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Ionization and, in particular, ionization through the interaction with light play an

important role in fundamental processes in physics, chemistry, and biology. In

recent years, we have seen tremendous advances in our ability to measure the

dynamics of photo-induced ionization in various systems in the gas, liquid, or solid

phase. In this review, we will define the parameters used for quantifying these

dynamics. We give a brief overview of some of the most important ionization pro-

cesses and how to resolve the associated time delays and rates. With regard to time

delays, we ask the question: how long does it take to remove an electron from an

atom, molecule, or solid? With regard to rates, we ask the question: how many

electrons are emitted in a given unit of time? We present state-of-the-art results on

ionization and photoemission time delays and rates. Our review starts with the

simplest physical systems: the attosecond dynamics of single-photon and tunnel

ionization of atoms in the gas phase. We then extend the discussion to molecular

gases and ionization of liquid targets. Finally, we present the measurements of

ionization delays in femto- and attosecond photoemission from the solid–vacuum

interface. VC 2017 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.4997175

I. INTRODUCTION

Ionization removes one or more electrons from a physical system and is an important fun-

damental process in nature and technology. Electrons can be removed from their parent system

through diverse mechanisms. In this review article, we concentrate on ionization induced by

light which is important in biology, photo-chemistry, and science in general. It lies at the basis

of techniques for determining the energetic structure of solids and molecules, which by them-

selves yield important information for technological applications.1–3 While we briefly review

different light-driven ionization mechanisms, the main focus of this paper will be on ionization

dynamics.

II. IONIZATION PROCESSES DRIVEN BY LIGHT

The most basic ionization process that exists even in the simplest bound electronic system,

a hydrogen atom, is single-photon ionization [Fig. 1(a)]. A single photon can remove an elec-

tron from a physical system if the photon energy is high enough to promote the electron from

its initial bound state into the vacuum. Single-photon ionization is also the mechanism
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underlying the photo effect,4 which played an essential role in the early days of quantum

mechanics.5 Neither single-photon ionization nor any of the other ionization effects can be

understood without quantum mechanics.

If we move from atomic hydrogen to systems with more than one electron, ionization pro-

cesses can quickly become much more complicated. Through correlation effects (i.e., “particles

interact with each other”), electrons may share the energy from the absorbed photon, especially

when its energy is well in excess of the minimum required ionization energy. This can lead to

the excitation or removal of a second electron. This, for example, happens in the Auger effect,

where a deep lying (strongly bound) electron is removed. Relaxation of an electron into the

newly created vacancy can then lead to the ejection of a second, higher lying electron—the so-

called Auger electron.

Besides the increased complexity of an electronic system, also the high light intensities

available from laser sources can lead to additional ionization pathways. The most straightfor-

ward extension of single-photon ionization that can occur at high light intensity is the ionization

through simultaneous absorption of multiple photons [Fig. 1(b)]. It is important to note that in

multi-photon ionization, the energy of a single photon can amount to only a fraction of the min-

imum energy needed for removal of an electron, but with sufficient intensity, it will still occur.

Simultaneous absorption of tens or even hundreds of photons is not uncommon.

If we consider the intense laser light an electromagnetic wave rather than a stream of pho-

tons, one sees that in the dipole approximation, the electric field in a strong laser beam can

bend the Coulomb potential such that an electron can tunnel through the created barrier out

into the vacuum [Fig. 1(c)]. This mechanism is called tunnel ionization. At even higher laser

intensities, the barrier can be lowered below the ground state of the system, which leads to the

so-called above-barrier or over-the-barrier ionization. This model is ultimately limited at higher

intensities, but also in the limit of long and toward short wavelengths by the breakdown of the

electric dipole approximation.6,7

Whether the wave nature or the photon nature of light dominates the ionization mechanism

can be determined through the Keldysh parameter c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ip=2Up

p
:8 This parameter compares the

ionization potential Ip with the quiver or ponderomotive energy Up of the electron in the oscil-

lating electro-magnetic light field. For c� 1, one usually expects the wave nature (or tunnel-

ing) to dominate, while for c� 1, the photon (multi-photon) picture prevails.

It is easy to see that with an oscillating light field or with the simultaneous availability of

multiple photons, ionization mechanisms can become much more complicated—in particular, in

multi-electron systems. For example, the electron emitted through tunnel ionization may be fur-

ther accelerated in the oscillating laser field and driven back to its parent ion. Its recollision

with the ion may lead to the removal of an additional electron. In multi-photon ionization, on

the other hand, the mechanism might take place via an intermediate resonant state. Such a reso-

nance can dramatically enhance the ionization yield for a given photon energy and light

intensity.

FIG. 1. Basic ionization processes in atoms. (a) In single-photon ionization, the atom is ionized through the absorption of a

single energetic photon. (b) If the laser intensity is high enough, multiple photons can be absorbed simultaneously and lead

to ionization even if the energy of the individual photons is not sufficient. (c) In tunnel ionization, the laser light in the

dipole approximation can be considered a classical field that is strong enough to bend the Coulomb potential of the atom,

such that a tunnel barrier is created and the electron may tunnel out.
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The overview in this section gives only a rather coarse and incomplete picture of the rich

zoo of ionization mechanisms. However, it sets the stage for a much more detailed discussion

of the state-of-the-art research in ionization and photoemission dynamics outlined below. The

ionization rates of atoms or simple molecules in the gas phase have been understood long ago.

However, the time delay of the ionization process itself or the dynamics in more complex sys-

tems, liquids and solids, possibly involving cascades of complex interactions, are a hot topic of

current research. Recent progress in attosecond pulse generation (1 attosecond¼ 10�18 s) and

extreme ultraviolet (XUV) experimental techniques has allowed us to study such fundamental

dynamics in quantum mechanics. In the following, we want to convey some of our excitements

in modern time-resolved photoionization and photoemission research to the readers.

III. DYNAMICS OF IONIZATION

Before we delve more deeply into the topic of ionization dynamics, we want to define the

relevant terminology and underlying concepts. How long is an ionization event? While this

question sounds simple, one has to clearly define what one means by “how long” or “how fast”

to prevent a misunderstanding. Ionization is inherently a quantum mechanical process and quan-

tum mechanics gives us statistical or probabilistic descriptions. Therefore, an ionization rate

can be easily determined and has a clear meaning. With regard to the specific time delay of a

single ionization process, there remains a heated debate. With some experts arguing that

because time is not an observable in quantum mechanics, such questions are not allowed to be

asked. Other experts, on the other hand, argue that we should simply follow the electron wave-

packets and their group delays will determine the ionization delay. As we will show later, this

is not always true and can lead to misleading results because there is no “conservation law” for

the peak or the center of the wavepacket.

Ionization dynamics is quantified with lifetimes, rates, and delays. A lifetime is a concept

that only makes sense for an ensemble of systems and that is defined in the simplest case with

an exponential decay law. If we start with Ni systems in a given initial state at a time t ¼ 0, we

will find NðtÞ ¼ Ni � e�t=sL being still in that state after a time t > 0. The lifetime sL is then

defined by the time it takes until the population decayed to 1/e of its initial size. A lifetime is,

for example, a good concept to describe the ionization dynamics of the Auger electron. The

electron that fills the vacancy after removal of a first electron through an energetic photon

relaxes spontaneously into that vacancy, following an exponential decay law. The Auger elec-

tron is ejected hand in hand with this relaxation and thus ‘inherits’ the exponential law from

the relaxing electron.

For such transitions that follow an exponential decay law, we can also quantify the dynam-

ics in terms of ionization rates, i.e., the number of ionization events per unit time. For the sim-

ple exponential decay law given above, the associated rate would be c ¼ 1=sL and the exponen-

tial law can be rewritten as NðtÞ ¼ Ni � e�ct. In this context, lifetimes and rates are therefore

strictly linked and describe the same dynamics.

Finally, one may also ask how long it takes to remove an electron from a system in single-

or multi-photon ionization. A concept that partially succeeds in describing these dynamics is

the Wigner (or Eisenbud-Wigner-Smith) photoionization delay.9,10 The Wigner delay is calcu-

lated from the phase shift of the wavefunction describing a particle emerging from a given

potential with respect to the wavefunction of a freely propagating particle with the same final

kinetic energy. A time is obtained by taking the energy derivative of this phase shift. This is in

analogy to the concept of a group delay that is familiar from other contexts of wavepacket

propagation (e.g., the propagation of ultrashort optical pulses). The time delay is thus linked to

the associated group velocity of the wavepacket. As we will show later in this review, this is,

however, not always a successful concept.

A rate can also be defined for tunnel ionization—the tunneling rate. Again, the tunneling

rate describes the number of tunnel ionization events per unit time for an ensemble of systems.

Given that tunnel ionization can be driven by the electric field of the laser as shown in Fig.

1(c), this rate depends directly on the instantaneous field strength and thus oscillates quickly
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with time. However, care has to be taken, as there are formulations of the tunneling rate in the

literature that are averaged over a laser oscillation cycle.

In addition, a tunneling time can be defined. However, this is much less straightforward

than the definition of a lifetime in an exponential decay and different proposals for the defini-

tion of such a time exist.11,12 There is no direct link of such a tunneling time to the concept of

the tunneling rate. Using the attoclock technique11,13 we have had excellent agreement with

two tunneling theories. However, these results obtained for helium are still debated because

they have been based on the single-active electron approximation and thus do not consider elec-

tron correlation effects. In addition, even the state-of-the-art time-dependent Schr€odinger equa-

tion (TDSE) calculations do not resolve this issue.14,15 Currently, experiments on atomic hydro-

gen targets are ongoing which hopefully will resolve this fundamental question in quantum

mechanics.

IV. IONIZATION DYNAMICS IN ATOMS

As the fundamental building blocks of matter, atoms represent the simplest systems that

can be ionized. In the following, we therefore cover the ionization dynamics of atoms before

we move to molecules and solids in the later sections. As we discuss the ionization dynamics

of atoms, we will also introduce the main techniques for their measurement. These methods are

later extended toward the more complex systems.

A. Single-photon ionization of atoms

If the photon energy exceeds the ionization potential of an atom, single-photon ionization

can occur. The most established methods to study its dynamics are attosecond streaking16,17

and reconstruction of attosecond beating by the interference of two-photon transitions

(RABBITT18,19), which are both two-color pump-probe schemes employing XUV attosecond

pulses and a femtosecond infrared (IR) probe pulse. In the case of streaking, the XUV light is

composed of a single attosecond pulse,20,21 while RABBITT uses a short train of attosecond

pulses evenly spaced in time and with a femtosecond envelope.19

Attosecond streaking and RABBITT have been used to measure the relative photoemission

time delay between electrons originating from two distinct energy levels of argon22 and neon.23

Using a coincidence detection technique, we extended these measurements to gas mixtures,

which allowed us to time the relative photoemission delay between two different atomic spe-

cies.24–26 Furthermore, we experimentally tested whether the two measurement techniques yield

the same delays.26

In both measurement techniques, the XUV and IR light are focused into a gas target and

the created photoelectron spectra are recorded as a function of pump-probe delay. In the case

of RABBITT, the time delay in the atomic photo ionization process is encoded in the phase of

oscillating sidebands (SB) that are generated by the interference of two quantum paths that

both involve the absorption of a harmonic from the XUV frequency comb of the attosecond

pulse train (APT) and the absorption or emission of an additional IR photon.27 The total phase

of each SB has, however, several contributions. The two main contributions are the difference

of the phases of the two harmonics nearest to the SB and the so-called atomic phase. The for-

mer originates from a possible (average) chirp of the attosecond pulses within the APT, while

the latter contains the phase information from the ionization process. These two main contribu-

tions can in general not be separated from each other in a single measurement. Thus, a simulta-

neous reference measurement from a different state of the same atom22 or a different species

has to be performed.26,28 Subtraction of the phases from the two different states or species

yields the difference of the respective atomic phases, while the identical APT-specific phase

cancels out. It is important to note that this argument only holds if sidebands created by the

same harmonics (same absorbed XUV photon energies) are compared. The information about

the photoionization dynamics and in particular, the phase originating from the Wigner delay, is

contained in the atomic phase. At most photon energies and in most systems, the Wigner delay

is the dominating contribution to this term. An additional phase term is measurement-induced
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and referred to as the continuum-continuum phase.22,29 It originates from the additional

infrared-induced transition in the presence of the Coulomb potential of the ion that is required

to promote the photoelectron to a final energy within an oscillating RABBITT sideband (i.e.,

absorption or emission of one infrared photon). The continuum-continuum phase is a universal

quantity that is independent of the details of the electronic structure of the probed system. It

only depends on the final momentum of the photoelectron, the infrared laser frequency, and the

charge of the ion.29

In attosecond streaking, the final momentum of the electron photoionized by the attosecond

pulse is modulated through interaction with a few-cycle IR probe pulse. The amount of momentum

shift depends on the pump-probe delay and follows the (negative) vector potential of the IR pulse

at the release time of the electrons. The resulting final energy modulation corresponds to a mapping

of time to energy.17,30,31 The full phase information of the XUV attosecond pulse can be recovered

through a retrieval algorithm called FROG-CRAB (frequency-resolved optical gating for complete

reconstruction of attosecond bursts32,33). As in the case of RABBITT, this phase contains contribu-

tions from the XUV pulse, the pumped transition and the measurement process. The measurement

induced counter-part to the continuum-continuum phase appearing in RABBITT is the Coulomb-

laser-coupling phase contribution in streaking.34 In the attosecond streaking picture, it can be con-

sidered a correction to the delay that is due to the deformation of the long-range Coulomb potential

by the electric field of the infrared probe laser. The Coulomb-laser-coupling contribution is univer-

sal and depends on the same parameters as the continuum-continuum phase.34

In analogy to RABBITT, relative timing information was obtained in streaking experiments

by comparing the traces from different states of the same target or different target systems. In

Ref. 23 a time delay in atomic photoemission of about 20 as has been extracted between elec-

trons ionized from the 2s shell of Neon with respect to ionization from the 2p shell, whereas in

Refs. 24–26, the photoemission delays from ground state Argon and Neon were compared.

1. Experimental comparison of RABBITT and streaking

As explained above, both, RABBITT and streaking, are two-color pump-probe schemes involv-

ing XUV attosecond and IR femtosecond pulses. In both cases, the XUV radiation is comparably

weak and can therefore be described in terms of linear optical interactions. In linear optics, the

superposition principle fully holds. In this sense, an attosecond pulse train, as used in RABBITT, is

nothing else than a linear superposition of several isolated attosecond pulses, as used in streaking,

at equidistant time intervals from each other. As such, one would expect that a RABBITT signal

can be constructed by a coherent superposition of streaking traces originating from the individual

pulses in the pulse train. Indeed, a RABBITT trace can be constructed in this way.35

Given that in a practical experiment, the typical IR intensities used for RABBITT are

roughly one order of magnitude smaller than those used in streaking, it is still not obvious that

the two methods yield equivalent results, as has been predicted in a theoretical study.36

We compared and verified the accuracy of single-photon photoemission delay measure-

ments using both, the RABBITT and the streaking technique.26 For this, we measured the rela-

tive photoemission delay between electrons originating from the Ne 2p and the Ar 3p ground

states. In order to resolve the energy dispersion of this relative delay, we require a relative

group delay accuracy on the order of a few tens of attoseconds. This is challenging and requires

a good signal-to-noise ratio as well as good knowledge of potential systematic error sources.

Our experiments were performed with a set-up consisting of a front-end capable of produc-

ing single attosecond pulses and pulse trains and a cold target recoil ion momentum spectros-

copy (COLTRIMS37) system.24 The APT or single pulse is focused into a gas jet that provides

a mixture of argon and neon for simultaneous measurement on both species under identical

experimental conditions. The detected photoelectrons and the corresponding RABBITT and

streaking traces are assigned to the two species in data post-processing, using the coincidence

information from COLTRIMS.

The experimental data from the streaking measurements and three RABBITT scans per-

formed with slightly different laser wavelengths are shown in Fig. 2. They are also compared
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with a theoretical prediction taken from Ref. 38. Within the uncertainty of the experiments, the

two methods yield comparable results. However, there appears to be a small disagreement

between the experiment and the simple Wigner delay. The discrepancy was explained by the

presence of a number of atomic resonances in Ar at excitation photon energies between 25 and

30 eV39 which affect the photoemission delay.25 The reason why these sharp resonances have a

“washed out effect” in the experiment might be two-fold. In the case of RABBITT, our APT

XUV spectrum is not resonant with any of the resonances in this range. In the case of streaking,

on the other hand, the IR intensity is about an order of magnitude higher than for RABBITT

and significantly modifies the lifetimes of the resonances, which might wash out the associated

features in the measured photoemission delay. It was shown, however, that RABBITT can

resolve such a resonance by scanning the probing XUV photon energies across the resonance.40

More details on the comparison of RABBITT and streaking measurements, including the

role of the chirp of the XUV pulses as an important systematic error source in phase extraction

from streaking, are presented in Ref. 26.

2. Angular anisotropy in photoemission from helium

When interpreting the photoemission delays from RABBITT and streaking data, one has to

be aware what these methods actually measure. Both techniques are two-color pump-probe

schemes. In the case of RABBITT in particular, which can conveniently be understood in the

photon picture, it is clear that the measurement process is a two-photon mechanism: absorption

of an XUV photon and absorption/emission of an infrared photon.

In recent experiments, we measured the angular dependence of the single-photon photo-

emission delays from ground-state helium with respect to the polarization axes of the exciting

XUV light and the probing infrared beam using the same attosecond COLTRIMS apparatus

described above.24,43 Given the s-symmetry of the ground state helium atom, one might expect

that the photoemission delay is fully isotropic and does not exhibit an angular dependence.

However, we could show that the two-photon nature of the RABBITT process yields a superpo-

sition of s- and d-like continuum wavefunctions, which results in a strong angular dependence

of the measured delay43 (see Fig. 3). The absorption of the XUV photon promotes the electron

from its initial s-symmetry to a continuum wavefunction with p-symmetry. Absorption and

FIG. 2. Comparison of RABBITT and streaking data showing the relative photoemission delay between ground state Ar

and Ne. The three different sets of RABBITT data have been taken with slightly different infrared wavelengths. Within the

experimental uncertainty, all measurements agree. For comparison, a theoretically calculated Wigner delay in the contin-

uum is shown according to Ref. 38. Adapted with permission from Cattaneo et al., Opt. Express 24, 29060 (2016).26

Copyright 2016 Optical Society of America.
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emission of the probing infrared photons then yield a wavefunction of either s- or d-symmetry.

Electrons from these two dominant pathways are superimposed for a given final electron

energy. Due to the different spatial symmetry, the mixing ratio of these two channels depends

on the detection angle with respect to the polarization axis, which leads to the observed angular

dependence of the photoemission time delay.43 Particular care has therefore to be taken when

interpreting angularly integrated photoemission delay data. The integration might conceal an

angular dependence and lead to a systematic error in the retrieved delay.

3. Dependence of photoionization delay on electronic fine-structure

So far, we have discussed photoionization delays between electrons leaving an atomic cat-

ion in different electronic states. One may therefore ask: is there any delay between photoelec-

trons leaving the ion in different fine-structure levels of the same electronic state? This question

has been addressed experimentally in Ref. 44. Photoionization delays have been measured

between electrons leaving a rare gas cation (Krþ or Xeþ) in the 2P3/2 and 2P1/2 levels of their

respective electronic ground states. These measurements have been carried out using attosecond

interferometry with a high-resolution photoelectron spectrometer capable of resolving the fine-

structure splittings in both cations throughout the XUV spectral range and using advanced

single-shot data acquisition techniques (Fig. 4).

These measurements, carried out between photon energies of 18 and 40 eV, have revealed

small delays in the case of Kr, lying systematically below 8 as in magnitude. This is in remark-

able contrast to a previous measurement,45 which found much larger delays. In the case of Xe,

which was not investigated previously, surprisingly large delays (s3/2-s1/2) have been measured,

reaching from �964 as at 21.7 eV toþ3366 as at 33.4 eV.

Importantly, these measurements show that delays caused by fine-structure effects are not,

in general, negligible compared with delays associated with different electronic states. This

insight is expected to extend from atoms to molecules and solids. Spin-orbit delays are expected

to be particularly important in systems containing heavy elements because spin-orbit coupling

is a relativistic effect.

FIG. 3. Photoemission delay anisotropy resulting from the two-photon measurement process. (a) In the RABBITT measure-

ments on helium, the XUV photon excites the electrons from the ground state with s-symmetry to a continuum wavefunc-

tion with p-symmetry. The infrared probe field promotes the electron further into either a s- or d-wavefunction. The

observed anisotropy can be understood from the angle-dependent mixing of these two channels. The angular dependence is

a result of their differing spatial symmetry. (b) Measured (blue circles) and calculated photoionization time delay as a func-

tion of angle with respect to the polarization axis of the XUV and infrared pulses. The calculated black and red curves are

based on solving the time-dependent Schr€odinger equation (TDSE), nearly exact and with single-active electron approxi-

mation, respectively,41 the green curve is based on the lowest order perturbation theory.42 Reprinted with permission from

Heuser et al., Phys. Rev. A 94, 063409 (2016).43 Copyright 2016 American Physical Society.
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These measurements have also been used to verify the accuracy of state-of-the-art theories

for attosecond photoionization delays.44 The results have been compared to time-dependent

configuration-interaction singles (TD-CIS) calculations,46 an explicitly time-dependent method

that has been used to simulate the experiment without additional approximations. The measured

delays have also been compared to the random-phase approximation method, a time-

independent method that is renowned for achieving near-quantitative accuracy in the calculation

of photoionization cross sections and asymmetry parameters (see, e.g., Ref. 38 for a recent

example). This method has been combined with an analytical treatment of the continuum-

continuum delays, which enabled a detailed study of this approximation.44

Whereas both theories are in good agreement with the very small delays measured in the

case of Kr, significant discrepancies were found in the case of Xe. A detailed consideration of

the possible origins of this discrepancy led the authors to conclude that an incomplete

FIG. 4. Configuration for measurement of fine structure effects on photoemission delays (a). The relative photoionization

delay of photoelectron wavepackets associated with the 2P3/2 and 2P1/2 final states of Krþ (b) and Xeþ (c) are measured.

The neutral atoms are ionized by an XUV attosecond pulse train, superimposed with an infrared pulse at a wavelength of

800 nm. The differential photoelectron spectra in the presence and absence of the infrared pulse are recorded on a single-

shot basis. In the case of Xe, the delays are extracted using a two-dimensional fitting procedure. Reprinted with permission

from Jordan et al., Phys. Rev. A 95, 013404 (2017).44 Copyright 2017 American Physical Society.
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description of electron correlation, in particular of the interaction between singly- and doubly-

excited configurations in both methods, was the most probable origin of the deviation between

the experiment and theory.

4. Limits of intuitive Wigner delay picture

Above, we have introduced the Wigner delay that is defined as the energy derivative of the

phase of an electron escaping the potential of its parent ion with respect to the phase of a free elec-

tron with the same final kinetic energy. As already mentioned, the propagation of the electron wave-

packet is analogous to the propagation of a laser pulse through a dispersive medium: The derivative

of the spectral phase / at any frequency x (or energy) yields the group delay s ¼ @/=@x that in

the absence of absorption describes how much time it takes for the peak of the pulse to traverse a

certain distance in a medium. In the case of the quantum mechanical wavepacket, the Ehrenfest the-

orem links this description to the classical picture of a particle moving at its group velocity.

While the Wigner delay is always a well-defined quantity from a mathematical perspective,

care has to be taken when interpreting it in terms of this simple semiclassical picture. As is the

case for optical pulses, the interpretation of a group delay is less straightforward if the wavepacket

undergoes a significant reshaping through an energy filter. If the propagating wavepacket experien-

ces resonances or strongly energy-dependent damping, there is no intuitive link between the maxi-

mum of the wavepacket before this filter and its maximum after the filter—the two points in the

wavepacket have no physical relationship. As such, the group velocity (“the speed of the center of

the wavepacket”) can assume almost any numerical value—for example, become superluminal.47

This is the reason why the Wigner delay is not a good concept to describe ionization delays in the

tunneling regime11 and in single photon emission with autoionizing states.25 Electron wavepackets

in contrast to photons even disperse in vacuum and become strongly chirped during propagation.

For example, a tunnel barrier is a very strong energy filter that prevents a simple relationship

between a wavepacket maximum on one side of the classically forbidden region and of the maxi-

mum of the wavepacket after tunneling through the barrier [see also Fig. 6(b)].

Similarly, in single photon ionization when an electron is liberated into a non-resonant con-

tinuum, the measured delay is well described by the Wigner delay which gives a direct link to

the classical propagation delay with the center of the electron wavepacket. However, the situation

becomes more complicated when the autoionization states are involved in the single-photon ioni-

zation. For example, with argon, we observed that the Wigner phase delay is affected by them.25

Furthermore, most recently, we could show that these autoionization resonances in argon not only

distort the phase of the emitted photoelectron wavepacket but also introduce an angular depen-

dence.48 These strong angular-dependent phase distortions make it very difficult to directly link

the Wigner delay to an equivalent classical trajectory of the photoelectron.

B. Tunneling delay

In Sec. IV A, we discussed the dynamics of single-photon ionization. But how long does it

take to remove an electron from an atom in the tunnel ionization regime? In tunnel ionization, an

intense low-frequency laser field in the dipole approximation bends the atomic potential suffi-

ciently that a transient tunnel barrier is formed and the electron can escape the atom through

tunneling [Fig. 1(c)]. The rate of tunnel ionization is described by the following law:49

WTI / exp � 2 2Ipð Þ3=2

3E

� �
;

where Ip is the ionization potential and E the non-adiabatic electric field amplitude.

The dynamics of this process can be resolved with a technique called attosecond angular

streaking or the attoclock.50 The attoclock uses close-to-circularly polarized laser pulses. It

exploits the fact that due to the small remaining ellipticity of the polarization and the exponen-

tial dependence of the tunneling rate on field strength, ionization is most probable when the

field vector points to the direction of the major axis of the polarization ellipse. In fact, a change
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of the field amplitude by 10% (from 0.1 a.u. to 0.09 a.u.) will result in a reduction in the ioni-

zation rate by almost one order of magnitude.

Measuring time in the attoclock is achieved by counting the field oscillation cycles similar to the

operation principle of a regular clock: the rotating field vector acts like the minute hand of a watch,

mapping time to angle. In the attoclock, the close-to-circularly polarized laser electric field ionizes and

further deflects the electrons in the spatial direction perpendicular to field propagation, mapping the

instant of ionization to a final angle of the momentum vector in this plane. This attoclock runs over

360� within one optical cycle that takes about 2.7 fs for a laser pulse centered at 800 nm wavelength.

Knowledge of the orientation of the laser polarization ellipse from polarimetry measurements yields

the time-zero calibration for the clock: together with the tunnel ionization rate, we know in what angu-

lar direction to expect the highest electron count. As the determination of the highest electron yield

from the experimental data boils down to a peak search, the corresponding angle can be determined

with very high precision significantly below one optical period. For example, for a center wavelength

of 735 nm, one degree in the polarization plane corresponds to 7 as. Furthermore, there is in principle

no fundamental limit to the precision of determining this most probable ionization delay with peak

search, as this is a purely statistical procedure—the better the statistics, the better the precision.

But how do we extract a tunneling delay time or tunnel traversal time from this information?

A real and measurable tunneling delay time would manifest itself in an angular offset of the

entire momentum distribution compared with its expected orientation with zero tunneling delay

time. In the latter case, the electrons would appear “at the end of the tunnel” at the instant of

maximum ionization rate or maximum laser field. Any real delay would cause the electrons to

appear at an offset with respect to that angular direction. From the knowledge of the orientation

of the polarization ellipse, we can calculate where we would expect the maximum electron count

for a zero-tunneling-delay-time hypothesis. If all effects acting on the emitted electrons are prop-

erly taken into account,51 any angular offset must be attributable to the tunnel traversal time.

While the first demonstration of angular streaking on helium yielded no measureable

tunneling delay times,13,51 later refinements allowed to reduce the error bars and yielded data

that could not be explained with instantaneous tunneling.11 The attoclock principle was also

used to time other ionization processes. It was used to measure the relative delay between the

two electrons emitted in sequential double-ionization of argon.52

With the attoclock technique applied to a He gas target, we had excellent agreement with

the Feynman Path Integral (FPI) theory (Figs. 5 and 6) and the Larmor time (Fig. 6). But we

clearly did not have a good agreement with the Wigner time. This can be explained by the

energy filter of the tunneling probability as shown schematically in Fig. 6(b) and which was

also observed in single photon ionization.25

C. Time-dependent density functional theory (TDDFT) based simulations of Attoclock

experiments including nonadiabatic and many-electron effects

As explained in Sec. IV B, the attosecond angular streaking technique, also known as

“attoclock,”50 uses an elliptically polarized laser field of high intensity (of the order of 0.01–1

PW/cm2) to induce tunnelling ionization of noble gas atoms. Due to the elliptical polarization

of the field, the probability of recollisions and recombinations of the ionized electrons with the

parent ions is reduced to a minimum. Temporal information on tunnelling, like for instance, the

tunnelling time in single ionization of helium13 and argon,52 the time delay in the double ioni-

zation of argon,52 as well as the tunnelling geometry,51 and, more recently, information on the

adiabaticity of the tunnelling process,53 can be inferred from the momentum distributions of

emitted electrons and ions.

The interpretation of the experimental momentum distributions is based on a comparison

with momentum distributions obtained by semiclassical calculations. In this approach, electron

dynamics after tunneling is treated classically as described by the TIPIS model (tunnel ioniza-

tion in parabolic coordinates with induced dipole and Stark-shift),51 which relies on the single

active electron approximation (SAE) and includes many-electron effects only implicitly via a

static polarizability term.
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FIG. 5. Attoclock technique for measuring the tunnel ionization delay time: (a) Peak search for the highest count of photo-

electrons in the polarization plane. (b) Probability distribution for different tunneling times calculated by the Feynman Path

Integral formalism.12 The peak of this distribution determines the “most probable trajectory” and is consistent with “peak

search” in the attoclock measured data (i.e., angle with highest count of electron). (c) Measured tunneling time using the

attoclock technique with a helium gas target in the regime of the adiabatic approximation.11 Reprinted with permission

from Landsman and Keller, Phys. Rep. 547, 1 (2015).12 Copyright 2015 Elsevier.

FIG. 6. (a) Wigner delay is not in agreement with the attoclock results for tunneling.11 (b) Energy filter in tunneling proba-

bility makes the chirped electron wavepacket “jump” in time and therefore the group delay (sGD) of the peak or the center

of the wavepacket cannot represent the time the electrons spend inside the classically forbidden region under the tunnel bar-

rier (i.e., the tunneling dwell time).
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The time delay in single ionization processes is inferred from the angular offset between

the calculated and the measured peak of the distributions11,12 (Fig. 5). This interpretation of the

angular offset has been the object of debate. A current more detailed invited review article is in

preparation which will discuss all the different approximations such as dipole approximation

and non-adiabatic effects in the tunnelling process.53–56 We could show that the excellent

agreement with the Feynman Path Integral formalism as shown in Fig. 5 is still valid without

the adiabatic approximation. In the non-adiabatic regime, the laser field strength calibration is,

however, affected, which results in an effectively thicker tunneling barrier width in comparison

with the adiabatic case shown in Fig. 5(c).57 The influence of the single active electron approxi-

mation, on the other hand, will have to be resolved with an attoclock measurement on a hydro-

gen gas target. More sophisticated theoretical models based on a two-electron semi-classical

model58 and TDSE calculations for hydrogen14 and helium15 do not resolve the issues.

Explicit time propagation of the electronic orbitals in the framework of time dependent

density functional theory (TDDFT) can be a suitable alternative to solutions of the TDSE for

model Hamiltonians, as it does not rely on a static approximation of the barrier and correlation

as well as nonadiabatic effects are explicitly taken into account.

1. Computational approach

We present here the results of a computational TDDFT-based study of a single hydrogen

or argon atom in the presence of a short and intense laser pulse like those adopted in attoclock

experiments. In our simulations, the laser field is represented in the velocity gauge by a vector

potential described as a monochromatic pulse with Gaussian envelope, G(t)¼exp(�t2/2r2) rotat-

ing in the XY plane of our coordinate reference frame

A

c
tð Þ ¼ E0

x
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2
p G t� t0ð Þ �esin x t� t0ð Þ½ �x̂ þ cos x t� t0ð Þ½ �ŷ

� �
;

where x is the carrier frequency and e is the ellipticity parameter.

The electron dynamics is described in the propagation-TDDFT framework, in which a set

of auxiliary, non-interacting and explicitly time-dependent orbitals, {/j sj; tð Þ}, are introduced to

reproduce the correct time-dependent density

q sjf g; tð Þ ¼
XNst

j¼1

/j sj; tð Þj2;
���

where {sj} indicates the electronic spatial and spin coordinates {sj}¼{rj,rj}.

The time dependence of these single particle (Kohn-Sham) orbitals is described by the fol-

lowing set of equations:

i@t/j sj; tð Þ ¼ hKS
j q sjf g; tð Þ½ �/j sj; tð Þ; j ¼ 1;…;Nst;

in which Nst are the electronic states and hj
KS are the Kohn-Sham Hamiltonians expressed as

functional of the time-dependent density

hKS
j q tð Þ½ � ¼ � 1

2
r2

j þ VH q tð Þ½ � þ VXC q tð Þ½ � þ Vext q tð Þ½ �; j ¼ 1;…;Nst:

The time-dependent Kohn-Sham equations are integrated following the recursive Crank-

Nicholson scheme,59 as implemented in the CPMD (Car-Parrinello molecular dynamics) code;60

the integration time-step is allowed to change during the simulation to adapt to the variations in

the field strength and is of the order of dt¼ 0.12 as. The time-dependent exchange correlation

functional was described by the time independent PBE (Perdew, Burke, Ernzerhof) approxima-

tion applied to the time-dependent density.61 Through the use of the asymptotic correction

introduced by van Leeuwen and Baerends (LB94),62 the ionization potentials are accurately

described. The simulation box is orthorhombic with lengths of 100 Å� 100 Å� 50 Å; the atom
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is initially placed at the center of the box. Troullier-Martins pseudopotentials63 are used to

soften the Coulomb repulsion in the proximity of the nucleus and a kinetic energy cut-off of

70 Ry is used for the plane wave basis set expansion.

In the simulation of an ionization process, part of the electronic wave function spreads far

from the nucleus: to avoid unphysical reflections of the electronic wave function at the edges of

the simulation box, it is necessary to adopt absorbing boundary conditions. We implemented a

mask function, which goes smoothly from unity to zero at the edges of the box and multiplies

the Kohn-Sham orbitals after each time-propagation step. In the present work, the portion of

the box affected by the mask function is at maximum 5 Å from the box sides.

The values of the field parameters used in the present simulation are chosen in such a way

as to match typical experimental conditions,52 except for the pulse duration that was chosen

slightly shorter than the experimental ones. The parameter values are E0 ¼ 0.613 GV/cm,

e¼ 0.78, x¼ 2.56 fs�1 and r¼ 0.72 fs. This corresponds to a pulse of wavelength k¼ 740 nm,

duration D¼ 1.7 fs and peak intensity I¼ 0.5 PW/cm2 and to a value of the Keldysh parameter8

of cH ¼ 0.516 for H and cAr ¼ 0.555 for Ar.

As an illustration of the electron dynamics in the H and Ar atoms in the presence of the laser

pulse, Fig. 7 shows the time evolution of the radial and angular projections of the electronic density.

As expected, before the external field has reached its maximum value, only minor charge polariza-

tion is visible. At later times, two ionization bursts become visible, starting in correspondence with

the two maxima of the electric field. Part of this charge is soon reabsorbed by the nucleus, while

some escapes and is absorbed at the box boundaries. The two bursts are almost equally intense in

argon, while in hydrogen, the second one is less pronounced due to saturation effects.

The calculation of ionization probabilities and rates gives a more quantitative description

of the ionization phenomenon. Within a TDDFT description of the electronic state, the ioniza-

tion probability Pþ(t) (in one electron systems) can be obtained by integrating the time-

dependent electronic density within a sphere Rc of radius Rc centered on the nuclear position64

Pþ tð Þ ¼ 1�
ð

Rc

drq r; tð Þ:

In many-electron systems an estimate of the orbital ionization probability can be obtained

in an analogous manner, assuming single ionization.64 The ionization rate w(t) is given by the

time derivative of Pþ(t). The sphere Rc is introduced to separate, albeit in an approximate way,

bound states from free-state contributions of the electronic wave function: the electronic density

outside the sphere will then be assumed to be “ionized.” When the external field is still present,

the results of this procedure depend on the value of Rc; the asymptotic, zero field values are

instead independent of the choice of the surface and can be used to quantify the effect of the

laser on the electron dynamics. The cut-off Rc is usually chosen so that all the relevant bound

states are contained inside the sphere Rc, while the density found outside Rc is assumed to be

FIG. 7. Illustration of the electron dynamics in hydrogen [(a) and (c)] and argon [(b) and (d)]: time behavior of the radial

[(a) and (b)] and angular [(c) and (d)] projections of the electronic density. In the angular plots, the direction of the laser

field is shown as a yellow line.
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due to the states belonging to the continuum. This criterion determines a lower bound to the

value of Rc. In the present calculation, to limit the possible impact of wavefunction polarization

on the calculated probabilities, we determined the tunnel exit provided by the TIPIS model for

each atomic species (hydrogen and argon) under the same field conditions. This value was then

used to define the sphere radius.

Panels (a) and (c) of Fig. 8 display the orbital ionization probabilities in H and Ar, respec-

tively, under the effect of the laser field whose vector potential is shown in Fig. 8(b). In both

atoms, the probability is zero up until the center of the pulse and saturates at the end of it. In

Ar, probabilities are larger for the p orbitals laying in the polarization plane, while electronic

charge is removed with smaller probability from the m¼ 0 p orbital. This result is consistent

with other theoretical predictions, based on TDSE solutions of effective one-electron model

potentials,65 and experimental findings.66 The total ionization probabilities at the end of the

pulse are of about 18% for H and less than the 1% for Ar.

Figure 9 shows the ionization rates obtained for the H atom [Fig. 9(a)] and the Ar atom

[Fig. 9(b)] following the procedure described above, assuming a value of Rc corresponding to

the tunnel exit calculated according to the TIPIS model. For comparison, we also show the

empirical tunnelling rates proposed by Tong and Lin68 that are used to provide the initial condi-

tions for the classical electronic trajectories in the TIPIS calculations.51 TDDFT and Tong-Lin

rates have a qualitatively similar behavior with two peaks corresponding to the ionization burst

shown in Fig. 7. For the H atom, due to saturation effects, a marked first ionization peak is fol-

lowed by a less pronounced shoulder. In Ar, where the ionization probability is much smaller,

saturation is far from being reached and the two peaks have nearly identical heights. The main

difference between TDDFT and Tong-Lin theory is the deeper depletion between the two max-

ima in the curves for Ar, while the hydrogen curve is close to the one predicted by Tong-Lin

theory. One can speculate that these discrepancies, present only in the many-electron system,

can be related to correlation effects.

For a more direct comparison with the attoclock experiments, including a comparison of

simulated versus measured momentum distributions, we are currently extending the TDDFT

FIG. 8. Calculated time-dependent ionization probabilities in (a) hydrogen and (c) argon. For the argon atom, contributions

from the different p orbitals are shown separately to highlight the dependence of the ionization probability on the magnetic

quantum number m, an effect found theoretically.67 X and Y components of the laser vector potential used in the calcula-

tions are shown in panel (b).
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simulations described in this section to pulses of longer duration and including also the He

atom as a third system.

V. IONIZATION DYNAMICS IN MOLECULES

Moving from atoms to molecules significantly increases complexity. This is due to the

lower symmetry and additional degrees of freedom of molecules. Early experimental results on

H2
69 and CO70 are still under further theoretical investigations before a more detailed journal

publication can be done. Especially for H2, we can no longer neglect the effect of the nuclear

motion on the photoionization delay.

The experimental challenges associated with attosecond interferometry of molecules origi-

nate from the considerable congestion of molecular photoelectron spectra generated by attosec-

ond pulse trains (APT). This challenge has been overcome by combining spectral filtering of

the APT with different thin metallic foils and single-shot data acquisition.71 One approach to

address the theoretical challenges is based on a complete theory of molecular photoionization

delays based on state-of-the-art time-independent molecular scattering calculations.71,72

In addition to the attosecond photoemission delays from molecules, we discuss in this sec-

tion also the measurement of strong-field photoionization rates on molecules, which is a com-

plementary aspect of molecular ionization dynamics.

A. RABBITT on water vapor and nitrous oxide

Using the RABBITT technique for energy-dependent photoionization delays between the

two outermost valence shells of H2O and N2O in the photon-energy range of 20–40 eV resulted

in remarkably large delays of up to 160 as for N2O and below 50 as for H2O. Comparison with

detailed calculations based on the newly developed theory71,72 revealed that the large delays in

the case of N2O are the consequence of a transient trapping of the outgoing photoelectron in

shape resonances embedded in the photoionization continua of N2O. The calculations indeed

predicted a lifetime of 	110 as for the dominant shape resonance of r symmetry located in the

photon-energy range of interest. These measurements therefore probe the time-domain manifes-

tation of a complex photoemission process consisting of two steps. First, an electron is excited

from the initial bound state to a quasi-bound state lying above the ionization threshold. This

state, however, has a finite lifetime owing to the presence of a potential barrier created by the

superposition of the molecular short-range and the centrifugal potentials. Second, the electron

will tunnel through this barrier and escape into the continuum (Fig. 10). In the language of sta-

tionary quantum mechanics, the observed delay arises from the rapid variation in the phase of

the photoionization matrix elements across the energy domain of the shape resonance. In a

FIG. 9. Calculated ionization rates in (a) hydrogen and (b) argon in comparison with the ionization rates predicted by the

Tong and Lin model68 used in the interpretation of attoclock experiments to determine the initial conditions of semiclassi-

cal trajectories.51
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time-dependent picture, the delay arises from the trapping of the photoelectron behind the

potential barrier.

However, the details of photoionization in the presence of molecular shape resonances are

much richer than suggested by this simple interpretation, as can be recognized from the fully

differential photoionization delays of N2O that are shown and discussed in Ref. 72. The delays

in the molecular frame are indeed found to cover a much wider range of many hundred attosec-

onds, which originates from the structure of the initial orbital, interference effects of multiple

partial-wave continuum states, and the structure of the short-range and multipolar potential of

the ionic core. Further theoretical work is in progress to gain additional qualitative insights into

these results. Importantly, and in contrast to atoms, the effect of the probing infrared field on

the delays measured by attosecond interferometry cannot be represented by a simple, additive

function, known as the “continuum-continuum delay.”72 This difference originates from the

non-spherical nature of molecules, and the resulting interference effects in the calculation of

the two-photon amplitudes. A better understanding of these effects requires measurements in

the molecular frame.

B. Strong-field ionization rates in polar molecules

The knowledge of strong-field ionization (SFI) rates of molecules is crucial to all attosec-

ond strong-field techniques, including high-harmonic spectroscopy, laser-induced electron dif-

fraction, strong-field photoelectron holography, and the attoclock technique. Strong-field ioniza-

tion rates are, however, notoriously difficult to calculate because of the non-perturbative nature

of the light–matter interaction. Whereas the description of SFI rates of non-polar molecules can

be considered to be understood to a reasonable level, polar molecules posed considerable chal-

lenges until recently. The main difficulty arises from the presence of a large, strongly angle-

dependent Stark shift caused by the permanent dipole moments of the neutral and cationic spe-

cies. This effect, combined with the exponential sensitivity of the SFI rates to the asymptotic

tail of the electronic wave functions undergoing tunnel ionization, called for an innovative theo-

retical approach and detailed experimental tests thereof.

This challenge has been addressed by the development of the so-called weak-field asymp-

totic theory (WFAT). The designation “weak field” refers to the electric field as being weak

compared with the field strength required for over-barrier ionization. In this sense, intensities of

1014 W/cm2, typical of attosecond strong-field experiments, are indeed to be considered “weak.”

The WFAT has been tested against several experimental results, including high-harmonic spec-

troscopy73,74 and phase-controlled two-color SFI.75

FIG. 10. Shape resonance in the case of N2O. The lower surface shows the numerically calculated molecular potential con-

taining electrostatic and exchange interactions. The upper surface shows the total potential, i.e., the sum of the molecular

and centrifugal potentials. The wave functions of the bound orbital and the shape-resonant state are illustrated by isosurfa-

ces with color-coded signs. The gray arrows represent the tunneling of the photoelectron through the barrier.
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In these publications, the WFAT has been combined with all-electron non-perturbative ab
initio calculations with static applied electric fields to determine the Stark shifts. Specially

designed basis sets have been used and their expansion coefficients have been individually opti-

mized to minimize the total electronic energy of the molecule. This procedure led to very accu-

rate asymptotic tails of the molecular orbitals, which yielded highly accurate SFI rates.

The accuracy of these results was validated in several experimental studies, which simulta-

neously led to new scientific insights. The measurement of high-harmonic spectra of aligned and

oriented CH3F and CH3Br molecules provided the first evidence for the modification of the elec-

tronic structure of molecules by the strong electric field driving high-harmonic generation.73

Specifically, it was shown that the observed spectra could only be quantitatively explained when

the field-modified orbitals were used for calculating the SFI rates and recombination matrix ele-

ments and when the additional phase originating from the Stark effect was taken into account. In

this case, a quantitative agreement with experimental data was obtained. The validity of the

WFAT was further tested in a recent high-harmonic-spectroscopy experiment that reconstructed

attosecond charge migration from experimental data.74 The angular variation of the SFI rates was

required in this work, because of the finite degree of alignment that can be achieved by impulsive

methods. The convergence of the experimental retrieval of the time-dependent populations and

phases of the electronic eigenstates of the cation support the validity of the SFI rates obtained

from the WFAT. The good agreement of the relative ionization rates to the two lowest-lying elec-

tronic states of the cation with both a TDDFT calculation and the experiment shows that these

quantities are also appropriately predicted by the WFAT. Finally, the predictions of WFAT have

also been tested against SFI in a laser pulse consisting of a fundamental frequency and its second

harmonic.75 The asymmetric emission of fragments from SFI of CH3X (with X¼F, Cl, Br, I) has

been measured, leading to the interesting conclusion that an electron is preferentially removed

from the halogen side in CH3F, whereas the opposite is the case in the other molecules, with an

asymmetry increasing from Cl to I. These results are consistent with the shape of the highest

occupied molecular orbitals, but this consideration neglects the role of the Stark shifts which are

very important in defining the asymmetry of the SFI rates and are incorporated in the WFAT.

VI. PHOTOIONIZATION FROM LIQUIDS

In the early 1970s, while developing techniques of photoelectron spectroscopy in the gas

phase and at surfaces, Siegbahn and co-workers also introduced photoelectron spectroscopy (PES)

of liquids.76 However, broader adoption came only in recent years and thanks to the works of

Faubel, Winter and their co-workers.77,78 It was extended into the ultrafast time domain first in

the ultraviolet spectrum (<10 eV),79–82 and then the vacuum ultraviolet range.83,84 Several groups

have since embarked in the implementation of the vacuum ultraviolet (VUV) version of such

experiments.85–87 The technique has been implemented to investigate the ultrafast IR-induced sol-

vent heating,83 intramolecular dynamics of solvated species,88–91 and interfacial electron trans-

fer,92 while others are exploring extensions into the attosecond regime.93

In these implementations of time-resolved PES, the VUV probe field maps the electron dis-

tribution of the system under study onto a detector via photoemission, after the pump pulse has

perturbed it. When strong fields are used, a dressing of the emitted photoelectrons by the pump

laser field can occur.94 This leads, among others, to the so-called LAPE (laser-assisted photo-

electric effect), when the quasi-monochromatic VUV pulse is longer than the half-cycle dura-

tion of the pump field. The manifestation of LAPE is a redistribution of the emitted photoelec-

tron energies into sidebands of the unperturbed spectrum. It was first observed in the gas

phase94,95 and later from solid surfaces.96,97 In recent studies of liquids, the Chergui group has

identified LAPE from liquid surfaces of a pure water microjet.98

Figure 11 shows the time evolution of the photoelectron spectra of the pure water jet, and

the left panel shows the spectra recorded before, at, and after zero pump-probe delay (t¼ 0)

using a 40 fs pump pulse at 1.55 eV and a probe at 35.6 eV (full width at half

maximum¼ 0.2 eV) of 140 fs duration. The green spectrum at t¼ 0 clearly shows a redistribu-

tion of intensity, in particular below 10 eV, while no signal is detected in this range in the other
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cases. The detailed assignment of the t¼ 0 spectrum is shown in Fig. 12. While the main peaks

at 11.2 and 12.7 eV represent the binding energy of the 1b1 orbital in the gas and the liquid

phase, respectively, additional sidebands can easily be identified that are the LAPE lines spaced

by integer multiples of the photon energy of the pump laser.

This redistribution of intensity at t¼ 0 is expected from the interaction of the dressing laser

field with the photoemitted electron in a Volkov state of the continuum. This was confirmed by

modelling the intensity of the sidebands as described in Ref. 98.

FIG. 11. (a) Photoelectron spectrum of water at t¼�230 fs (black curve), t¼ 0 fs (green curve) and t¼ 270 fs (red curve).

The first PE bands of water are shown with assigned molecular orbitals (subscript l refers to the liquid phase, subscript g to

the gas phase, no subscript to liquid and gas phase). (b) Evolution of the photoelectron spectrum: Binding energy as a func-

tion of laser-pump/XUV probe time delay. Reprinted with permission from Arrell et al., Phys. Rev. Lett. 117, 143001

(2016).98 Copyright 2016 American Physical Society.

FIG. 12. Photoelectron (PE) spectrum of pure water at t¼ 0 (green trace) showing the sidebands resulting from LAPE and

the assignment of the various spectral lines. Sidebands obtained from the Gaussian fit. The first order sidebands are shown

in orange and the second order are shown in yellow. Red dashed curve: sum of sidebands and the unperturbed water PE

bands. Reprinted with permission from Arrell et al., Phys. Rev. Lett. 117, 143001 (2016).98 Copyright 2016 by American

Physical Society.
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The presence of LAPE in the photoelectron signal around t¼ 0 offers an in-situ optical

pump/XUV-probe cross-correlation, which is particularly useful for the study of photoinduced

dynamics in a large variety of systems. For experiments at high time resolution, it could be

used to study the interfacial effect, as demonstrated for adsorbates on solids by Murnane and

co-workers.96 We are implementing this technique to measure the core-level relaxation dynam-

ics occurring in solvated species near the water interface.

VII. PHOTOEMISSION FROM SURFACES

In photoemission from surfaces, photoelectrons excited by light with energies ranging from

ultraviolet to x-rays are detected as a function of kinetic energy and emission direction. Due to

the small inelastic mean-free path for low-energy electrons in solids, electrons can only escape

from a solid from a very thin surface region of nanometer depth without experiencing any

inelastic scattering event.99 Photoemission spectroscopy is one of the most important methods

in surface science and gives access to binding energies and momenta of electrons in initial and

final states of the photoexcitation process. While a simple description of the photoemission pro-

cess in terms of the three steps excitation, transport to the surface, and emission proved useful

in many applications, the more accurate quantum mechanical model combines the three steps

into a single one (so-called “one-step model”) and automatically includes the surface emission

process.100

In this model, the final state of the photoexcitation is described as the time-reversal of a

free electron impinging from the vacuum on the surface, as in a low-energy electron diffraction

(LEED) experiment. For this reason, the final state is commonly called time-reversed LEED

state. The LEED electron wavefunction is a plane wave outside the solid. Inside the solid, it

may couple to a suitable Bloch state of the same energy and momentum if the respective wave-

functions match at the surface. This case corresponds to the conventional three-step model men-

tioned above. If no Bloch state is available, the LEED state wavefunction decays exponentially

inside the solid on a length scale given by the mean-free path of the electron.100 Excitations,

which occur within the decay length, lead to additional features in photoelectron spectra, known

as surface or gap emission. Actually, it is this process, which is not covered by the three-step

model, which makes angle-resolved photoelectron spectroscopy (ARPES) that successful for

measuring electron dispersion curves in condensed matter.99

Time-resolved ARPES experiments allow one to track the evolution of electronic excita-

tions in surfaces as a function of binding energy and electron momentum.101 According to the

goal of the experiment, we may, somehow artificially, distinguish two types of experiments: (i)

measurements of excited state dynamics and lifetimes and (ii) measurements of time delays

related to the photoemission process itself. Due to the very fast timescales of the latter, the

experiments always require attosecond time resolution available using special techniques. Both

experiments will be elaborated in detail in the corresponding sections in this section. It is antic-

ipated that the distinction between bulk and surface transitions turns out to be crucial for the

interpretation of data taken with attosecond resolution.

To this end, it is worth mentioning that static measurements can be used to obtain infor-

mation about dynamics even on sub-femtosecond timescales. In particular, for the study of

charge-transfer dynamics between a substrate and adsorbed molecules, the so-called core-

hole clock method proved to be very useful:102 briefly, a core electron is excited into an

unoccupied state by absorption of an x-ray photon. This excited state can decay by an Auger

process, and the energy of the emitted Auger electron depends on the energy levels involved

and the screening by the core electron, which was excited into a valence state. The relative

intensities of the Auger peaks in the spectra are proportional to the ratio of the electron

transfer rate to the core hole decay rate.103 If the core hole lifetime s is known from high-

resolution spectroscopy, electron transfer times between 0.1 s and 10 s, thus about 0.5–50 fs,

can be measured with very high precision from the intensities of the respective Auger

peaks.104

061502-19 Gallmann et al. Struct. Dyn. 4, 061502 (2017)



A. Two-photon photoemission

In the two-photon photoemission (2PPE) experiment, an electron is excited and emitted in

a two-step process requiring two photons with the photon energies of each of them individually

not being sufficient to lead to photoemission. The process is schematically shown in Fig. 13.

2PPE proved to be an excellent tool for the investigation of unoccupied electronic states at

metal and semiconductor surfaces and in molecular layers, and numerous examples can be

found in the reviews105 and106 for instance.

The recorded signal is proportional to the population of the final state j2i. For the analysis

of single transients, the solution of rate equations is sufficient. A full description of transition

rates and energy spectra can be obtained within the density matrix formalism: The differential

equations are named optical Bloch equations.107 Using rotating wave approximation to replace

the high frequency fields by DC fields, the equations can be solved analytically allowing the

energy spectra to be calculated.108,109 The final spectra can be expressed in terms of transition

rates and decay rates. As a result, the transients are dominated by population decay rates, and

the spectral linewidth is dictated by population decay and dephasing rates. The latter are of the

order of a few femtoseconds in ordinary metals and thus dominate the linewidths. The coher-

ence, however, built up between initial and intermediate states in the first excitation step leads

to quantum beat phenomena110 and can be used to induce surface currents by selective excita-

tion of electrons at certain momenta in reciprocal space.111

Here, we want to focus on the emission mechanism from surfaces with a negative electron

affinity. Diamondoid molecules, which are small hydrocarbon molecules with a diamond struc-

ture, grow in self-assembled monolayers on noble-metal surfaces.112 For the case of121-tetra-

mantane-thiol on Ag(111), Yang and co-workers could show using synchrotron radiation that

the photoemission spectrum is dominated by a very strong peak slightly above the vacuum

level. The energy position is independent of photon energy and corresponds to the energy posi-

tion of the lowest unoccupied molecular orbital (LUMO) of the diamondoid,112 giving strong

evidence for the negative electron affinity of the diamondoid layer. Negative electron affinity

means that the LUMO energy is higher than the vacuum energy. Any electron promoted into

the LUMO can be spontaneously emitted.113 In order to elucidate the excitation mechanism,

2PPE was used to determine the unoccupied electronic structure and the lifetimes and ionization

delays.

FIG. 13. Sketch of the 2PPE experiment. EF refers to the Fermi energy of the solid. Electrons are excited from an initial

state j0i into an intermediate state j1i by absorption of photons from the pump pulse. The intermediate state decays on a

typical relaxation time. Absorption of a second photon from the probe pulse promotes electrons from the intermediate state

to the final state j2i. The final signal measured in the detector is proportional to the final state population.
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Two types of experiments were carried out: first, the emission rate from the LUMO was

measured as a function of pump-probe delay [Fig. 14(a)]. It could be shown that the electrons

are mostly excited in the metallic substrate and transferred to the molecule; the transient

showed typical exponential decay with lifetimes in agreement with Fermi liquid theory models

for silver.114

In a second experiment, the emission delay was to be measured, i.e., the time between the

initial excitation pulse and the moment when the electron leaves the surface. For this experi-

ment, the sequence was reverted using an intense infrared pulse as probe. If the electron is in

the LUMO when the probe pulse is present, the electron can absorb a photon and appear in a

sideband at a higher kinetic energy. This effect is called LAPE (laser-assisted photoelectric

effect)96 (see also Sec. VI). At a first glance, it seems to be similar to the RABBITT technique,

which was discussed for the gas phase and which will be presented in the context of photoemis-

sion from solids in Sec. VII B, below. However, the LAPE concept is different because it only

involves a single XUV photon energy. The sideband yield gives information about the probabil-

ity to find an electron in the LUMO.115 As a result, an upper bound of a few femtoseconds

could be determined for the retention time in the LUMO.114 This result is in agreement with

results from tunneling experiments from negative-affinity Ar layers adsorbed on a Cu

surface.116

B. Surface RABBITT

While typical 2PPE experiments probe delays in the range of tens of femtoseconds to pico-

seconds, even smaller photoemission delays on an attosecond timescale can be resolved in dedi-

cated experiments. In the first attosecond streaking experiment in condensed matter, Cavalieri

et al. found small relative delays between the valence band and core level photoemission from

FIG. 14. 2PPE from negative-electron affinity layers with two possible pulse sequences: (a) generation of a hot electron gas

in the substrate followed by a second pulse exciting the electrons to levels above the LUMO of the diamondoid. An effi-

cient electron transfer mechanism into the LUMO and spontaneous emission from the LUMO lead to an intense and mono-

chromatic electron spectrum.112 In such experiments, the emission rate is measured as a function of pump-probe delay. (b)

If one of the pulses is sufficient to generate photoelectrons, the second pulse can be used to clock the emission. In this case,

the electron may absorb a photon during its passage through the LUMO. In the spectrum, the electron would be detected as

side band shifted by the probe photon energy from the main peak. Adapted from Roth et al., Chem. Phys. Lett. 495,

102–108 (2010). Copyright 2010 Elsevier.114
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W(110) on the order of 100 as.117 Relative delays in the same range were found in subsequent

streaking experiments from Mg(0001)118,119 and Au and WO3.
120

The measured relative delay of 110 as between 4f and conduction band electrons in the first

attosecond experiment in condensed matter gave rise to a considerable amount of theoretical

investigations. The differing emission times were explained in terms of different initial state

localization,121,122 penetration of the surface barrier,123 resonant transitions,124 and electron

transport.121,125 In analogy to atomic photoionization, a Wigner delay in photoemission from

solid surfaces has been discussed as the consequence of an accumulated phase shift of the prop-

agating wave packet126 as well as the result of inherent phase-shifts associated with final state

effects in photoemission.127,128

While the first attosecond experiments on solid surfaces were based on attosecond streak-

ing,17 the later application of RABBITT18,19 had several decisive advantages: (i) the required

intensity of the IR probe field is significantly lower, thereby leading to less perturbation of the

studied system as well as reduced above-threshold photoemission (ATP) background. (ii)

RABBITT intrinsically yields energy resolution through its discrete sidebands, while energy

resolution in streaking is only obtained through applying suitable reconstruction algorithms. For

these two reasons, RABBITT is an ideal tool to study the photoemission dynamics of valence

states at relatively low excitation energies. A first surface RABBITT experiment115 found a

strong energy-dependent variation of photoemission delays from the d-valence bands of

Ag(111) and Au(111). This experiment took advantage of a unique experimental geometry28

that allowed for simultaneous RABBITT measurements in a gas phase target and on a solid sur-

face target. Reference measurements in Ar allowed for on-the-fly calibration of the harmonic

phase and in principle enable the determination of absolute photoemission delays as shown in

Fig. 15.

In the measurements of photoemission of Ag(111) and Au(111), all detected electrons orig-

inated from the same initial states, namely the 4d and 5d valence bands, respectively. Initial

state effects such as different localization could thus be ruled out as the origin of the observed

variation of the delays. Model calculations were carried out based on a simple three-step model

FIG. 15. (a) Energy level scheme of the RABBITT process. Interfering two-color two-photon transitions give rise to side-

bands (SB) between adjacent odd high harmonics (HH). (b) and (c) Experimental RABBITT traces from Ar and Ag(111)

with electrons originating from Ar 3p and Ag 4d levels, respectively. Both scans were recorded simultaneously with laser

parameters optimized for the surface. A delay-independent background of ATP and secondary electrons was subtracted

from (c) to enhance contrast for illustration purposes. (d) Photoelectron spectra from (c) at two different delays. At 100 as

(3), the appearance of sidebands is clearly visible, whereas at 800 as (4), the photoelectron spectrum qualitatively resembles

the spectrum in the absence of the IR field. (e) and (f) Integration over the energy range of SB 18 revealing the oscillation

with 2x. Experimental curves (1) and (2) were fitted with A(t) cos(2xt � /2q) where /2q is the experimental spectral phase

as indicated and A(t) is the pulse envelope function. Reprinted with permission from Locher et al., Optica 2, 405–410

(2015).115 Copyright 2015 Optical Society of America.
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consisting of initial (1) photoexcitation, (2) transport, and (3) interaction with the IR probe field

(see Fig. 16). The results showed that both the initial XUV excitation as well as the IR-induced

continuum-continuum transition contributed relatively little to the total Wigner delay compared

with the transport times. This observation was further supported very recently in a RABBITT

study from Ni(111).129 Moreover, given the very high reflectivity in the IR of the investigated

noble metal surfaces, it was assumed that the IR field was screened very efficiently, and an

interaction of the outgoing photoelectron wavepacket with the probe field took place at the sur-

face.115 This assumption was later confirmed in an experiment on Cu(111) where the phase of

the IR induced transient-grating was determined for different incidence angles of the light.130 It

could be demonstrated that the macroscopic Fresnel laws even hold on atomic length and time

scales. RABBITT was performed on Cu(111) with IR incidence angles of 15� and 75�, respec-

tively. The sample was rotated in a way that the same momentum space and thus same initial

states were probed for both incidence angles. Any difference in the measured photoemission

phase must thus be related to the phase of the probe field. Since the measured phase difference

was in agreement with the Fresnel calculations for the reflecting case, it could further be con-

cluded that the IR field does not penetrate the solid.

VIII. CONCLUSION AND OUTLOOK

This review has given an overview of the current state-of-the-art experiments studying the

dynamical aspects of ionization and photoemission in a wide range of physical systems—from

simple atoms to molecules, liquids and solids. This research has only become possible with the

rapid progress in experimental tools for time-resolved studies. Ionization and photoemission are

processes of fundamental importance in nature and technology. This overview also shows that

many questions still remain open in this field. On the one hand, as we approach more complex

systems—as, for example, those being representative for real biological systems—dynamics can

become very complicated and it is a formidable challenge to disentangle all relevant mecha-

nisms. On the other hand, the exciting experimental possibilities offered by attosecond science

force us to reconsider our understanding and interpretation of fundamental quantum mechanics.

It is therefore expected that the wider field of ionization and photoemission remains a hot area

of active research for many years to come.

FIG. 16. Schematic representation of the three steps involved in the surface RABBITT: (1) initial excitation of the electron

by absorption of an XUV photon, (2) transport within the solid, and (3) absorption/emission of an IR photon.
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NOMENCLATURE

2PPE Two-photo photoemission

APT Attosecond pulse train

ARPES Angle-resolved photoelectron spectroscopy

ATP Above-threshold photoemission

COLTRIMS Cold target recoil ion momentum spectroscopy

CPMD Car-Parrinello molecular dynamics

FPI Feynman path integral

FROG-CRAB Frequency-resolved optical gating for the complete reconstruction of attosecond

bursts

IR Infrared

LAPE Laser-assisted photoelectric effect

LEED Low-energy electron diffraction

LUMO Lowest unoccupied molecular orbital

PBE Perdew, Burke, Ernzerhof

PES Photoelectron spectroscopy

RABBITT Reconstruction of attosecond beating by the interference of two-photon

transitions

SAE Single active electron approximation

SB Sidebands

SFI Strong-field ionization

TD-CIS Time-dependent configuration-interaction singles

TDDFT Time-dependent density functional theory

TDSE Time-dependent Schr€odinger equation

TIPIS Tunnel ionization in parabolic coordinates with induced dipole and Stark-shift

VUV Vacuum ultraviolet

WFAT Weak-field asymptotic theory

XUV Extreme ultraviolet
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