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Interpreting electron-momentum distributions and nonadiabaticity in strong-field ionization
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We investigate whether nonadiabatic effects, rather than an initial longitudinal momentum spread, can explain
the additional final momentum spread measured in strong-field ionization experiments with ultrafast laser pulses.
We find that, when used consistently, a well-known nonadiabatic theory which includes an initial velocity offset
yields results similar to adiabatic theory. By “consistent use” we mean that nonadiabatic theory is used also for
field strength calibration of the experiment. The additional momentum spread can be accounted for by including
an initial longitudinal momentum spread, as was done previously in the adiabatic case. Interestingly, when the
experimental intensity is calibrated using a common in situ calibration method based on adiabatic assumptions,
the nonadiabatic theory improves upon the adiabatic theory. This result highlights the uncertainty associated with
using theory-based calibration methods, which are the most common way of calibrating experimental data in
attosecond science.
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I. INTRODUCTION

In attosecond science, many methods and techniques rely
on tunnel ionization in strong laser fields to access information
about the atomic or molecular systems, such as valence
electron dynamics [1]. In order to interpret the data, strong-
field ionization models [2–7], building on the seminal work of
Keldysh [8], are frequently used [9,10].

Electrons which are freed from their atom by a strong, ellip-
tically polarized laser field through tunnel ionization acquire a
momentum in the direction of the electric field (also referred
to as the longitudinal direction) at the instance of ionization
during propagation in that same field. The value of the acquired
momentum depends on the phase of the field at the moment
when the electron exits the tunnel and enters the continuum.
This results in a final longitudinal momentum spread which
can be measured at a detector. While the expressions for the
initial transverse spread at the tunnel exit are well accepted,
the initial longitudinal spread has long remained a matter of
debate, with the usual assumption that it is equal to zero [11].

However, a recent experiment [12–14] measured final
longitudinal spread that is wider than the commonly used
theoretical prediction [3,15]: a result consistent with the
existence of a significant longitudinal momentum spread at
the tunnel exit. Subsequent work [16] showed that the double
peak structure found in Ref. [12] for ellipticity ε � 0.3 can
be reproduced without the initial longitudinal spread. Based
on qualitative observations, Li et al. and Sun et al. [16,17]
concluded that the measurements in Ref. [12] were compatible
with zero initial spread. However, other work [13] showed
that the double peak structure observed in Ref. [12] was an
artifact of radial integration, which fails at low ellipticities
of laser light. Introducing a different method of elliptical
integration, Hofmann et al. [13] analyzed again the initial
longitudinal momentum spread, showing that quantitative
agreement with the measurements in Ref. [12] is obtained
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if an initial longitudinal momentum spread is used, but not if
that initial spread is zero.

Here, we investigate whether nonadiabatic effects, rather
than an initial longitudinal spread at the tunnel exit, can
account for the discrepancy between theoretical predictions
in Ref. [3] and the experimental observation in Ref. [12].
In the adiabatic regime, the electron sees a quasistatic field
and no photons are absorbed from the laser field. Therefore,
the adiabatic limit corresponds to the pure tunneling limit.
Nonadiabatic effects result in both wider momenta spreads (see
Appendix C) and different initial velocity offsets at the tunnel
exit. For the purposes of this investigation, we use the well-
known theory developed by Perelomov, Popov, and Terent’ev
[4,5] (know as PPT), which takes account of nonadiabatic
effects and converges to the results obtained by Ammosov,
Delone, and Krainov (ADK) [2,3] in the adiabatic limit.

We find a much better agreement with the experimental
data in Ref. [12] using nonadiabatic theory, but only if
we use a standard in situ intensity calibration introduced
in Ref. [18]. However, such calibration is based on the
adiabatic ADK theory [2,3], specifically on matching the
final transverse momentum in elliptical polarization between
theory and experiment. If we recalibrate the intensity using
the nonadiabatic theory from PPT [4,5], we again find a
discrepancy between theory and experimental data almost
identical to that found in Ref. [12].

Our findings highlight the drawbacks of the common
methods of intensity calibration widely used in attosecond
science today, which are often based on some version of
strong-field ionization theory. For instance, the results of Shafir
et al. [19] were consistent with a nonadiabatic saddle point
approximation: the same theory, however, which was also used
to calibrate their experimental data. Similarly, Arissian et al.
[20], showed consistency in the transverse momenta spreads
with the adiabatic ADK theory [2,3], but used an adiabatic
assumption of zero initial velocity to calibrate their data. In
short, experimental data are calibrated with a specific theory,
and later the calibrated data are used to test the exact same
theory. On the other hand, current theory-independent intensity
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measurements are determined from laser parameters and are
known to be highly imprecise [21], hence necessitating the use
of theory-based calibration.

II. NONADIABATIC THEORY

Generally, adiabatic and nonadiabatic regimes are separated
by the Keldysh parameter [8]

γ =
√

2Ip

Fmax
ω, (1)

where Ip is the ionization potential of the atom (or molecule),
Fmax the maximum field amplitude, and ω the frequency of
the electric field. Conditions with γ � 1 are adiabatic, while
γ � 1 is considered nonadiabatic [8,11]. However, often
experiments are carried out at an intermediate regime γ ∼ 1;
see, for example, Refs. [19,22].

The electric field of the ionizing laser pulse can be described
within the dipole approximation as

F(t) = F√
1 + ε2

[cos(ωt)x̂ + ε sin(ωt) ŷ] f (t), (2)

where F 2 is the peak intensity of the pulse, F/
√

1 + ε2 = Fmax

along the major axis, and ε is the ellipticity with x being
the major and y the minor axis. f (t) describes the envelope
of the pulse with maximum f (0) = 1. This field, due to the
absence of spatial dependence and magnetic fields which both
considerably complicate the dynamics [23–25], allows for easy
interpretation of classical trajectories [26,27].

To be consistent when applying a nonadiabatic theory to
the final results, the laser field intensity of an experiment
needs to be calibrated from nonadiabatic theory as well, which
results in a smaller field strength compared to the standard
adiabatic intensity calibration [18]. In Refs. [4,5], PPT derived
an expression for the ionization probability depending on final
electron momentum p = (px,py,pz), based on the strong-field
approximation first described by Keldysh [8]. In contrast
to purely adiabatic treatments, PPT accounts for the time
dependence of the field during the tunneling process. The
Gaussian expansion to exponential accuracy of the ionization
probability is given by [5]

P NA(γ, p) ∝ exp

{
−2Ip

ω
f (γ,ε)

}

× exp

{
− 1

ω

[
cxp

2
x + cy

(
py ± pNA

y

)2 + czp
2
z

]}
,

(3)

with

f (γ,ε) :=
(

1 + 1 + ε2

2γ 2

)
arsinh

(√
γ 2 + s2

0

1 − s2
0

)

−1 + ε2 − 2εs0

2γ 2
(
1 − s2

0

) √
(1 + γ 2)

(
s2

0 + γ 2
)
,

cx := s0(1 − ε2)

(ε − s0)(1 − εs0)

√
s2

0 + γ 2

1 + γ 2
,

cy := ε

ε − s0

√
s2

0 + γ 2

1 + γ 2
+ s2

0

1 − εs0

√
1 + γ 2

s2
0 + γ 2

,

cz := ε

ε − s0

√
s2

0 + γ 2

1 + γ 2
.

The parameter s0 ∈ (0,ε) is the solution to the transcendental
equation

artanh

⎛
⎝

√
s2 + γ 2

1 + γ 2

⎞
⎠ = ε

ε − 1

√
s2 + γ 2

1 + γ 2
, (4)

and pNA
y is the most probable py final momentum offset along

the minor axis of polarization

pNA
y = Fmax

ω
(ε − s0)

√
1 + γ 2

1 − s2
0

. (5)

Throughout the paper superscript NA is used to indicate
nonadiabatic theory, and A is used to indicate adiabatic theory.

In the expansion (3), terms of higher order than [ p2 ±
( pNA

y )2] were neglected. When |ε| → 1, however, cx goes
to zero and higher-order terms play an important role [5].
Thus, the accuracy of formula (3) decreases as the laser field
approaches circular polarization.

In the adiabatic limit γ � 1, the probability factor of (3)
described by f (γ,ε) simplifies to

P A ∝ exp

{
−2(2Ip)2/3

3Fmax

}
, (6)

which is the well-known exponential dependence derived by
Keldysh [8].

III. SEMICLASSICAL SIMULATION

Classical trajectory Monte Carlo (CTMC) simulations of
the electron trajectories after tunnel ionization were calculated
for both adiabatic and nonadiabatic tunneling theory. Clouds
of 300 000 electrons simulated the ionized part of the wave
function. For ellipticities <0.2, many electrons rescatter close
to the parent ion [28], and quantum mechanical effects are
expected to become important. Since these cannot be described
in a classical framework, simulations were only performed
for ε � 0.2, and trajectories coming closer than 5 a.u. were
discarded.

A. Adiabatic CTMC

For the adiabatic CTMC, the TIPIS model (tunnel ioniza-
tion in parabolic coordinates with induced dipole and Stark
shift) [29–31] was used to find the exit points (see also
Appendix D). All the initial conditions for the adiabatic case
as well as the analysis for best-fitting initial longitudinal
momentum spread are described in detail in Ref. [13].

B. Nonadiabatic CTMC

For the nonadiabatic CTMC, ensembles of electrons were
generated with momentum distributions and probabilities
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based on the semiclassical analysis of the PPT theory. The
original semiclassical analysis [5] is centered around a single
trajectory emerging from the tunnel exit with zero initial
longitudinal momentum at the instant when F (t) = Fmax. In
order to account for trajectories emerging at different times,
we introduce the time dependence simply by letting γ (and
consequently s0) depend on the actual value of the field F (t).
The initial transverse momenta were centered around the most
probable transverse initial momentum given by [5]

pNA
initial(t) = pNA

y (t) − εFmax

ω
, σ NA

⊥,y/z(t) =
√

ω

2cy/z(t)
,

(7)

with standard deviations σ NA
⊥,y/z in-plane and out-of-plane of

polarization, respectively. The position of the tunnel exit
changes with time as [5]

rNA(t) = F(t)

ω2

(√
1 + γ 2(t)

1 − s2
0 (t)

− 1

)
. (8)

Other nonadiabatic theories exist which provide initial condi-
tions at the tunnel exit [7,32], but they are limited to the special
case of linear (and circular) polarization.

C. Time integration

All adiabatic and nonadiabatic ensembles were propagated
by numerically integrating the classical Newton’s equation of
motion

r̈(t) = −F(t) − ∇
[

−1√
r2(t) + SC

− αI
F(t) · r(t)

r3(t)

]
, (9)

where the first term in the gradient is the Coulomb force from
the parent ion with the soft-core constant SC and the second
term is the induced dipole of the ion with polarizability αI due
to the laser field.

Some more details on differences and agreements between
the applied theories and models can be found in Appendix A.

IV. EXPERIMENT

Details on the experiment can be found in Refs. [12,13].
Helium atoms from a cold gas jet were ionized by a strong
laser pulse with approximately 0.7–0.8 PW/cm2 peak intensity
at a central wavelength of 788 nm, 33 fs pulse duration
FWHM, and varying ellipticity; the carrier-envelope offset
phase was not stabilized [33]. In a COLTRIMS (cold target
recoil ion momentum spectrometer) [34] setup, the final
momenta of electrons, once the laser pulse had passed,
were recorded (Fig. 1). In the time-of-flight direction, the
momentum resolution of the detector was 0.1 a.u. In the
gas jet direction, thermal spread led to a resolution estimate
of �0.9 a.u.

A. Time-dependent Schrödinger equation

To ensure that the additional longitudinal momentum
spread measured in the experiment (Fig. 2) reflected under-
lying physics and was not the result of unknown experimental

FIG. 1. (Color online) 2D momentum spread. The final electron-
momentum distributions in the plane of polarization as measured in
COLTRIMS and calculated by TDSE shows two distinct maxima
separated by 2py along the minor axis. In TDSE, wave packets
from different cycles of the pulse interfere. In the experimental data,
orthogonal segments for elliptical integration are indicated [13].

noise, we analyzed time-dependent Schrödinger simulations
(TDSE, Fig. 1). The computations were performed for a
single-electron model with screened potential

V (r) = −1 − exp{−αr}
r

, (10)

where α = 2.1325 was adjusted to reproduce the lowest
few helium bound-state energies, and field strength F NA =
0.14 au. The nonadiabatically calibrated field strength F NA

was chosen instead of the adiabatically calibrated F A =
0.151 a.u., based on the fact that it leads to better agreement
with experimental momentum spreads. Photoelectron spectra
were calculated by the time-dependent surface flux (t-SURFF)
technique [35] and momentum spectra were converged to
ensure errors of �1% for the momentum spread.

B. Experimental results

With this procedure, we found an additional longitudinal
spread from TDSE simulations as compared to theoreti-
cal predictions, in agreement with experimental results in
Ref. [12]. In particular, any intensity computed had ratios of
σ TDSE

|| /σ NA
|| > 1, where σ TDSE

|| and σ NA
|| are the longitudinal

spreads extracted from the TDSE simulations and predicted
by the nonadiabatic theory (11), respectively. The momentum
spreads found in TDSE agree with experimental measurements
at high ellipticity and exceed the measured values at lower
ellipticity (see Fig. 2). The deviations could be due to the
difference in the assumptions used in the implementation of
TDSE [35] and the actual experimental conditions [12]. To
summarize, the TDSE results further confirm that the measured
additional longitudinal spread reflects underlying physics of
tunnel ionization that cannot be accounted for within the
current theoretical framework.

V. LONGITUDINAL SPREAD COMPARED

All the simulation results and the experimental data were
analyzed with the identical method, described in Ref. [13]. In
particular, the longitudinal spread and the angular momentum
distribution were extracted using elliptical integration.
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FIG. 2. (Color) Longitudinal momentum spread. The best-fitting
initial longitudinal momenta spreads for the adiabatic and nonadi-
abatic theories are shown as blue and red triangles, respectively.
These spreads were obtained by requiring the best fit between CTMC
simulations and experimental data. All error bars show the 98%
confidence interval of the corresponding fitting process to extract
the respective value. A = adiabatic, NA = nonadiabatic.

A. Nonadiabatic theoretical predictions

Analytically, nonadiabatic theory [5] gives rise to a wider
final longitudinal momentum spread,

σ NA
|| =

√
ω

2cx

, (11)

than adiabatic theory [15] valid for any ellipticity |ε| < 1,

σ A
|| =

√
3ω

2γ 3(1 − ε2)
� σ NA

|| , (12)

for the same peak field strength. In Fig. 2, the analytical
formula (11) for the nonadiabatic final longitudinal momentum
spread (red dashed line) calculated at F A = 0.151 a.u. (adia-
batic field calibration) almost agrees with the experimental
data [12] within error bars (black circles). It is certainly
always wider than the adiabatic formula (12) calculated at
the same field strength (blue solid line). At first glance, one
may conclude from this that an initial longitudinal momentum
spread is not necessary to explain the experimental data in
Ref. [12], once nonadiabatic effects are taken into account.

B. Nonadiabatic intensity calibration of experiments

However, to be fully consistent in the applied model, the
intensity of the laser pulse in the experiment also must be
calibrated [18] using the same nonadiabatic theory (5), which
leads to a larger pNA

y offset than adiabatic theory [36], where
the adiabatic momentum offset is given by [19]

pA
y = εFmax

ω
. (13)

This difference is due to the initial transverse momentum
offset (7). Consequently, the field strength constant used in
the CTMC for the completely nonadiabatic model was only
F NA = 0.14 a.u. compared to F A = 0.151 a.u. in the adiabatic
case (see Fig. 4). As a consequence of the nonadiabatic field
strength calibration, the final longitudinal momentum spread
curve given by Eq. (11) is shifted down to the solid red line
in Fig. 2, where it agrees almost exactly with the analytical
formula (12) for the adiabatic case (solid blue).

C. CTMC results

The CTMC results show a similar pattern: with zero initial
longitudinal momentum spread, the adiabatic (blue ∗) and
nonadiabatic (red ∗) CTMC again almost agree. Consequently,
comparable initial longitudinal momentum spreads are neces-
sary to reproduce the experimental momentum distribution.

As an example, Fig. 3 compares the angular momentum
distribution extracted by elliptical integration between nona-
diabatic CTMC and experimental data for ellipticity ε = 0.4
and for 0 or 0.5 a.u. initial longitudinal momentum spread.
For every ellipticity and initial longitudinal momentum spread
pair, the mean square error between the experimental and the
simulation angular distribution is calculated. The best-fitting
initial spread with minimal error is then found by interpolation.
More details on the fitting process between the CTMC and
experimental data can be found in Ref. [13]. The resulting
initial longitudinal momentum spreads are shown in Fig. 2 as
blue � for the adiabatic and red � for the nonadiabatic case.
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FIG. 3. (Color online) Angular momentum distribution. The red
dots in both panels show the top half of the momentum distribution
(bottom is symmetric). Blue ×’s in the left panel are the final
distribution when starting the nonadiabatic CTMC with zero, and
on the right with 0.5 a.u. initial longitudinal momentum spread. Solid
lines represent Gaussian fits. φ is counted anticlockwise from the
y axis.
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Comparing the CTMC with analytical calculations, the
CTMC final spreads are a bit smaller than the analytical
formula (except for when ε → 1, when the accuracy of the
expansion to second order breaks down). For the adiabatic
CTMC, this is due to the field strength averaging effect of
electrons which are ionized in optical cycles not located at the
center of the pulse and therefore have a lower (local) maximum
field strength [13]. For the nonadiabatic CTMC, field strength
averaging effects and the time dependence introduced in Eq.
(3) reduce the final CTMC spread compared to the analytic
curve.

In summary, it follows that nonadiabatic effects alone
cannot explain the additional longitudinal momentum spread
observed at the detector in the experiment, if the intensity is
recalibrated using the same nonadiabatic theory.

VI. INTENSITY CALIBRATION

As demonstrated above, the results of adiabatic and
nonadiabatic theory are very similar, and so is the initial
longitudinal momentum spread needed to quantitatively match
the experiment. This raises another important issue. Usually,
the laser peak intensity is determined from the momentum
offset of the electrons along the minor axis, because it
is the most accurate method available [18]. However, this
method depends strongly on the applied theory to calculate
the mapping between offset and intensity.

For elliptical polarization, nonadiabatic theories predict an
initial transverse momentum offset (7) [5]. As a consequence,
the most probable final transverse momentum in the nona-
diabatic description is larger than that in the adiabatic limit,

pNA
⊥,f > pA

⊥,f = εFmax

ω
, (14)

for identical field parameters. The measured p⊥ of the
experiment is compared to theoretical formulas (neglecting the

0 0.5 1 1.5 2 2.5

0.05

0.1

0.15

0.2

F
(a

.u
.)

py/ (a.u.)

 PPT (NA)
5

2

1

0.6

γ

 ADK or TIPIS (A)

1.7 1.8 1.9

0.14

0.15

FIG. 4. (Color online) Intensity calibration. The blue dashed line
shows the adiabatic momentum offset pA

y (13); the red solid line is
pNA

y as calculated by single trajectory simulation and corresponds
to Eq. (5). Inset: The experimentally measured py/ε = 1.85 a.u.
(black solid arrows, see Fig. 1) yields F A = 0.151 a.u. and F NA =
0.14 a.u. The larger the Keldysh parameter γ , the more pronounced
is the nonadiabatic effect.

influence of the ion Coulomb force), results of single classical
trajectory simulations, or CTMC simulations.

In this experiment, the Keldysh parameter varies between
0.51 and 0.73 [12], which is in a very high intensity regime.
With increasing γ (in practice, this is usually achieved by
decreasing the field strength), the difference between adiabatic
and nonadiabatic intensity calibration grows substantially (see
Fig. 4). With a measured p

exp
y /ε of 0.75 a.u. for example, the

nonadiabatic calibration yields a field strength which is only
58% of the adiabatic calibration value. In laser peak intensity,
the nonadiabatic value is only 34% of the adiabatic calibration
for this example, due to the square. On the other hand, to
the best of our knowledge, there is no alternative method
to determine the laser intensity at an intrinsic accuracy of
�20% [18].

VII. CONCLUSION

In conclusion, we have shown that consistent application of
either adiabatic or nonadiabatic theory cannot explain fully
the longitudinal momentum spread that was measured in
Ref. [12]. When used with CTMC calculations, the agreement
of both theories with the experiment may be achieved by
including an initial longitudinal momentum spread, pointing to
a need for further theoretical developments. Moreover, further
investigation is required to establish better than the current
state of the art calibration methods for the γ ∼ 1 regime,
where a majority of experiments in attosecond science take
place.
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APPENDIX A: APPROXIMATIONS IN THEORIES

Table I shows an overview of the theories which are
discussed in this work, comparing their characteristics, and
lists relevant references.

Some approximations in analytical models describing
strong-field ionization are commonly used. Most notably,
the so-called strong-field approximation (SFA). In SFA, it is
assumed that the Coulomb potential of the parent ion can
be neglected once an electron has entered the continuum
[11], also known as short-range potential. Thus, the dynamics
of an electron wave packet after ionization is completely
determined by the strong laser field. Conversely, the laser
field is usually neglected when considering a bound wave
function as the initial state before the ionization. Table II
collects the different approximations and model assumptions
in the presented theories.
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TABLE I. Overview over characteristics of theories.

Name Type rexit Field dependence vinitial σ⊥ σ||,final Ref.

Keldysh or ADK Adiab. Ip/F ∝ exp
{ − 2(2Ip)3/2

3F

}
0

√
ω

2γ

√
3ω

2γ 3(1−ε2)
[2,8,11]

Parabolic Adiab.
Ip+

√
I2
p −4β2F

2F
∝ exp

{ − 2(2Ip)3/2

3F

}
0

√
ω

2γ

√
3ω

2γ 3(1−ε2)
[29–31]

PPT Nonadiab. �Ip/F > v⊥,i �= 0 > > [4,5]

Contrary to analytical methods, CTMC simulations only
use these model assumptions to determine the initial conditions
(exit point, initial velocity, ionization time distribution), but
then do take account of the Coulomb force of the parent ion
during the propagation of ionized electrons. An example of that
is the TIPIS model [29–31], which uses parabolic coordinates
and Stark-shifted ionization potential to solve the quasistatic
Schrödinger’s equation for the exit point and includes both
the ion Coulomb force and the induced dipole during the
propagation of the electron.

APPENDIX B: FIELD DEPENDENCE

In the adiabatic limit of strong-field ionization, the dy-
namics of the laser field are so slow compared to the
typical dynamics of a bound electron that the field can be
approximated as quasistatic. Thus, the electron does not absorb
any photons and is purely tunnel ionizing. In this γ << 1 limit
of the Keldysh parameter

γ = ω

√
2Ip

F
,

the ionization probabilty goes with the Keldysh exponent for
the instantaneous field strength dependence (to exponential
accuracy) [8,11]

P A(F ) ∝ exp

{
−2(2Ip)3/2

3F

}
= exp{−	A},

	A(γ ) := 2(2Ip)3/2

3

γ

ω
√

2Ip
, (B1)

and is independent of the field frequency.
On the other hand, pure single-photon ionization in

high-frequency fields scales linearly with the field intensity.
Nonadiabatic theories for strong-field ionization occupy a
range between these two limits, where an electron wave packet
does feel the dynamics of the field and also absorbs some
photons, but it is still tunneling out of the potential (γ � 1).
Consequently, the field strength dependence in nonadiabatic
theories is a bit less steep than that in the adiabatic case. In the

TABLE II. Overview over assumptions.

Name A or NA rexit

Keldysh or ADK Quasistatic Triangular barrier
Parabolic Quasistatic Coulomb+field
PPT Time dependent Triangular barrier

formulation by PPT [4,5], it is

P NA(γ ) ∝ exp

{
−2Ip

ω
f (γ,ε)

}
= exp{−	NA},

	NA(γ ) := 2Ip

ω
f (γ,ε), (B2)

where f (γ,ε) introduces the field strength (and frequency)
dependence. Figure 5 compares the field dependence through
the Keldysh parameter for a fixed ω = 0.06 (wavelength
788 nm) and Ip of helium.

It illustrates 	NA � 	A, meaning that the ionization
probability in the nonadiabatic description decreases more
slowly with decreasing field strength than in the adiabatic
approximation.

APPENDIX C: MOMENTUM SPREAD

This fact, in turn, leads also to wider momentum spread
predictions in the nonadiabatic theory. The longitudinal final
momentum spread σ|| (parallel to the laser field at the tunnel
exit) for example is due to electrons being ionized at different
phases of the field and therefore gaining different longitudinal
momentum during the propagation in the remainder of the
pulse. For the transverse momentum spread σ⊥ (orthogonal to
the laser field at the tunnel exit), the argument is similar. In
Ref. [11], it is shown nicely that the transverse spread can be

0 2 4 6
0

50

100

150

γ

Φ
( γ

)

Keldysh, Φ A

PPT, Φ NA

FIG. 5. (Color online) Field dependence of the ionization prob-
ability, depending on the Keldysh parameter γ , compared for an
adiabatic (blue dashed line) and a nonadiabatic (red solid line) model.
Smaller 	(γ ) means higher ionization probability.

043406-6



INTERPRETING ELECTRON-MOMENTUM DISTRIBUTIONS . . . PHYSICAL REVIEW A 90, 043406 (2014)

derived by considering a modified Keldysh parameter,

γ̃ := ω

√
2Ip + p2

⊥
F

, (C1)

depending on the transverse momentum p⊥ in Eq. (B1).

APPENDIX D: EXIT RADIUS

In the pure quasistatic, adiabatic limit, applying the field
direction model [11], the exit radius is simply the point where
the electron can exit the potential barrier (approximated as a
triangle) with the ground-state energy −Ip, which results in

rA
exit = Ip

F
. (D1)

In parabolic coordinates, the Schrödinger equation for the
quasistatic problem can be solved exactly, yielding a third-
order equation for the exit point which can be approximated
to second order [13]:

rA
exit,parab =

Ip +
√

I 2
p − 4β2F

2F
, β2 = 1 −

√
2Ip

2
. (D2)

Since tunneling electrons in the nonadiabatic picture can
absorb some photons, they gain energy and exit the potential
barrier a bit earlier than in the adiabatic picture. In the
formalism by PPT [5], it is given by

rNA
exit = F

ω2

(√
1 + γ 2

1 − s2
0

− 1

)
� Ip

F
, (D3)

where s0 ∈ (0,ε) is a parameter depending on γ .
The differences in exit radii have, however, only negligible

influence on the final momentum of electrons.
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