F2 ≈ 60-70 mJ/cm
2
, while 

analogous measurements of SESAMs (i.e. passive VECSEL characterization without any 

optical pumping) yields IA of F2 ≈ 35-40 mJ/cm
2
. At shorter pulse durations of 130 fs the 

active VECSEL characterization resulted in a F2 ≈ 20-25 mJ/cm
2
. The combined effects of 

gain saturation and IA limit the operation of VECSELs to the low-saturated gain regime with 

lower intra-cavity fluences and therefore lower average output power. 

5.2 Spectral gain characterization 

Similar to the characterization of gain saturation, the influence of the heat-sink temperature 

and the pump intensity on the small-signal gain is important for optimizing high-power 

femtosecond operation of modelocked VECSELs. Figure 7 depicts the measured gain spectra 
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for the structures described in Section 2 with pump intensities of 57 kW/cm
2
 and for the first 

time, to the best of our knowledge, varying heat-sink temperatures (Ths). 
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Fig. 7. Gain spectra for different heat sink temperatures at a pump intensity of 57 kW/cm2: a) 

Structure 1: QD-based structure on diamond heat-spreader with up to 5.2% small-signal gain 

and b) Structure 2: QW-based structure on copper heat-spreader with up to 4.2% small-signal 

gain. 

A reflectivity exceeding 100% results from unsaturated gain, which determines the small-

signal gain. Structure 1on a diamond heat-spreader (see Fig. 7a) exhibits up to 5.2% small-

signal gain for Ths = −5 °C. The peak wavelength shifts linearly at a rate of ≈ 0.15 nm/K. 

Structure 2 on a copper heat-spreader (see Fig. 7b) exhibits up to 4.2% small-signal gain for 

Ths = −15 °C. The peak wavelength shifts linearly with a rate of ≈ 0.18 nm/K and the small-

signal gain drops rapidly with increasing temperature. For multiple layer structures in the 

active region the theoretically predicted shift-rates of 0.3 nm/K for the bare QWs and  

0.1 nm/K for the thermally modified structure can be altered by superimposed effects [3]. In 

structure 1 the drop of small-signal gain is far less pronounced than for structure 2. This can 

be explained by the reduced thermal conductivity of the copper heat-spreader. Both structures 

exhibit broad gain spectra with a maximum FWHM bandwidth of 26 nm (structure 1) and  

30 nm (structure 2). For different pump intensities and heat-sink temperatures only a 10% 

reduction of the maximum bandwidth was identified. 
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Fig. 8. Gain spectra for different pump intensities at a heat-sink temperature of −15 °C: a) 

structure 1 on diamond heat-spreader with up to 5.3% small-signal gain and b) structure 2 on 

copper heat-spreader with up to 4.3% small-signal gain. 

With a fixed heat-sink temperature of −15 °C, the build-up of the gain for increasing 

pump intensities is depicted in Fig. 8. Without pumping, the active regions absorb the light, 

for increasing pump intensities first transparency is reached and subsequently the gain builds 

up to a maximum of 5.3% (structure 1, see Fig. 8a) and 4.3% (structure 2, see Fig. 8b). The 

increased pump intensities result in an enhanced heat deposit in the active region, which 
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leads to a shift of the peak-wavelengths of about 2 nm (structure 1, diamond) and about 5 nm 

(structure 2, copper) for the same increase of the pump intensity. Simulations of passive 

modelocking often rely on a parabolic fit of the gain spectrum centered around the lasing 

wavelength for a simplified description of gain dispersion [35]. The curvature of the parabola 

g”(ω) with respect to the optical frequency ω = 2πc/λ is calculated for both structures at  

Ths = −5 °C and Ip = 57 kW/cm
2
 (remark: 1% gain equals g = 0.01). The parabolic fit for 

structure 1 results in d
2
g/dω

2
 = (−95 ± 15) fs

2
, and for structure 2 in of d

2
g/dω

2
 =  

(−75 ± 12) fs
2
. 

Two effects for broadening the gain bandwidth in the structure are discussed. First, the 

temperature distribution in the structure has to be considered. Surface-pumping with a 

Gaussian intensity profile together with backside-cooling leads to a temperature gradient 

perpendicular and along the layer structure. This can shift the emission spectra not only of 

different succeeding QWs, but also within the spatial profile of the probe laser spot. This 

results in a broader total gain bandwidth. It is reported that the temperature shift of the gain 

for bare QDs is a factor of ten less than for QWs [36]. For the presented QD structure 

(Stranski-Krastranov growth [24] at Innolume GmbH, Germany), the temperature change is 

in between bare QD- and QW-structures. Secondly, in the QW structure the peak-wavelength 

for each of the seven wells can vary a few nanometers from its design value because of 

growth uncertainties, which can broaden the gain bandwidth even more. Calculations yield 

gain spectra up to 90 nm bandwidth for InAs/GaAs QDs [37], while for multi-QW 

InGaAs/GaAs structures intrinsic gain up to a bandwidth of 20 nm was measured [38]. 

Taking the wavelength-dependent field enhancement in the structure into account, the 

intrinsic gain spectra of the embedded QWs or QD layers have to be much broader than the 

measured bandwidth. The measurement of the intrinsic gain spectra of the QWs or QD layers 

is not feasible. However, simple simulations yield that the intrinsic gain spectra of both 

structures have to exceed 35 nm to result in a gain bandwidth of 26 nm (structure 1) and  

30 nm (structure 2) FWHM. 

6. Conclusion and outlook 

We demonstrate for the first time a full gain characterization for VECSEL structures with 

two high-precision reflectivity measurement techniques. 

Table 2. Experimental Results of the Characterized VECSEL Structures 

VECSEL gain chip structure 1 structure 2 

 gain saturation measurements 

saturation fluence 1.4 ps: Fsat ≈ 44 – 80 µJ/cm2 1.4 ps: Fsat ≈ 38 – 60 µJ/cm2 

 130 fs: Fsat ≈ 35 – 54 µJ/cm2 130 fs: Fsat ≈ 32 – 51 µJ/cm2 

small-signal gain 1.4 ps: gss,max ≈ 4.7% 1.4 ps: gss,max ≈ 3.9% 

 130 fs: gss,max ≈ 3.6% 130 fs: gss,max ≈ 5.0% 

induced absorption 1.4 ps: F2 ≈ 60 - 70 mJ/cm2 

 130 fs: F2 ≈ 20 - 25 mJ/cm2 

 spectral gain characterization 

small-signal gain gss,max ≈ 5.3% gss,max ≈ 4.3% 

peak gain shift for diamond heat-spreader: ≈ 0.15 nm/K for copper heat-spreader: ≈ 0.18 nm/K 

gain bandwidth ≈ 26 nm (FWHM) ≈ 30 nm (FWHM) 
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Table 2 summarizes the experimental results of both measurement techniques using two 

different VECSELs. We experimentally determined saturation fluences in the range of  

30-80 µJ/cm
2
. Probing with 130-fs pulses reduced the saturation fluence substantially 

compared to 1.4-ps probe pulses. It was reported in [21] that for shorter pulse lengths gain 

saturation is enhanced because of increased carrier heating effects that modify the carrier 

density. In [34], the influence of gain saturation in the sub-200-fs regime was experimentally 

studied. It was reported, that a shortening of the pulse duration in an operating laser system 

leads to a decrease in intracavity fluences because of gain saturation. This is in good 

agreement with the presented measurements. The knowledge of these important VECSEL 

gain parameters will enable more accurate pulse propagation simulations and will give better 

insight for the pulse formation process. Taking into account the measured saturation fluence 

for the gain, further power scaling will require not only different cavity mode adjustments, 

but also new structure designs with reduced induced absorption. 
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