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Nomenclature

(pα, pρ, pz) linear momentum of the photoelectron in elliptical coordinate representation

(px, py, pz) linear momentum of the photoelectron in Cartesian coordinate representation

α streaking angle in the polarization plane in elliptical coordiantes

ε ellipticity of the laser field

η phase of the laser field

γ Keldysh parameter

A(η) vector potential of the laser field

IP ionization potential

pz linear momentum of the photoelectron in laser beam direction

Up ponderomotive energy

ADK Ammosov Delone Krainov model for strong-field ionization

CEP carrier envelope phase

CTMC classical trajectory Monte-Carlo (simulations)

MCP microchannel plate

mid-IR mid-infrared

ODE ordinary differential equation

PMD photoelectron momentum distribution

RABBITT reconstruction of attosecond beating by interference of two-photon transitions

VMIS velocity map imaging spectrometer
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Supplementary Figures
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Supplementary Figure 1: Elliptical coordinate system. Illustration of the isolines for the two

coordinates of the elliptical coordinate system. The isolines for the angle coordinate α are shown

as black lines and the isolines for the radial coordinate ρ are shown as black lines.
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Supplementary Figure 2: Illustration of the data analysis flow. (a) Polarization plane cut of a

PMD with the isolines of the α-coordinate laid over. (b) A plot of the α-z distribution after ’radial’

integration over ρ. A section in the polarization plane and the corresponding section in the pα-pz
momentum distribution are highlighted by black boxes. (c) Plot of the extracted pz-offset (red) and

the pz-offset vs the angular streaking coordinate α. The error bars are based on the 1σ-deviation

from the gaussian fit for each bin in α. For details see text.
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Supplementary Figure 3: Ellipticity-dependence of the linear photon momentum. (a) Measured

linear momentum transfer in laser beam direction pz for streaking angle αmin with minimal value

pmin
z and at streaking angle αmin ± π/6 as a measure for the ε-dependence of the pz-variation,

pz(αmin − π/6) and pz(αmin + π/6), respectively. The error bars correspond to the 1σ confidence

interval of the fit to the pz versus α curves. On the zero line we show the uncertainty due to system-

atic errors in the zero momentum calibration. (b) Expected linear momentum transfer calculated

according to supplementary equation (7) from the short axis of the PMD in the polarization plane.
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Supplementary Figure 4: Single trajectory calculations for xenon. We show the transferred linear

momentum pz vs the phase η0 when it was released into the continuum for an ellipticity of ε = 0.5

and a peak intensity of 4× 1013 W cm−2. The electron is released with an initial momentum of

p0 = 0 at a position that reflects the tunnel exit in parabolic coordinates. The plot shows that the

influence of the parent-ion Coulomb interaction shifts the release phase for the electron trajectory

with the minimum pz towards lower values.
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Supplementary Figure 5: Simple model for sub-cycle resolved linear momentum transfer. We

show the classical expectation (dashed line, eq. 3) of the angle-resolved shift in pz-direction for

a single free electron born during an elliptical polarized laser pulse (ε = 0.5) with zero initial

momentum and neglecting the interaction with the residual ion. The flat solid line shows the

expected zero pz-offset within the dipole approximation. In addition, we show the dependence of

the laser intensity on the phase of the laser field.
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Supplementary Figure 6: Final photoelectron momenta from simple classical model. We show

the final momenta from simple single-trajectory classical model of strong-field ionization of xenon

at an intensity of I0 = 4× 1013 W cm−2 and an ellipticity ε = 0.5. (a) Final momentum of the

photoelectron pz as a function of the ionization phase neglecting the effect of the Coulomb potential

of the residual ion and including the effect of the Coulomb potentenial perturbatively (detail see

text). (b) Polarization plane representation of the final photoelectron momentum including the

effect of the Coulomb potential. The pz momentum in laser beam propagation direction is color-

coded. The two red crosses mark the position of minimal linear momentum transfer in beam

propagation direction.

8



Supplementary Notes

1 General remarks about strong-field ionization

Strong-field ionization is typically described in two different pictures: multiphoton ionization and

tunnel ionization. The parameter space where these two pictures are applicable are typically char-

acterized by the Keldysh parameter γ =
√
IP/
√

2Up where IP denotes the ionization potential

of the target and Up the ponderomotive potential in atomic units (used throughout if not stated

otherwise). Traditionally, for γ � 1, the tunnel ionization model is applied and for γ � 1 a

multiphoton picture is applied.

Multiphoton picture. In the multiphoton picture, the electron is lifted off the ionization poten-

tial by several photons and is accelerated by the absorption of additional photons. The absorbed

photons have to provide the energy to overcome the effective ionization potential Ip and, in ad-

dition, the ponderomotive potential Up, since the electron is initially released into the laser field.

However, the additional energy that is necessary to overcome Up is for short (i.e. sub-picosecond)

laser pulses transferred back to the laser field instead of being transferred to kinetic energy of the

photoelectron after the pulse. Thus, for sufficiently short pulses the electron has the final energy:

Ee−

kin = Ntot · ~ω − Ip − Up

The transferred momentum onto the electron-ion system after the pulse has passed is shared be-

tween the ion and the electron. To date studies have suggested that the linear momentum of Ee−

kin/c

is transferred to the electron whereas the momentum of IP/c is transferred to the ion 1. The mo-

mentum of IP/c corresponds to the number of photons that are necessary to lift the electron above

the effective ionization potential. Deviations on the order of IP
3c

have been reported in theoretical

studies 2, 3.

Semiclassical two-step model. A complementary approach to describe a strong-field ionization

process is the semiclassical two step model of strong-field ionization 4–7. In this model, the electron

is released into the continuum via the quantum mechanical tunnel ionization process and afterwards
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streaked classically in the laser field, or, depending on the level of sophistication of the model, in

the combined laser field and parent-ion potential. Before the ionization process, when a hydrogen-

like atom is field-free, the electron has the total energy Etot = −IP.

Validity of the adiabatic approximation. The validity of the adiabatic tunnel ionization that

serves as basis for the two-step model of strong-field ionization has been questioned 8, 9. However,

at a mid-IR wavelength of 3.4 µm the non-adiabatic deviations from the adiabatic model are suffi-

ciently small 10 to be neglected. One of the issues typically discussed is that the radial momentum

distribution is affected by the influence of non-adiabaticity. In our case, we estimate the influence

onto the relative final momentum of the electron to be smaller than 2 % 11.

2 Single trajectory calculations

We can illustrate the influence of the parent-ion interaction with the outgoing electron onto the

phase η0 when the electron is released into the continuum with single trajectory calculations. This

has the advantage that one final pz-component can be directly related to one initial phase η0 without

any fitting procedure. For the single trajectory calculations the electron starts at a phase η0 with

the initial momentum p0 = 0. The final momentum pz versus emission phase η0 curves with

and without parent-ion interaction included (Fig. 4) clearly illustrate that the parent ion interaction

leads to a reduced ionization phase η0 for the electron trajectory with minimal final pz. The smaller

value of the phase, translated to time, means that the electron trajectory with the lowest linear

momentum transfer is released prior to the peak of the electric field within the optical cycle, where

the ionization probability is the highest.

3 Analytic model of a free electron in a laser field

In this section we derive the final momentum of a free electron that appears in the continuum

during a laser pulse at the phase η0. Let A = f(t) · A(η) with η = kz − ωt be the vector

potential describing the laser pulse propagating in positive z direction with center frequency ω,

i.e. wavelength λ = 2πc/ω. In the notation for the following derivation we will drop the pulse
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envelope f(t) and simply assume, that limη→∞A(η) = 0.

We use the Hamilton formalism to address the problem. The non-relativistic Hamiltonian for a free

particle with charge e (not necessarily the elementary charge) and mass m in an electromagnetic

field described by the vector potential A and the scalar potential φ is given by

H =
∑
i

(Pi − eAi)2

2m
+ eφ . (1)

Pi = mẋi + eAi are the canonical momenta of the positions xi. For the following derivation of the

final momentum, we consider only a pure vector field (φ = 0) without any scalar potential (like

the Coulomb-potential). We obtain from the two Hamilton equations

dPi
dt

= −∂H
∂xi

and
dxi
dt

=
∂H

∂Pi

that the canonical momenta in the polarization plane (x-y-plane) are conserved:

dPx
dt

= −∂H
∂x

= − ∂

∂x

(∑
i

(Pi − eAi(η(z, t)))2

2m

)
= 0

dPy
dt

= −∂H
∂y

= − ∂

∂y

(∑
i

(Pi − eAi(η(z, t)))2

2m

)
= 0 .

Further, we calculate the action of the electromagnetic field on the z component of the canonical

momentum Pz. From the first Hamilton equation we obtain:

dPz
dt

= − ∂

∂z

(∑
i

(Pi − eAi)2

2m

)
= − 1

2m

∑
i

2(Pi − eAi)(−e)
∂Ai
∂z

=
e

m
(P− eA) · ∂A

∂z
= − e

mc
(P− eA) · ∂A

∂t
.

For the last step we use, that ∂A
∂t

= ∂A
∂η

∂η
∂t

= −ω ∂A
∂η

, ∂A
∂z

= ∂A
∂η

∂η
∂z

= k ∂A
∂η

and ω/k = c. Integrating

the equation from the release time t0 of the photoelectron until the end of the pulse, i.e. to +∞,

we obtain the final canonical momentum Pz,f of the photoelectron:

Pz,f − Pz,0 =

∫ ∞
t0

dPz
dt

dt = − e

mc

{∫ ∞
t0

P · ∂A
∂t
dt− e

∫ ∞
t0

A · ∂A
∂t
dt

}
= − e

mc

{
[P ·A]∞t0 −

∫ ∞
t0

∂P

∂t
·A dt

}
+

e2

2mc

[
A2
]∞
t0

=
e

mc
P0 ·A(η0)− e2

2mc
A(η0) ·A(η0) .
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The integral with integrand ∂P
∂t
· A vanishes because the canonical momentum is conserved in

the polarization plane and the vector potential is identical to zero in beam propagation direction z

(plane wave), i.e. Az = 0. Inserting the definition of the canonical momentum we obtain for the

final mechanical momentum after the laser pulse has passed:

pf = p0 + eA(η0) +
e

mc
p0 ·A(η0) ẑ +

e2

2mc
(A(η0))2 ẑ .

Specifically for a photoelectron with charge −1 and mass 1 in atomic units, one obtains for the

momentum gain in z direction due to the propagation in the electromagnetic laser field:

pf,z = p0,z +
1

2c
A(η0) · (A(η0)− 2p0) . (2)

4 Comparison to free electron model within the electric dipole approxima-
tion

With the assumption of zero initial momentum p0 the final momentum in beam propagation direc-

tion z becomes proportional to |A(η0)|2 according to supplementary equation (2). More specifi-

cally, for an elliptically polarized laser field with vector potential A(t) = A0·(sin(ωt),−ε cos(ωt), 0)

this leads to a final momentum in beam propagation direction of

pf,z(η0) ∝ A2
0 ·
[
sin2(η0) + ε2 cos2(η0)

]
. (3)

This is different from the prediction within the electric dipole approximation, where the vector

potential A of the laser field is set spatially homogeneous. Within the electric dipole approximation

there is no momentum transfer from the field onto the photoelectron in beam propagation direction

(compare Fig. 5).

5 Perturbative treatment of the electron-ion Coulomb interaction

In this section we extend the simple analytic model of the free electron to include the Coulomb

interaction between the photoelectron and the residual ion and an initial momentum of the elec-

tron in laser beam direction when it appears in the continuum. We study the effect of these two

extensions of our model on the ionization phase η0 for the electron with minimal pz-shift.
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According to 12 the final momentum of the photoelectron can be decomposed into the momentum

pL acquired in the laser field and the momentum contribution pC induced by the Coulomb potential

of the residual ion

pfinal = pL + pC

with pC ≈ π
4

t1/2
r20
· nE0 and t1/2 =

√
2r0/|E0|, the time it takes the electron to propagate from the

point in space where it enters the continuum to the point in space where the distance to the core has

doubled and the influence of the Coulomb-force is reduced to one quarter compared to the tunnel

exit. The estimate for pC is obtained by integration of the Coulomb force onto the electron from

the residual ion along a straight trajectory that is driven by the constant external electric field E0 –

here approximated as quasi-static – at the moment of ionization:

|pC | =
∫ ∞
t0

∂V (r)

∂r

∣∣∣∣
r(t)

dt , (4)

with V (r) ≈ −1/r the Coulomb potential of the residual ion. The trajectory described by the

photoelectron under the influence of the laser electric field only is given by: r(t) = E0

2
(t−t0)2+r0,

assuming that the longitudinal momentum component of the photoelectron vanishes at the tunnel

exit r0 = r(t0). The integral can be solved analytically and yields:

|pC | ≈
∫ ∞
t0

1

r(t)2
dt =

∫ ∞
0

1

(r0 + E0

2
t2)2

dt =
π

4

√
2r0/E0

r2
0

=
π

4

t1/2
r2

0

. (5)

Assuming electric field strengths of |E| � 1 a.u., the position for the tunnel exit where the electron

appears in the continuum can be approximated as r0 ≈ IP
|E0| . Ip > 0 denotes the ionization potential

of the target. Accordingly, the Coulomb induced momentum transfer during the ionization process

can be rewritten as

pC = − π

2
√

2I
3/2
P

∂A

∂t

∣∣∣∣
t=t0

.

Since the Coulomb potential induced momentum transfer mainly takes place within a fraction of

the first cycle once the electron is in the continuum, we can use pC as a perturbative addition to

the initial momentum of the electron 13 (see eqs. (1) and (2)) yielding for the final momentum:

pz ≈
1

2c
A · [A− 2p0] =

1

2c
A(ωt0) ·

[
A(ωt0)− κ ∂A

∂t

∣∣∣∣
t=t0

]

13



with the constant κ = π√
2
I
−3/2
P . For the second equality in this equation for the final linear mo-

mentum pz we assume that the momentum at the tunnel exit when the electron is born into the

continuum is identical to zero. The rotating elliptically polarized laser field is given by A(t) =

A0 · (sin(ωt),−ε cos(ωt), 0). We neglect the envelope of the pulse since we are only interested in

the dynamics of the electron within a laser optical cycle.

Figure 6 clearly shows the shift of the minimum of the final pz momentum as a function of the

ionization phase towards slightly negative values caused by the Coulomb interaction. Instead of

sampling the complete initial momentum space for the electron trajectories, here we only calcu-

lated the pz value for the most probable electron trajectory for each ionization phase, i.e. the

electron released with zero transversal momentum at the tunnel exit with respect to the direction

of the laser electric field.

Based on this perturbative description of the final photoelectron momentum after the strong-field

ionization process we can derive the ionization phase η0 that leads to the minimum in final pz
momentum analytically:

dpz
dt

= 0 ⇒ η0 = ωt0 = −0.5 arctan(ωκ) = −0.5 arctan

(
π√
2
ω I
−3/2
P

)
(6)

Note that the ionization phase for the electron trajectory with minimal pz is within this approxima-

tion independent of the peak electric field |E0| and the ellipticity ε of the laser pulse.

Furthermore, one can show that the final momentum of the trajectory corresponding to the ioniza-

tion phase η0 = ωt0 with minimal pz points in the direction of the minor axis of the ellipse in the

polarization plane, i.e. px,final = 0.

We can conclude that the angle difference between the streaking angle for the PMD maximum and

the streaking angle for the trajectory with the smallest pz momentum is independent of the laser

electric field and by that within this approximation independent of the ellipticity of the driving

laser pulse.

This simple model can describe the existence of a minimum in the pz momentum transfer close

to zero ionization phase and predicts the right sign and magnitude for the streaking angle differ-

ence between the most probable electron ionized right at the peak of the laser electric field and the

electron with minimal linear momentum transfer. However quantitative deviations from the exper-
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imental data are to be expected: The model treats the Coulomb induced modification of the final

momentum only perturbatively to first order and does not cover any dynamics related to the first

step of the two step model of strong-field ionization where the electron is lifted into the continuum.

Supplementary Discussions

Influence of different targets. To study the influence of different targets on the photon linear

momentum transfer we have to distinguish between two effects: the modification of the photo-

electron dynamics in the polarization plane and the modifications of the photoelectron dynamics

in laser beam propagation direction. Whereas the first is significantly influenced by the parent

ion interaction, the second is largely independent of the specifics of the ion’s potential at long

wavelength, i.e. at the mid-IR where our experiments have been performed.

Both can be understood from the semiclassical description of the strong-field ionization process

introduced in the previous section. Here the Coulomb (parent ion) interaction is incorporated in

the calculations as a modification of the initial momentum p0 ≈ pC in the polarization plane of the

photoelectron at the tunnel exit.

The observed streaking angle offset ∆α for the minimal photon linear momentum transfer and the

most likely electron are directly proportional to the ionization phase offset η0 and as such in first

order to I−3/2
P (compare supplementary equation (6)). The influence of the polarizability of the

target has been studied in detail in reference 14 and enters the observation for the streaking angle

offset ∆α similarly as the change of the ionization potential and the related change of the exit

radius.

In the equation for the final pz momentum of the photoelectron the Coulomb interaction enters

via the 1
c
p0 · A(η0) term (supplementary equation (2)). To first order the Coulomb interaction is

proportional to the electric field at the moment of ionization, i.e. proportional to the time derivative

of the vector potential A, which is by a factor ω ≈ 0.014 a.u. (for a central wavelength of 3.4 µm)

smaller than the magnitude of the vector potential itself. Therefore, the p ·A is much smaller than

the A2-term in the expression for the final momentum in beam direction and the magnitude of the

pz-shift becomes mostly independent of the specific target.
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Even for a reduction of the exit radius, i.e. the distance from the core where the electron appears

in the continuum, by a factor of two and a corresponding increase of the pC term by a factor
√

0.5/0.52 ≈ 2.8 (compare supplementary equation (5)) the change of the final pz momentum is

on the percent level, well below the resolution of our measurements. Such rather large change

of the exit radius corresponds to targets with strongly different ionization potentials probed at the

same laser intensity, i.e. xenon (IP = 12.13 eV) and helium (IP = 24.587 eV).

We also analyzed the influence of the empirical single active electron potential 15 compared to the

bare−1/r Coulomb potential. The relative deviations of the potential are below one percent for the

range of interest (radius r larger than the exit radius) for different noble gas targets. This leads to a

negligible relative change of the pC estimate (supplementary equation (5)). The strongest effect is

found for the target xenon with two percent relative change of |pC| and therefore again well below

the resolution of our measurements.

Initial linear forward momentum. One contribution to the final momentum of the electron not

covered by the previous description is the linear momentum transferred to the electron during the

tunnel ionization step. Since the electron has to be lifted into the continuum in the presence of

the instantaneous laser field additional energy exceeding IP has to be provided by the absorbed

photons. In a cycle-averaged view, this would correspond to the addition of the ponderomotive

potential Up to the effective ionization potential of the target. Up can be expressed via the vec-

tor potential as A2/2. As the subcycle-resolved version of the ponderomotive potential would be

|A(η)|2/2, we suggest a modulation of the initial momentum of the photoelectron momentum in

pz-direction proportional to 1
2c
|A(η)|2. This corresponds to a momentum transfer related to the

energy gain in the laser field. Our measurements suggest a ε-dependence of this initial forward

momentum in addition to the intrinsic ε-dependence from the vector potential. This can be incor-

porated with the additional prefactor f(ε) – implicitly dependent on ε – to the momentum transfer,

i.e. 1
2c
f(ε)|A(η)|2. Without the prefector f(ε) for the initial momentum the minimal momentum

transfer – or pz offset – would become overestimated by up to a factor of two dependent on the

ellipticity. For the initial momentum p0 = pC + 1
2c
f(ε)|A(η)|2k̂ of the electron at the tunnel exit

we obtain for the ionization phase corresponding to minimal pz:

η0 = −0.5 arctan

(
π√

2(1 + f(ε))
ωI
−3/2
P

)
.
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Based on the additional initial linear forward momentum the ionization phase η0 for photoelec-

trons with minimal linear momentum transfer pz becomes dependent on the ellipticity ε (compare

Fig. 4(b), main text, Model ε and Model ε2).

Ellipticity dependence of linear momentum transfer. The analytic model for the final mo-

mentum of a free electron born during the laser pulse predicts a clear dependence between the

photoelectron momentum in the polarization plane and the longitudinal momentum transfer in

laser beam propagation direction (compare supplementary equation (2)). The shift in beam propa-

gation direction is given by pz = 1
2c
|A(η)|2, assuming initial zero momentum. For the momentum

in the polarization plane the following holds in first approximation (neglecting the interaction of

the photoelectron with the residual ion): p⊥ = −A(η) where η is the emission phase of the

photoelectron. Specifically for the momentum pshort along the short axis of the PMD ellipse the

following holds: |pshort| = |A(η0)|. Thus, the expected momentum transfer along the laser beam

propagation direction can be expressed as

pexpected
z =

1

2c
|pshort|2 . (7)

The comparison in Fig. 3 shows a clearly ellipticity dependent deviation between the measured pz
value and the one calculated following supplementary equation (7). This motivates us together with

Fig. 3 from the main text to suggest the additional ε-dependent initial photoelectron momentum in

laser beam direction at the tunnel exit.

Supplementary Methods

Attoclock technique in non-dipole configuration. The attoclock technique uses the rotating

electric field vector of an elliptical or circular polarized laser field as timing reference. This angular

streaking technique has so far been successfully used to gain insight into the timing of single and

double strong-field ionization processes 14, 16–18.

Typically, in the strong-field approximation the parent-ion interaction is neglected and the propa-

gation of the photoelectron in the continuum yields a final momentum of the photoelectron equal

to the negative vector potential −A of the light field at the moment of ionization. This property
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connects the timing of an ionization process with the final momentum of the photoelectrons, where

the electric field vector serves as timing reference. Strong-field ionization dominantly takes place

around the maximum of the electric field. And thus for elliptical polarization one observes maxima

of the electron signal mainly along the short axis of an ellipse-shaped electron momentum distri-

bution. The parent-ion interaction and possible ionization delay times lead to an angle offset of

the position of the maximum of the photoelectron momentum distribution in the polarization plane.

The electron dynamics due to the laser electric field is mainly taking place in the polarization plane

(px-py-plane). Within the electric dipole approximation the 3D PMD from strong-field ionization

is symmetric with respect to the polarization plane (pz = 0).

A long wavelength driving laser field can accelerate the photoelectrons to velocities where mag-

netic field effects become significant already for relatively low field strength due to the v×B term

of the Lorentz force. This leads to a modulation in pz-direction, i.e. along the laser propagation

direction. However, the timing reference is still provided by the electric field linked to the electron

momentum distribution in the polarization plane.

Here, we use the angular information in the polarization plane to study the momentum shift in

positive pz direction as a function of the ionization phase within the laser optical cycle.

We use elliptical coordinates in the polarization plane (instead of typically used polar coordinates)

to ensure a linear mapping between the streaking angle and ionization time not only for circular

polarization but also for small ellipticities.

In our experiment, we have contributions not only from the dominant central cycle, but also from

neighbouring cycles (compare Fig. 1, main text). This results in an effective intensity averaging as

the peak electric fields of the neighbouring cycles are lower.

In the final PMD we cannot distinguish the contributions from the various cycles with a similar

peak electric field since the electrons emitted at a certain phase end up at the same angle. Thus,

the only influence of the contributions from several optical cycles is an effective peak intensity

averaging.
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Polarimetry. We use optical polarimetry measurements to determine the polarization state of the

laser pulse 19. The laser beam passes through a custom made MgF2 quarter- and half-wave plate

(B.Halle) for the polarization control and subsequently a wire grid polarizer (thorlabs WP25M-

UB) with a high extinction ratio in the mid-IR spectral region (> 10000 : 1). The transmitted laser

intensity after the polarizer is measured with a lock-in amplifier as a function of the half-wave plate

orientation α (angular precision: < 1 mrad). It follows the analytic expression

Ipol(α) = Ipol
0 (ε) · [cos2(2α− α0) + ε2 · sin2(2α− α0)]

= Ipol
0 (ε) · [1 +

(
ε2 − 1

)
· sin2(2α− α0)]

with Ipol
0 (ε) being the ellipticity dependent maximal intensity measured behind the polarizer. From

the fit we extract the ellipticity ε and the orientation α0 of the major axis of the polarization ellipse

with respect to the orientation of the polarizer.

The exact orientation of the polarization ellipse in the VMI spectrometer is then found from a

reference measurement at linear polarization.

Definition of the elliptical coordinate system. PMDs from strong-field ionization recorded with

elliptically polarized laser pulses are typically ellipse-shaped due to the close relation between the

final momentum of the photoelectron pf and the vector potential A(t0) at the time of ionization

t0, pf ≈ −A(t0). This connection suggests elliptical coordinates as a suitable choice for our anal-

ysis. We define the elliptical coordinates similar to 20 but ensure a mathematically self consistent

mapping also for small ellipticities using curved isolines for the angle coordinate. The mapping

between the momentum in Cartesian coordinates p = (px, py, pz) and the momentum in elliptical

coordinates in the polarization plane p = (pα, pρ, pz) is given by

pα = Im
{

cosh−1
(

1
f
(px − ipy)

)}
pρ = Re

{
cosh−1

(
1
f
(px − ipy)

)}
pz = pz

The parameter f giving the distance of the focal point of the ellipse to the origin is linked to
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the ellipticity ε = a
b

by f =
√
b2 − a2, while a and b are the short and long axis of the ellipse,

respectively. The domains of the elliptical coordinates are pα ∈ (−π, π] and pρ ∈ [0,∞).

The inverse mapping is as follows:

px = f cosh pρ cos pα

py = −f sinh pρ sin pα

pz = pz

In the limit of ε → 1 the elliptical coordinates transform into polar coordinates with pα corre-

sponding to the angle coordinate and pρ to the radial coordinate. The elliptical coordinate system

is illustrated in supplementary figure 1.

The mapping between the elliptical angle coordinate α and the time t is directly linear. To show

this we compare the two parametrizations for the electric field in the polarization plane neglecting

the pulse envelope. Parameterized by time t the electric field reads:

Ex =
E0√
1 + ε2

cos(ωt+ φ0)

Ey = ε
E0√
1 + ε2

sin(ωt+ φ0) .

The phase offset φ0 in the trigonometric functions can be set to zero without loss of generality.

Parameterized in terms of the elliptical coordinates angle α the electric field is given by:

Ex = a coshEρ cosα

Ey = a sinhEρ sinα

Matching both parametrizations for the electric field yields:

E0√
1 + ε2

cos(ωt) = a coshEρ cosα

ε
E0√
1 + ε2

sin(ωt) = a sinhEρ sinα

We divide the lower equation by the upper one and end up with:

ε tan(ωt) = tanh(Eρ) tanα

With the identification ε = tanh(Eρ) this shows the linear mapping between time t and angle α.
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Extraction of the pz-offset and the PMD signal as function of the streaking angle α. To ex-

tract the linear momentum transfer from the laser field onto the photoelectron during the ionization

process as a function of the streaking angle α we start from the reconstructed 3D PMD in Cartesian

coordinates. We map this 3D PMD onto the elliptical coordinates. To determine the correct focal

point parameter f for the mapping at a given set of laser parameters we use the ellipticity extracted

from optical polarimetry (see section polarimetry) and the short axis of the polarisation ellipse.

The latter we extract from the 3D PMD with a double Gaussian fit to the PMD slice |px| ≤ 0.1 a.u.

projected onto the py-axis.

To suppress possible background in the signal free region of the PMD we restrict pρ in the polar-

ization plane to pρ ∈ [pρ,min, pρ,max] with

pρ,min = Re
{

cosh−1
(
− i
f
(a− 2.2σa)

)}
pρ,max = Re

{
cosh−1

(
− i
f
(a+ 2.2σa)

)}
.

σa is the radial width of the PMD, i.e. the standard deviation of the double Gaussian fit used to

extract the short axis a of the polarization ellipse.

The PMD mapped to elliptical coordinates is integrated along the pρ direction and binned in pα
between −π and π into bins of width π/180. This yields the PMD as a function of the angle

coordinate pα and the momentum in beam propagation direction pz.

We extract the shift of the PMD in pz direction as a function of the streaking angle with a Gaussian

fit to each slice of the 2D PMD (pα, pz) at a fixed pα (Fig. 2). We choose a Gaussian fit function to

match the typical description of the momentum distribution of the photoelectron at the tunnel exit

perpendicular to the electric field direction at the moment of ionization.

In Fig. 3 of the main text we show the points for angles with sufficiently high statistics for the

Gaussian fit (coefficient of determination R2 ≥ 0.95). The exact angular position αM of the

minimum of the pz-offset is determined from the fit with the analytic expression

pz(α) = c1 ·
[
ε2 cos2(α− αM) + sin2(α− αM)

]
+ c2

= c1 · (1− ε2) · sin2(α− αM) + c̃2 , (8)

to the pz-offset as a function of α considering the errors of the previous Gaussian fits as inverse

weighting factors. Here ε is the ellipticity obtained from optical polarimetry and c1, c2 and c̃2 are
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strictly positive fitting parameters. The choice of this fit function is motivated by the analytic ex-

pression for the final momentum in beam propagation direction pz ∝ |A(η0)|2 of the photoelectron

following supplementary equation (2).

The streaking angle αI of maximal PMD signal is extracted from the 2D PMD (pα, pz) via projec-

tion onto pz and a subsequent double Gaussian fit with fixed phase difference π:

f(pα) = d1

[
exp

(
−d2

(
pα − αI −

π

2

)2
)

+ exp

(
−d2

(
pα − αI +

π

2

)2
)]

+ d3 (9)

The fitting parameters d1, d2, d3 are real and strictly positive.

Experimental uncertainties and error propagation. The recorded 2D projections of the 3D

PMD are time-integrated photoelectron ensembles. Although single hit assignment in the mea-

surement is not possible due to the high repetition rate of the laser and the readout time of the CCD

camera, the electronic and readout noise of the CCD camera are far below the strength of an actual

signal (< 10−3), allowing for a nevertheless good signal to noise ratio.

The error bars we show in Fig. 3 of the main text correspond to the 1σ uncertainty from the gaussian

fit for 〈pz〉 at fixed angle α, i.e. the uncertainty of the estimator ˆ〈pz〉 for the peak position or mean

value of the Gaussian. The error bars in Fig. 3 do not include any systematic errors for example

for the zero momentum position on the detector.

The 1σ error bars σ∆α shown in Fig. 4(b) of the main text are calculated as following:

σ∆α =
√
σ2
αI

+ σ2
αM
.

σαI
is the 1σ uncertainty on the αI value from the fit with supplementary equation (9). σαM

is

the 1σ uncertainty on αM extracted from the fit with supplementary equation (8) using the 1σ

uncertainties for the 〈pz〉 at fixed angle α as inverse weighting factors.

Note that a systematic error for the zero momentum calibration of the detector would not enter the

two extracted angles αI and αM. Additional systematic errors, e.g. in the zero calibration of the

streaking angle α cancel out in the reported angle differences ∆α.
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