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Abstract: A simple and compact straight-cavity laser oscillator incorporating a cascaded
quadratic nonlinear crystal and a semiconductor saturable absorber mirror (SESAM) can deliver
stable femtosecond modelocking at high pulse repetition rates >10 GHz. In this paper, we
experimentally investigate the influence of intracavity dispersion, pump brightness, and cavity
design on modelocking with high repetition rates, and use the resulting insights to demonstrate a
10.4-GHz straight-cavity SESAM-modelocked Yb:CALGO laser delivering 108-fs pulses with
812 mW of average output power. This result represents a record-level performance for diode-
pumped femtosecond oscillators with repetition rates above 10 GHz. Using the oscillator output
without any optical amplification, we demonstrate coherent octave-spanning supercontinuum
generation (SCG) in a silicon nitride waveguide. Subsequent f -to-2f interferometry with a
periodically poled lithium niobate waveguide enables the detection of a strong carrier-envelope
offset (CEO) beat note with a 33-dB signal-to-noise ratio.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Passively modelocked solid-state lasers generate a coherent train of light pulses evenly spaced in
time. In the frequency domain, this corresponds to a frequency comb, where the spacing between
two adjacent lines is determined by the pulse repetition rate. Frequency combs are compelling
sources for many applications including time-keeping, metrology, and spectroscopy [1–3]. In
recent years, significant attention has been placed on compact frequency comb platforms offering
larger comb spacings in the range of 1 to 10 GHz with a high power per comb line. Such combs
enable high-speed, high signal-to-noise ratio measurements and find application in dual-comb
spectroscopy [4–8], microwave photonics [9], telecommunications [10], laser ranging [11,12],
astronomical spectrograph calibration [13], and high-speed materials processing [14].
Nowadays, there are several approaches for the generation of multi-gigahertz frequency

combs, including passively modelocked ion-doped solid-state lasers [15–21], semiconductor disc
lasers [22,23], microresonator combs [24], electro-optic modulator combs [25], and comb-line
filtering of megahertz frequency combs [26]. Passively modelocked lasers offer the advantage of
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combining high average power with femtosecond pulses and low-noise performance, making
them well suited for the above-mentioned applications.
In conventional femtosecond modelocking, stable soliton pulse formation is supported by

balancing positive self-phase modulation (SPM) with net anomalous cavity dispersion. At high
repetition rates (f rep) however, the low intra-cavity pulse energy makes it increasingly challenging
to obtain enough SPM from the weak intrinsic nonlinearities typical of wide band-gap materials
[27]. Furthermore, precise dispersion management is complicated by the highly constrained cavity
geometry, which only allows for a limited number of optics. In addition, Q-switching instabilities
occur at power levels below the threshold for stable continuous-wave (cw) modelocking [28],
leading to intensity spikes inside the cavity which can damage optical components. These
issues have made it challenging to obtain diode-pumped, watt-level, femtosecond solid-state laser
sources at very high repetition rates [29]. To address these issues, we have recently introduced a
new type of passively modelocked ultrafast laser based on a simple, self-defocusing straight cavity
[30]. A semiconductor saturable absorber mirror (SESAM) is used [31] as a cavity end mirror,
while a two-dimensionally patterned quasi-phasematching (QPM) device provides cascaded
quadratic nonlinearities to generate a large and negative nonlinear refractive index. The resulting
negative SPM enables stable femtosecond soliton modelocking in the normal dispersion regime,
despite the low intracavity pulse energies associated with a 10-GHz repetition rate [32].
For most of the frequency comb applications mentioned above, it is necessary to detect and

control the two degrees of freedom, i.e. the repetition rate f rep and the carrier-envelope offset
frequency f CEO. The low pulse energies and limited peak power, inherent in high repetition
rate lasers, make it challenging to generate sufficient nonlinear spectral broadening for self-
referenced f CEO-detection. In our initial implementation of the straight-cavtiy architecture
described above [30], the peak power and pulse duration was limited by several subtle trade-
offs between competing intracavity nonlinear processes. The shortest pulses achieved in this
configuration (166 fs, 7-nm optical bandwidth) were not sufficient to drive coherent octave-
spanning supercontinuum generation (SCG), even when combined with our newest generation of
highly efficient dispersion-engineered Si3N4 waveguides [33,23].
Here, we present the experimental study on the design space of this laser architecture that

was necessary to identify and overcome the critical bottlenecks. In particular, performance
scaling to higher output powers was achieved via pumping with a higher brightness, while shorter
pulse durations were enabled by designing new dispersion-optimized dichroic output-coupling
cavity mirrors. The new laser configuration generates 108-fs pulses with an 11.6-nm-wide
optical spectrum centered at 1041 nm and an average output power of 812 mW. The broader
laser output spectrum now enables the generation of a coherent octave-spanning supercontinuum
and subsequent detection of the carrier-envelope offset (CEO) frequency without the need for
external pulse amplification or separate nonlinear compression. We demonstrate supercontinuum
generation (SCG) in a Si3N4 waveguide with only 48-pJ incident pulse energy in free space before
the waveguide (500-mW average power). The SCG device is optimized for f -to-2f interferometry
by delivering distinct dispersive-wave peaks spaced one octave apart. Since the energy in these
peaks is still limited due to our high repetition rate, we perform second-harmonic generation
(SHG) in a reverse proton-exchange (RPE) periodically poled lithium niobate (PPLN) waveguide
[34] for f CEO detection via f -to-2f. The resulting self-referenced f CEO signal of the free-running
laser has a high signal-to-noise ratio (SNR) of 33 dB measured with a resolution bandwidth of
100 kHz. Hence, combining these two waveguide technologies yields an ultra-low pulse energy
platform for f CEO detection. Our results represent an important step for high repetition rate and
high power per comb line OFC systems based on diode-pumped solid-state lasers (DPSSLs).
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2. Laser design and performance scaling

The laser cavity, depicted in Fig. 1, consists of four elements: a curved end mirror with a
multi-functional thin-film coating, an ytterbium-doped CaGdAlO4 crystal (Yb:CALGO), a PPLN
crystal, and a SESAM. The laser is pumped by a spatially multimode laser diode at 980 nm.

Fig. 1. Illustration of the 10-GHz cavity containing a curved output coupler mirror,
Yb:CALGO gain crystal, PPLN, and SESAM. A polarizing beam splitter (PBS) is used to
couple the linearly polarized light out of the cavity.

A detailed description of the interplay between the cavity elements and different tradeoffs
involved in this new type of straight-cavity laser architecture is given in Appendix A.

2.1. PPLN crystal for self-defocusing laser cavity

While the Yb:CALGO laser crystal offers a broad gain bandwidth [35], its positive nonlinear
refractive index also causes a self-focusing Kerr-lens effect. In a standard two-mirror straight-
cavity laser configuration, this self-focusing causes the laser beam size on the SESAM to decrease.
This effect can lead to damage caused by the high-energy pulses generated in the Q-switched
instability regime which is traversed before reaching cw modelocking [28]. In our straight-cavity
design, this self-focusing effect is counter-balanced by a self-defocusing of the beam in the PPLN
crystal providing a negative nonlinear refractive index n2. Consequently, an increasing intracavity
intensity will cause a stronger defocusing lens, which increases the intracavity beam size and
thereby clamps the intensity below the damage threshold of the cavity components [29,30].
Negative nonlinear refraction (negative n2) effects are not usually supported by the intrinsic

third-order electronic nonlinear susceptibility, except at wavelengths near the band edge where
two-photon absorption also occurs and leads to high losses [27]. An alternative physical
mechanism is therefore required to obtain a negative n2. Here, we obtain a negative n2 via
phase-mismatched second-harmonic generation (SHG), which is often referred to as cascaded
quadratic nonlinearities (CQN) [36]. To implement this process, we use a PPLN crystal with
the same two-dimensional QPM design as in Ref. [32]. The available QPM grating k-vector
Kg= (2π/period) can be tuned from 854 mm−1 to 934 mm−1. Note that phase-matched SHG for
1045 nm occurs in MgO:LiNbO3 at a k-vector of 953 mm−1 [37].

2.2. Output coupler: dichroic optic with optimized dispersion and curvature

The use of a straight laser cavity containing only two mirrors is very practical when dealing with
repetition rates of 10 GHz and higher due to the limited available space. However, since the
SESAM acts as one of the end mirrors, the remaining dielectric mirror has to support several
core functionalities at once:

• 980-nm pump transmission

• 1030 nm – 1060 nm laser out-coupling
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• Laser dispersion management

• Formation of a stable cavity mode via a suitable mirror curvature

The curvature of this mirror, as well as the relative positions of the different elements within
the cavity, determine the beam waist at each of these elements and hence have an important
influence on the laser performance. In the first phase of this work, we have investigated three
different radii of curvature for the dielectric mirror; the details of this investigation are presented
in Appendix B. A 12-mm radius of curvature yields the best modelocking performance and is
hence used for all further configurations.

All the 10-GHz straight cavity laser configurations presented here operate with a net positive
intracavity group delay dispersion (GDD), with positive GDD provided by the material dispersion
of the Yb:CALGO and PPLN crystals. However, within the laser regime of soliton modelocking,
smaller absolute values of the cavity GDD enable shorter pulses for a given power [38]. Therefore,
we have designed output coupler coatings for negative GDD to reduce the total round-trip GDD
of the laser cavity. The coatings have a layer structure designed for dispersion compensation
using a combination of Gires-Tournois interferometer-type (GTI) and chirped mirror-type design
strategies. The optimized thin-film coatings are deposited by ion beam sputtering to minimize
residual absorption and scattering. These mirrors are described in Section 2.4 in the context of
laser performance optimization.

2.3. Higher power and improved efficiency via pump brightness improvement

An advantage of ytterbium-doped gain materials is that they can be pumped with low-cost and
efficient multimode fiber-coupled laser diodes at wavelengths around 980 nm. However, to
enforce lasing in the fundamental Gaussian mode (TEM00), the ratio of pump to laser spot size
must be sufficiently small throughout the laser crystal.

In our earlier work [30], we used a moderate-brightness laser diode (Lissotschenko Mikrooptik
GmbH, LIMO, max. 60 W), which had a measured M2=36 associated with delivery through
a 100-µm-diameter, 0.22-NA fiber. The pump beam was focused to a 54-µm 1/e2 radius in the
center of the gain crystal, while the fundamental TEM00-laser mode radius (1/e2) was 64 µm.
However, due to the large M2, the pump beam diameter would already be nearly 200-µm wide at
both ends of the 1.5-mm-long gain crystal (Fig. 2(a)). As a consequence, we observed the onset
of higher-order transverse laser modes at high pump powers, which deteriorated the laser output
beam quality for output powers > 1.2 W.
Here, we use a new diode (BWT-bj) to address this issue: it delivers up to 20 W of average

power through a 105-µm-diameter, 0.15-NA fiber and has an M2 of 17 (measured with a Thorlabs
BP104-IR beam profiler). The diode incorporates a volume Bragg grating for wavelength
stabilization, leading to a narrow optical bandwidth of 0.6 nm full width at half maximum
(FWHM) around a center wavelength of 980 nm. We stabilize the temperature to 40.5°C such
that the diode gain at operating power overlaps with the VBG center wavelength. The lower
divergence of the BWT diode leads to a better spatial overlap of the pump and fundamental laser
mode inside the gain crystal compared to the LIMO diode (Fig. 2(a)).

With this new diode, the slope efficiency in cw-modelocking was 1.4 times higher (29% instead
of 21%), and the maximum average output power was 1.2 times higher (Fig. 2(b)) compared
to the laser presented in [30]. For these efficiency measurements, we keep all the laser cavity
components the same as in [30]. To the best of our knowledge, the new result (1.44 W with pulse
duration of 172 fs and a center wavelength of 1051 nm) represents the highest average power of
all diode-pumped laser oscillators with a repetition rate above 10 GHz.
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Fig. 2. (a) Calculate transverse beamwidth of the focused multimode pump and fundamental
laser mode inside the 1.5-mm-long Yb:CALGO crystal. The calculation assumes the second-
order moment calculation of [39] together with the measured M2 values. (b) Optical output
power as a function of pump power. The lower divergence of the new pump diode supports a
higher slope efficiency for both cw-modelocking (cw-ML) and below the cw-modelocking
threshold, where Q-switching instabilities occur.

2.4. Pulse duration shortening via intracavity dispersion optimization

As shown in Ref. [30], the negative SPM from the PPLN is sufficient to achieve soliton
modelocking using only the bulk-material GDD of the intracavity crystals, i.e. with the signs of
SPM and GDD both inverted compared to conventional soliton formation. However, the cavity
GDD becomes an important parameter when optimizing pulse duration. Therefore, we measured
the GDD of the mirrors with a home-built white-light interferometer. The interferometer is
designed for flat mirrors, and therefore we measured the GDD of flat mirrors which were coated
in the same run as the curved mirrors used in the laser.

For our earlier results, we used a low-GDD commercial output coupling mirror with a GDD of
0 fs2 at 1030 nm. As can be seen from Fig. 3(a) (blue curve), this mirror was not particularly
optimized to provide a flat GDD over a large bandwidth. Hence, we designed two new mirrors
with the same radius of curvature (12 mm), very similar transmission properties at the pump and
laser wavelengths (Figs. 3(b) and 3(c)), but GDD values of −360 fs2 at 1042 nm and −870 fs2 at
1041 nm, respectively (Fig. 3(a), green and red curves). Care was also taken to flatten the GDD
profile over the wavelength range of interest, i.e. 1020-1060 nm. Note that the Yb:CALGO and
PPLN crystals provide approximately +1280 fs2 per cavity round-trip in total.

Fig. 3. Characterization of the three output couplers: (a) measured GDD (b) output coupler
transmission and (c) pump transmission.

We have characterized and optimized the modelocking behavior for the three different mirror
configurations. The transverse position of the PPLN crystal, and therefore the phase mismatch,
was adapted for each configuration in order to obtain the shortest pulses at the highest possible
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output powers. The proximity to phase matching influences the achievable laser performance
in several ways. Operating closer to phase matching results in a stronger nonlinear refractive
index, which yields more SPM and a stronger self-defocusing effect (clamping the intensity on
the SESAM during Q-switching). A smaller phase mismatch also leads to a lower amount of
parasitic SHG from the random duty-cycle errors in the QPM structure [40] for a given amount of
cascading-induced SPM. On the other hand, if the phase mismatch at the center wavelength is too
small, the wings of the optical spectrum can satisfy phase matching, leading to increased SHG
losses which the QPM grating apodization structure cannot sufficiently suppress [32]. Based on
these considerations, the phase mismatch must be increased in order to achieve shorter pulses
due to the larger optical bandwidth required. However, this also reduces the value of n2, which
means that (i) less overall SPM is available, and (ii) for a given SPM, there is more parasitic
SHG in the crystal. To address these issues, the magnitude of the cavity GDD can be decreased,
such that less SPM is needed for soliton formation.

We measured the optimal laser performance achieved with the three different mirror configura-
tions. The results are summarized in Table 1; to the best of our knowledge, the values highlighted
in bold represent record levels for >10 GHz DPSSLs.

Table 1. Summary of different laser configuration tested to achieve shorter pulse durations.

Laser parameters Configuration 1 Configuration 2 Configuration 3

Output coupling rate 2.5% 2.8% 2.6%

Output coupler GDD (GDDOC) Significant GDD slope −360fs2 −870fs2

Total GDD at laser wavelength +930fs2 +920fs2 +410fs2

PPLN grating vector Kg 888.4 mm−1 914.8 mm−1 910.0 mm−1

Repetition rate f rep 10.52 GHz 10.45 GHz 10.40 GHz

Cw-modelocking threshold 740 mW 410 mW 300 mW

Maximum average power Pavg 1.44 W 1.18 W 812 mW

Pulse duration τp 172 fs 149 fs 108 fs
Laser center wavelength λ0 1051 nm 1042 nm 1041 nm

Spectral bandwidth (FWHM) ∆λ 7.1 nm 8 nm 11.6 nm

Self-frequency shift −4 nm/W −7 nm/W −13 nm/W

Modelocking slope efficiency 29% 27% 27%

The laser configuration with the commercial output coupler (indicated in blue in Fig. 4 and
blue text in Table 1) has a positive net intracavity dispersion of+ 930 fs2 per cavity round-trip at
the center laser wavelength of 1051 nm and a transverse position in the fan-out PPLN crystal
corresponding to a grating vector of Kg= 888.4 mm−1. We achieve a maximum output power of
1.44 W, with pulses of 172 fs and a spectrum featuring a FWHM of 7.1 nm centered at 1051 nm;
this is the configuration previously presented in Section 2.3. The spectrum is slightly asymmetric
and the peak shifts by approximately −4 nm/W due to a self-frequency shift (SFS) effect (see
description in Appendix B).

The net intracavity dispersion in a second laser configuration (green curves in Fig. 4) is reduced
to +920 fs2 at the laser wavelength of 1042 nm by a curved mirror with a dispersion compensating
coating of − 360 fs2. An increased sensitivity with respect to Q-switching instabilities requires a
stronger nonlinear defocusing lens in order to protect the cavity elements from damage. Optimal
operation is found with a grating vector of Kg = 914.8 mm−1. The reduced intracavity dispersion
and much lower dispersion slope leads to shorter pulses of 149 fs at 1.18 W with a FWHM of
8 nm at a center wavelength of 1042 nm. The observed SFS of the peak wavelength is −7 nm/W.

We achieve the shortest pulses in a third configuration (red curves in Fig. 4) with a net cavity
dispersion of only +410 fs2 at 1041 nm with a −870 fs2 dispersion compensation curved mirror
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Fig. 4. (a) Output power (left axis) and pulse duration (right axis) for the three laser
configurations with total of+ 930 fs2 (blue),+ 920 fs2 (green) and+ 410 fs2 (red) intra-cavity
dispersion. The pulse duration decreases with increasing output power, which is indicative
of a soliton pulse shaping mechanism. (b) FWHM of the optical spectrum for the three laser
configurations. The increase with pump power is not linear (as would be expected for normal
soliton modelocking) but shows a saturation, linked to the wavelength dependent nonlinear
losses introduced by the cascading process. (c) The peak wavelength shifts towards shorter
wavelength with increasing output power, again linked to the cascading process discussed
in Section 4. (d)-(f) Measured optical spectrum evolution for the configuration without
dispersion management, −360 fs2 and −870 fs2 GDDOC, respectively.

Fig. 5. Modelocking characterization at 812-mW average output power and 108-fs pulses:(a)
measured and (b) retrieved FROG spectrograms. (c) Optical spectrum; retrieved FROG trace
(solid line) and spectrum measured with an optical spectrum analyzer (dotted line) overlap
and indicate a FWHM of 11.6 nm. The retrieved phase indicates transform-limited pulses
with a flat phase across the pulse spectrum. (d) Retrieved FROG temporal intensity indicating
a pulse duration of 108 fs and a flat temporal phase. (e) Microwave spectrum showing the
first four harmonics (f) zoom around the first harmonic show a high signal-to-noise ratio >
60 dB for the peak corresponding to the pulse repetition rate of 10.40 GHz.
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and a grating vector of Kg= 910.0 mm−1. We obtain a maximum output power of 812 mW with
a corresponding pulse duration of 108 fs after compensating for the dispersion of the PBS (see
Fig. 1). The spectrum has a FWHM of 11.6 nm centered at 1041 nm and the repetition rate is
10.40 GHz. We observe a strong SFS of −13 nm/W. In Fig. 5, we show the characterization of
this configuration. The pulse duration was measured by frequency resolved optical gating (SHG
FROG). To the best of our knowledge, this result represents the shortest pulse duration from a
directly diode-pumped laser with repetition rates above 10 GHz.
By longitudinal translation of the SESAM we can tune the repetition rate from 10.2 GHz

to 10.8 GHz. Within this range, there exist instabilities at a few discrete repetition rate values,
indicated by beam deteriorations and fluctuations in average output power. These instabilities are
caused by an increased coupling to higher spatial modes, which occurs near modal degeneracy
points of the laser cavity [41,42]. For further experiments, the repetition rate was adjusted to
10.5 GHz.

3. Self-referenced f CEO detection

The short-pulse laser configuration is used for subsequent self-referenced f CEO detection. The
emitted laser pulses were coupled into a dispersion-engineered Si3N4 ridge waveguide to generate
a supercontinuum (SC) with dispersive waves around 720 nm and 1440 nm. The waveguide,
illustrated in Fig. 6(a), has a cross section of 740 nm (width) × 720 nm (height) and a length
of 50 mm [23]. The waveguide facets are uncoated. An overall device throughput of 38% is
achieved, i.e. the ratio of power measured after the lens collimating the waveguide output and the
power measured before the coupling lens into the waveguide. The average power incident on
the waveguide is adjusted to 500 mW (48 pJ pulse energy) in order to maximize the SNR in the
subsequent f -to-2f interferometer.

Fig. 6. Low-pulse-energy platform for self-referenced f CEO detection. (a) Efficient SCG in
dispersion-engineered Si3N4 waveguide. (b) f -to-2f interferometry including an RPE PPLN
waveguide for efficient SHG. The SC is split by a dichroic mirror. The long wavelength
component at 1438 nm is coupled into a PPLN waveguide and recombined with the short
wavelength component of the SC at 719 nm in a 50:50 beam splitter (BS). The combined
signals pass a 10-nm-wide bandpass filter (OBPF) before being coupled into a single-mode
(SM) fiber and sent to the photodetector.

The generated SC is collimated and split by a dichroic mirror (Thorlabs DLMP1000). The long
wavelength part is additionally long-pass filtered (Thorlabs LP1200) and coupled into a PPLN
waveguide. The total throughput of the waveguide (collimated free-space output to collimated
free-space input) is 28%. The short-wavelength component of the SC and the frequency-doubled
light from the PPLN waveguide are combined with a cube beam-splitter (BS) and coupled into a
single-mode fiber to optimize mode matching of the two beams and decouple the delay from
spatial overlap. In Fig. 7(b), we show the combined and bandpass-filtered spectrum after the
fiber. On the peak of the spectrum, we have an optical power density of ∼15 µW/comb-line.
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Fig. 7. (a) 10.5-GHz octave spanning SC generated in a Si3N4 waveguide with 115-fs
input pulses (read line) and 500 mW of incident average power. The spectral components
around 1438 nm (red vertical shaded) and 719 nm (blue vertical shaded) were used for
f -to-2f interferometry (b) The short-wavelength component of the SC was overlapped with
the frequency-doubled long-wavelength component around 719 nm (blue dashed line) in a
single-mode fiber.

The fiber is plugged into a fiber-coupled 25-GHz InGaAs photodiode (Newport 1434), whose
output is sent through a 25-dB voltage amplifier and connected to a microwave spectrum analyzer.
Figure 8(a) shows the CEO beat notes detected with a 33-dB SNR and a short-term linewidth
of 6 MHz measured with a resolution bandwidth of 100 kHz. In this free-running mode, the
drift amounts to ∼250 MHz over 20 minutes. Modulating the pump power manually reveals a
remarkably linear tuning behavior of f CEO from zero up to f rep (Fig. 8(b)) (small jumps correlate
with the output current precision of the diode driver used (Delta Elektonica SM 18-50). This
measurement represents the first f CEO detection from an unamplified Yb-based oscillator with a
repetition rate exceeding 10 GHz. A systematic study and optimization of the noise contributions
from mechanical, optical, electronic and other sources will be required in order to substantially
reduce the laser’s free-running noise and thereby enable full comb stabilization with low residual
noise in the future.

Fig. 8. (a) RF spectrum detected with a fiber- coupled 25-GHz InGaAs detector. Two strong
beat notes with 33-dB SNR are symmetrically located with respect to f rep/2. (b) Lower
frequency beat note f CEO,1 (red circle), higher frequency beat note f CEO,2 (blue circle) and
f rep (green circle) are measured for optical pump powers of 1.7 W to 3 W; see Fig. 4(a) for
the corresponding laser output power in the laser configuration used for this measurement.
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4. Conclusion

In this paper, we have presented a detailed experimental modelocking study of a straight-cavity
architecture that led to the first self-referenced carrier-envelope offset frequency detection of a
diode pumped solid state laser with a repetition rate above 10-GHz.

In a first part, we have shown significant pulse shortening due to reduced intracavity dispersion,
achieved with dispersion-compensating output coupler coatings. We obtain new record-level
performance for diode-pumped femtosecond oscillators with repetition rates above 10 GHz:
the highest power (1.44 W, 172 fs) and shortest pulses (108 fs, 812 mW). Moreover, we have
observed and characterized a self-frequency shift towards shorter wavelength with increasing
pump power, caused by the presence of group velocity mismatch (GVM) between the fundamental
and second-harmonic in the cascading process. We identify this GVM as the main factor limiting
the laser performance; it may however be improved by using a material platform with a smaller
GVM.
In a second part, we have used the short-pulse laser configuration, emitting pulses at a pulse

repetition rate of 10.5 GHz with an optical spectrum up to 11.6 nm and pulse energy of 77 pJ, to
generate a coherent octave-spanning supercontinuum in a dispersion-engineered Si3N4 waveguide.
Moreover, an RPE PPLN waveguide is used for efficient SHG, allowing for self-referenced f CEO
detection in an f -to-2f interferometer with a 33-dB signal-to-noise ratio over a large range of
output powers. This result represents an important milestone for compact optical frequency
combs from DPSSLs with multi-gigahertz line spacing and high power per comb-line.

Appendix A: Overview of the laser building blocks and their interaction

The primary role of the four cavity components depicted in Fig. 1 are illustrated in Fig. 9 and
their detailed properties will be reviewed in the subsections following below.

Fig. 9. Spider-web illustrating the interplay between various effects in the 10-GHz straight
cavity laser. A curved mirror (blue shaded, left part) and a SESAM (red shaded, right part)
form a straight cavity. A Yb:CALGO gain crystal (green shaded, top part) offers broad
gain to support 100-fs-short pulses. Its long upper-state lifetime (τL ≈ 420 µs) gives rise
to Q-switching instabilities. The third-order susceptibility (χ(3)) causes a self-focusing
Kerr lens, which is compensated by a self-defocusing lens generated by cascaded quadratic
nonlinearities (CQN) in the PPLN device (purple shaded, bottom part), enabling stable
cw-modelocking.
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PPLN

The PPLN crystal plays a crucial role in the straight cavity laser architecture:

• It has a large nonlinear refractive index n2
casc, supporting strong soliton pulse shaping

effects at low (few-nJ) intracavity pulse energies.

• The corresponding SPM is negative, allowing soliton formation with net positive round-trip
cavity GDD.

• The negative SPM also enables a self-defocusing cavity, with increasing beam sizes on the
intracavity components with respect to laser peak power.

• The crystal has a fan-out QPM structure which allows the QPM period, and hence the
effective n2

casc, to be continuously tuned by translation of the crystal. We made use of this
feature in each experimental configuration presented below to optimize the performance
and avoid Q-switching-related damage effects.

• It has an apodized QPM structure [32], which helps suppressing SHG losses that can
preclude modelocking if they are too large.

• Group velocity mismatch (GVM) between the fundamental wave and second-harmonic
in the CQN process leads to a self-frequency shift effect [43]. In our laser, this tends to
cause the laser wavelength to shift away from the gain peak, which also helps to clamp the
intracavity intensity.

SESAM

Self-starting and stable modelocking is achieved via a SESAM used as the flat end-mirror of the
straight cavity. Suitable SESAM parameters are crucial for the laser performance. The parameters
of the SESAM used for the 10-GHz cavity are listed in Table 2. We use a temperature controller
(Thorlabs TED 4015) in combination with a water-cooled Peltier mount to stabilize the SESAM
temperature. The temperature-stabilization was required to maintain a constant modulation depth,
which is essential to obtain reliable self-starting modelocking: if the temperature is not stabilized,
heating will cause the quantum well absorption to slightly shift towards longer wavelengths [44].
This shift increases the modulation depth and hence increases the amount of energy absorbed
during Q-switching instabilities, which can ultimately result in damaged spots. On the other
hand, cooling the SESAM too much reduces the modulation depth to the point where it becomes
insufficient to initiate fundamental cw-modelocking. We observed that when stabilizing the
SESAM temperature such that ∆R < 1%, no damage occurred, but also no transition from
Q-switching instabilities to stable cw-modelocking operation would be initiated anymore. We
thus experimentally determined the optimum temperature for this particular SESAM to be 13 °C.

Table 2. Summary of the SESAM parameters used in the 10 - GHz straight-cavity laser.

SESAM Parameter

Distributed Bragg mirror 30 pairs of GaAs/AlAs

Absorber Single InGaAs quantum well embedded in AlAs

Saturation fluence Fsat 8 µJ/cm2

Inverse saturable absorption coefficient F2 500 mJ/cm2

Modulation depth ∆R 1%

Nonsaturable losses ∆Rns 0.12%
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Gain crystal

In recent years, Yb:CaGdAlO4 has been explored extensively due to its low quantum defect, broad
and smooth emission cross section, and favorable thermo-optic properties [35,45]. Pulses as short
as 30 fs have been demonstrated via this laser crystal in Kerr-lens modelocked oscillators [46].
The specific properties of the crystal relevant to this work are summarized in Table 3. A polarizing
beam splitter is used to split the laser output from the incident pump beam (Fig. 1). Therefore, the
incident pump is horizontally polarized while the output laser light must be vertically polarized.
The c-axis of the Yb:CALGO is oriented in the horizontal, yielding maximum absorption for the
horizontally polarized pump light (σ-polarization) and maximum gain for the vertically polarized
laser light (π-polarization) [47].

Table 3. Relevant gain material parameters used for the straight cavity design.

Gain material properties

Gain crystal Yb:CaGdAlO4 (Yb:CALGO)

Crystallographic orientation a-cut

Aperture 4× 1 mm2

Crystal length 1.5 mm

Doping concentration (in melt) 5 at% (6.25× 1020 / cm3)

Dispersion @ 1040 nm 108 fs2/ mm [20]

Nonlinear index coefficient n2 n2 = 9 · 10−20m2/W [48]

Output coupler

The mode sizes on the different intracavity elements are important parameters in a straight-cavity
design. They are influenced by the curvature of the output coupler and the placement of the
components. Performance parameters like the optical-to-optical slope efficiency, lasing threshold
and single transverse mode operation depend on the cavity mode size in the gain crystal and its
overlap with the pump mode. The mode size in the PPLN crystal and on the SESAM strongly
influence the modelocking dynamics by determining the amount of generated SPM, nonlinear
losses of the cascading process as well as the non-saturated losses introduced by the SESAM. In
Fig. 10, we show the 1/e2 mode radius, calculated with the ABCD-matrix formalism for Gaussian
beams, within the cavity for three tested laser configurations with varying OC curvatures. For
each mirror curvature, the placement of the cavity components was adjusted to keep the mode
size in the gain crystal constant to maintain matching to the pump mode.

Fig. 10. Beam waist inside the “cold” cavity (i.e. at zero Kerr-lens) as a function of the
position of the cavity elements for 3 different curvatures of the second cavity mirror. The
zero point was chosen in the center of the Yb:CALGO crystal.
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We observed modelocking for all three mirror curvatures and found that 12 mm yielded the
best performance. The corresponding trade-offs are discussed further in Appendix B.

Appendix B: Trade-offs involved in modelocked operation

The influence of various processes and the resulting trade-offs determine the limits of modelocking
performance. These issues can best be demonstrated using the experimental data shown in
Fig. 11: in Fig. 11(a), we show the output power slope as a function of pump power, while
Fig. 11(b) shows the corresponding spectra recorded with an optical spectrum analyzer for a
laser configuration using a curved mirror with a radius of curvature of 10 mm and an OC-coating
with a GDD of −550 fs2 at a wavelength of 1045 nm (summarized in Table 4). As a result of
the smaller mirror radius of curvature (10 mm instead of 12 mm), the mode sizes are smaller in
the PPLN and on the SESAM, but are kept the same in the gain crystal (Fig. 3). The smaller
mode sizes lead to more SPM in the PPLN and a stronger saturation of the SESAM for a given
intracavity average power. Hence, the cw-modelocking threshold is relatively low (∼380 mW).
From soliton modelocking theory [38], one would expect the pulse duration to be inversely
proportional to the pulse energy. We observe qualitatively similar behavior: with increasing
average power, the pulse duration decreases and the spectrum broadens. However, we also
observe a significant self-frequency shift (SFS), i.e. a shift of the center wavelength towards
shorter wavelengths (Fig. 11(b)). SFS effects were first observed in single-pass CQN devices,
with analogies to the Raman soliton SFS [43], but here the process occurs intracavity. One can
understand this effect as follows: the long wavelength part of the laser spectrum is closer to
phase matching, which increases the amount of energy transferred to the weakly excited second
harmonic. This weak second-harmonic component represents a loss to the fundamental laser
wavelength. As the spectrum broadens with increased pump power, the laser wavelength shifts to
shorter wavelengths in order to minimize this additional loss. The induced SFS of the spectrum
in Fig. 11(b) amounts to −4.6 nm/W and occurs up to an output power of 1 W. Beyond that power,
we observe a distortion of the output beam (Fig. 11(a), inset). The spectrum does not broaden
anymore and the pulse duration remains constant, even though the output power increases up to a
maximum value of 1.32 W.

Fig. 11. Modelocking characterization for the configuration with mirror curvature of 10
mm. (a) Measured optical power from lasing threshold up to a maximum output power of
1.32 W (blue dots) and the corresponding measured pulse duration in the cw-modelocking
regime. (b) Normalized optical spectrum measured over the entire range of output powers.

The strong Kerr-lens defocusing effect caused by the small beam waist in the PPLN offers
better protection during Q-switching instability below the cw-modelocking threshold, but also
leads to a strong SFS, which ultimately limits the achievable pulse duration. In addition, we
typically observe a greater tendency for beam distortions at high powers when operating the
laser in configurations with a large SFS coefficient. Hence, reducing the mode size in the PPLN
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Table 4. Laser configuration for the investigation of the limitations of modelocking performance.

Laser parameters

Mirror curvature 10 mm 15 mm

Output coupling rate 2.6% @ 1045 nm 2.6% @ 1045 nm

Group delay dispersion output coupler (GDDOC) −550 fs2 −550 fs2

Total group delay dispersion (GDDtot) 730 fs2 730 fs2

PPLN grating vector Kg 908.4 mm−1 914.8 mm−1

Repetition rate f rep 10.69 GHz 10.50 GHz

Cw-modelocking threshold 380 mW 498 mW

Maximum average power Pavg (max. Pavg with distortion) 1.0 W (1.32 W) 981 mW

Pulse duration τp 150 fs 167 fs

Center wavelength λ0 1045 nm 1044 nm

Spectral bandwidth (FWHM) ∆λ 7.7 nm 7.1 nm

Modelocking slope efficiency 28% 31%

to enhance the SPM did not yield significantly shorter pulse durations. Optimization of the
cavity GDD has proven to be a more successful approach to obtaining shorter pulses, as we
demonstrated in Section 2.4.

We have also used an output coupler with the same thin-film coating, but with a larger radius
of curvature of 15 mm. We observed a greater tendency for modelocking instabilities which
required operating closer to phase matching in order to clamp the intracavity intensity. As a
result, we observed a lower output power compared to the configuration with a 10 mm curvature.
The achieved performance is summarized in Table 4. We used a 12-mm radius of curvature for
the results presented in the main text.
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