
SUPPLEMENTARY INFORMATION 

Appendix A: Effect of the WPA on characterization of electron wavepacket 

 We reconstructed the S!"# shown in Figure 2 (a) using the VTGPA which requires the application of the WPA 
due to the fact that the DTME is not known apriori. The retrieved dipole phase and the corresponding GD	are shown 
by the blue curves in	Figure S 1 (a) and (b), respectively. The deviation from the theory curve (black lines) used to 
simulate the S!"# shows the effect introduced by the WPA when trying to reconstruct the electron wavepacket using 
conventional algorithms. In general, the WPA leads to a smoothing of the retrieved phase profile as a function of 
energy.  Similar errors are reported in [1]. 

 

 
Figure S 1. Retrieved (a) phase and (b) GD using the VTGPA algorithm for the S012 shown in Figure 2. The black curves 
represent the theory curves for the phase and GD	used to simulate S012. 

Appendix B: Full derivation of the ACDC algorithm  

Continuing from section 4 we present here the full derivation of 𝑑&.	We can write the full expression of 𝑀 from 
equation (14) using the expression of 𝑎*[𝑙,𝑚] (equation (12)). This results in: 
 

𝑀	 =11𝑑[𝑚]$Γ[𝑙,𝑚]$ +
𝑑[𝑚 + 1]$𝛽[𝑙,𝑚]$

∆𝑘[𝑚]$
+
𝑑[𝑚 − 1]$𝛽[𝑙,𝑚]$

∆𝑘[𝑚]$
%&

+ 𝑎[𝑙,𝑚]$

+ 2ℜ;𝑑&[𝑚]Γ<[𝑙,𝑚]
𝑑&[𝑚 + 1]∗𝛽<[𝑙,𝑚]∗

∆𝑘[𝑚]
− 𝑑&[𝑚]Γ<[𝑙,𝑚]

𝑑&[𝑚 − 1]∗𝛽<[𝑙,𝑚]∗

∆𝑘[𝑚]

− 𝑑&[𝑚]Γ<[𝑙,𝑚]𝑎*([𝑙,𝑚]∗ −
𝑑&[𝑚 + 1]𝑑&[𝑚 − 1]∗𝛽[𝑙,𝑚]$

∆𝑘[𝑚]$
−
𝑑&[𝑚 + 1]𝛽<[𝑙,𝑚]𝑎*([𝑙,𝑚]∗

∆𝑘[𝑚]

+
𝑑&[𝑚 − 1]𝛽<[𝑙,𝑚]𝑎*([𝑙,𝑚]∗

∆𝑘[𝑚]
= 

 

  (S 1) 

We consider the derivative of this expression with respect to the term 𝑚 = 𝑐. The only terms of 𝑀 that matter are 
𝑀), 𝑀)*+ and 𝑀),+. These terms are defined in the following equations  
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𝑀) 	=1𝑑[𝑐]$Γ[𝑙, 𝑐]$ +
𝑑[𝑐 + 1]$𝛽[𝑙, 𝑐]$

∆𝑘[𝑐]$
+
𝑑[𝑐 − 1]$𝛽[𝑙, 𝑐]$

∆𝑘[𝑐]$
&

+ 𝑎[𝑙, 𝑐]$

+ 2ℜ;𝑑&[𝑐]Γ<[𝑙, 𝑐]
𝑑&[𝑐 + 1]∗𝛽<[𝑙, 𝑐]∗

∆𝑘[𝑐]
− 𝑑&[𝑐]Γ<[𝑙, 𝑐]

𝑑&[𝑐 − 1]∗𝛽<[𝑙, 𝑐]∗

∆𝑘[𝑐]

− 𝑑&[𝑐]Γ<[𝑙, 𝑐]𝑎*([𝑙, 𝑐]∗ −
𝑑&[𝑐 + 1]𝑑&[𝑐 − 1]∗𝛽[𝑙, 𝑐]$

∆𝑘[𝑐]$
−
𝑑&[𝑐 + 1]𝛽<[𝑙, 𝑐]𝑎*([𝑙, 𝑐]∗

∆𝑘[𝑐]

+
𝑑&[𝑐 − 1]𝛽<[𝑙, 𝑐]𝑎*([𝑙, 𝑐]∗

∆𝑘[𝑐]
= 

 

  (S 2) 

 

𝑀)*+ 	=1𝑑[𝑐 + 1]$Γ[𝑙, 𝑐 + 1]$ +
𝑑[𝑐 + 2]$𝛽[𝑙, 𝑐 + 1]$

∆𝑘[𝑐 + 1]$
+
𝑑[𝑐]$𝛽[𝑙, 𝑐 + 1]$

∆𝑘[𝑐 + 1]$
&

+ 𝑎[𝑙, 𝑐 + 1]$

+ 2ℜ;𝑑&[𝑐 + 1]Γ<[𝑙, 𝑐 + 1]
𝑑&[𝑐 + 2]∗𝛽<[𝑙, 𝑐 + 1]∗

∆𝑘[𝑐 + 1]

− 𝑑&[𝑐 + 1]Γ<[𝑙, 𝑐 + 1]
𝑑&[𝑐]∗𝛽<[𝑙, 𝑐 + 1]∗

∆𝑘[𝑐 + 1]
− 𝑑&[𝑐 + 1]Γ<[𝑙, 𝑐 + 1]𝑎*([𝑙, 𝑐 + 1]∗

−
𝑑&[𝑐 + 2]𝑑&[𝑐]∗𝛽[𝑙, 𝑐 + 1]$

∆𝑘[𝑐 + 1]$
−
𝑑&[𝑐 + 2]𝛽<[𝑙, 𝑐 + 1]𝑎*([𝑙, 𝑐 + 1]∗

∆𝑘[𝑐 + 1]

+
𝑑&[𝑐]𝛽<[𝑙, 𝑐 + 1]𝑎*([𝑙, 𝑐 + 1]∗

∆𝑘[𝑐 + 1]
= 

  (S 3) 

 

𝑀),+ 	=1𝑑[𝑐 − 1]$Γ[𝑙, 𝑐 − 1]$ +
𝑑[𝑐]$𝛽[𝑙, 𝑐 − 1]$

∆𝑘[𝑐 − 1]$
+
𝑑[𝑐 − 2]$𝛽[𝑙, 𝑐 − 1]$

∆𝑘[𝑐 − 1]$
&

+ 𝑎[𝑙, 𝑐 − 1]$

+ 2ℜ;𝑑&[𝑐 − 1]Γ<[𝑙, 𝑐 − 1]
𝑑&[𝑐]∗𝛽<[𝑙, 𝑐 − 1]∗

∆𝑘[𝑐 − 1]

− 𝑑&[𝑐 − 1]Γ<[𝑙, 𝑐 − 1]
𝑑&[𝑐 − 2]∗𝛽<[𝑙, 𝑐 − 1]∗

∆𝑘[𝑐 − 1]
− 𝑑&[𝑐 − 1]Γ<[𝑙, 𝑐 − 1]𝑎*([𝑙, 𝑐 − 1]∗

−
𝑑&[𝑐]𝑑&[𝑐 − 2]∗𝛽[𝑙, 𝑐 − 1]$

∆𝑘[𝑐 − 1]$
−
𝑑&[𝑐]𝛽<[𝑙, 𝑐 − 1]𝑎*([𝑙, 𝑐 − 1]∗

∆𝑘[𝑐 − 1]

+
𝑑&[𝑐 − 2]𝛽<[𝑙, 𝑐 − 1]𝑎*([𝑙, 𝑐 − 1]∗

∆𝑘[𝑐 − 1]
= 

 
 

  (S 4) 

From these expressions we need to solve the system of equations (15). If we consider the derivative respect to the 
magnitude 𝑑[𝑐] of the complex DTME we obtain: 
 

𝜕𝑀)

𝜕𝑑[𝑐]
	=12𝑑[𝑐]Γ[𝑙, 𝑐]$

&

+ 2ℜ;𝑒-.[)]Γ<[𝑙, 𝑐]
𝑑&[𝑐 + 1]∗𝛽<[𝑙, 𝑐]∗

∆𝑘[𝑐]
− 𝑒-.[)]Γ<[𝑙, 𝑐]

𝑑&[𝑐 − 1]∗𝛽<[𝑙, 𝑐]∗

∆𝑘[𝑐]

− 𝑒-.[)]Γ<[𝑙, 𝑐]𝑎*([𝑙, 𝑐]∗= 

 

  (S 5) 
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𝜕𝑀)*+

𝜕𝑑[𝑐]
	=1

2𝑑[𝑐]𝛽[𝑙, 𝑐 + 1]$

∆𝑘[𝑐 + 1]$
&

+ 2ℜ;−𝑒-.[)]𝑑&[𝑐 + 1]∗Γ<[𝑙, 𝑐 + 1]∗
𝛽<[𝑙, 𝑐 + 1]
∆𝑘[𝑐 + 1]

− 𝑒-.[)]
𝑑&[𝑐 + 2]𝛽[𝑙, 𝑐 + 1]$

∆𝑘[𝑐 + 1]$

+ 𝑒-.[)]
𝛽<[𝑙, 𝑐 + 1]𝑎*([𝑙, 𝑐 + 1]∗

∆𝑘[𝑐 + 1]
= 

 

(S 6) 

 

𝜕𝑀),+

𝜕𝑑[𝑐]
	= 1

2𝑑[𝑐]𝛽[𝑙, 𝑐 − 1]$

∆𝑘[𝑐 − 1]$
&

+ 2ℜ;𝑒-.[)]𝑑&[𝑐 − 1]∗Γ<[𝑙, 𝑐 − 1]∗
𝛽<[𝑙, 𝑐 − 1]
∆𝑘[𝑐 − 1]

− 𝑒-.[)]
𝑑&[𝑐 − 2]∗𝛽[𝑙, 𝑐 − 1]$

∆𝑘[𝑐 − 1]$

− 𝑒-.[)]
𝛽<[𝑙, 𝑐 − 1]𝑎*([𝑙, 𝑐 − 1]∗

∆𝑘[𝑐 − 1]
= 

 

(S 7) 

If we now introduce the following expressions: 
 

	𝛿&[𝑙, 𝑐] = Γ<[𝑙, 𝑐]
𝑑&[𝑐 + 1]∗𝛽<[𝑙, 𝑐]∗

∆𝑘[𝑐]
− Γ<[𝑙, 𝑐]

𝑑&[𝑐 − 1]∗𝛽<[𝑙, 𝑐]∗

∆𝑘[𝑐]
− Γ<[𝑙, 𝑐]𝑎*([𝑙, 𝑐]∗ 

 

(S 8) 

 

𝜂*[𝑙, 𝑐] = −𝑑&[𝑐 + 1]∗Γ<[𝑙, 𝑐 + 1]∗
𝛽<[𝑙, 𝑐 + 1]
∆𝑘[𝑐 + 1]

−
𝑑&[𝑐 + 2]𝛽[𝑙, 𝑐 + 1]$

∆𝑘[𝑐 + 1]$
+
𝛽<[𝑙, 𝑐 + 1]𝑎*([𝑙, 𝑐 + 1]∗

∆𝑘[𝑐 + 1]
 

 

(S 9) 

 

𝛾*[𝑙, 𝑐] = 𝑑&[𝑐 − 1]∗Γ<[𝑙, 𝑐 − 1]∗
𝛽<[𝑙, 𝑐 − 1]
∆𝑘[𝑐 − 1]

−
𝑑&[𝑐 − 2]∗𝛽[𝑙, 𝑐 − 1]$

∆𝑘[𝑐 − 1]$
−
𝛽<[𝑙, 𝑐 − 1]𝑎*([𝑙, 𝑐 − 1]∗

∆𝑘[𝑐 − 1]
 (S 10) 

 

Using these expressions, we can write a simplified formula for 12
13[)]

 which reads 
 

𝜕𝑀
𝜕𝑑[𝑐]

	=12𝑑[𝑐]Γ[𝑙, 𝑐]$ +
2𝑑[𝑐]𝛽[𝑙, 𝑐 + 1]$

∆𝑘[𝑐 + 1]$
+
2𝑑[𝑐]𝛽[𝑙, 𝑐 − 1]$

∆𝑘[𝑐 − 1]$
&

+ 2ℜD𝑒-.[)]E𝛾*[𝑙, 𝑐] + 𝛿&[𝑙, 𝑐] + 𝜂*[𝑙, 𝑐]FG 

(S 11) 

 

With the same idea we can find the expression of 12
1.[)]

 which results in 
 

𝜕𝑀
𝜕𝜙[𝑐]

	= 12ℜD𝑖𝑑[𝑐]𝑒-.[)]E𝛾*[𝑙, 𝑐] + 𝛿&[𝑙, 𝑐] + 𝜂*[𝑙, 𝑐]FG
&

 (S 12) 

 
that can be rewritten in the following way 
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𝜕𝑀
𝜕𝜙[𝑐]

	=1−2𝑑[𝑐]ℑ D𝑒-.[)]E𝛾*[𝑙, 𝑐] + 𝛿&[𝑙, 𝑐] + 𝜂*[𝑙, 𝑐]FG
&

 

 

(S 13) 

 
To solve the system of equations (15) we set both the equations (S 11) and (S 13) equal to zero. After some 
manipulation one get 
 

0	 =12𝑑[𝑐]Γ[𝑙, 𝑐]$ +
2𝑑[𝑐]𝛽[𝑙, 𝑐 + 1]$

∆𝑘[𝑐 + 1]$
+
2𝑑[𝑐]𝛽[𝑙, 𝑐 − 1]$

∆𝑘[𝑐 − 1]$
&

+ 2ℜD𝑒-.[)]E𝛾*[𝑙, 𝑐] + 𝛿&[𝑙, 𝑐] + 𝜂*[𝑙, 𝑐]FG + 2𝑖ℑ D𝑒-.[)]E𝛾*[𝑙, 𝑐] + 𝛿&[𝑙, 𝑐] + 𝜂*[𝑙, 𝑐]FG 

(S 14) 

 
The real and imaginary part are the same, so we can just break it out and rewrite (S 14) as 
 

0	 =12𝑑[𝑐]Γ[𝑙, 𝑐]$ +
2𝑑[𝑐]𝛽[𝑙, 𝑐 + 1]$

∆𝑘[𝑐 + 1]$
+
2𝑑[𝑐]𝛽[𝑙, 𝑐 − 1]$

∆𝑘[𝑐 − 1]$
&

+ 2𝑒-.[)]E𝛾*[𝑙, 𝑐] + 𝛿&[𝑙, 𝑐] + 𝜂*[𝑙, 𝑐]F (S 15) 

 
We can finally solve for 𝑑&[𝑛] = 𝑑[𝑛]𝑒-.[4] which results in the final expression 
 

𝑑&[𝑐] =
−E∑ 𝛾*[𝑙, 𝑐]∗ + 𝛿&[𝑙, 𝑐]∗ +& 𝜂*[𝑙, 𝑐]∗F

∑ Γ[𝑙, 𝑐]$ + 𝛽[𝑙, 𝑐 + 1]
$

∆𝑘[𝑐 + 1]$ +
𝛽[𝑙, 𝑐 − 1]$
∆𝑘[𝑐 − 1]$&

 (S 16) 

 
The output result is then refined by using a stochastic gradient descent algorithm. Starting from the complex DTME 
𝑑& solved by the ACDC algorithm, we use the gradient descent algorithm to further minimize the figure of merit. 
First, the gradient descent algorithm adds an arbitrarily small quantity ∆𝜙 to the 𝑚56 energy point of the DTME 
phase 

 
𝜙78[𝑚] 	= 𝜙78[𝑚] +	∆𝜙. (S 17) 

 
The error associated to the spectrogram generated by the updated DTME function (𝜀89:) is compared with the 

starting error (𝜀;5<=5). This provides an estimation of the gradient of the error function ℇ that we want to minimize 
 

∇ℇ	 =
𝜀89: −	𝜀;5<=5

∆𝜙
. (S 18) 

 
From this we assign the new DTME phase value at the energy point 𝑚 

 
𝜙>?5[𝑚] 	= 𝜙78[𝑚] − 	𝜂∇ℇ (S 19) 

 
where 𝜂 is the so-called learning rate. The same procedure is applied to the amplitude terms of the DTME vector 

and one iteration loop is completed when both amplitude and phase have been updated at each energy point. For the 
phase points we combined the gradient descent algorithm with Adam optimizer which modifies the value of ∇ℇ 
which is used in equation (S 19) resulting in a faster converging process. The details of the Adam optimizer can be 
found in the reference [24].  

The reason why we apply a refinement of the complex 𝑑& using the stochastic gradient descent algorithm comes 
from the fact that in the mathematical derivation of 𝑑& a Taylor expansion up to the first order (equation (7)) has 
been used. This is a valid approximation as long as 𝑑& remains linear in the range (𝑘 + min(𝐴)) ≤ 𝑘 ≤
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(𝑘 + max(𝐴)). In this approximation the intensity I0 of the streaking field which determines the amplitude of the 
vector potential 𝐴 plays a significant role.  

In Figure S 2 (a) we show the retrieved GD just using the equation (S 16) from simulated spectrograms 
characterized by three different IR intensities: 1´1010 W/cm2 (red symbols), 5´1010 W/cm2 (blue symbols) and 
1´1011 W/cm2 (green symbols). For all the three spectrograms the same XUV pulse has been considered 
characterized by a spectral intensity centred at 32.5 eV, a chirp of -0.025 fs2 and FWHM bandwidth of ~5.5 eV.  
The fast oscillations of the theory curve (black line from reference [3]) are perfectly retrieved in the lowest IR 
intensity case. For I0 of 5´1010 W/cm2 and 1´1011 W/cm2 a smoothening in the retrieved GD compared to the input 
curve is visible even though the qualitative trend is reproduced. The observed smoothening effect as I0 increases is 
related to the truncation of the Taylor expansion of the complex DTME at the first order as  𝑑& is no longer linear 
over the range  (𝑘 + min(𝐴)) ≤ 𝑘 ≤ (𝑘 +max(𝐴)) for all 𝑘. 

When we refine the result from equation (S 16) using a stochastic gradient descent algorithm we can overcome 
this limitation on the intensity I0 of the IR field. We tested the result using the additional step with the gradient 
descent algorithm for three different IR intensities: 1´1011 W/cm2, 1´1012 W/cm2 and 1´1013 W/cm2. The results 
are shown in Figure S 2 (b) and are represented by the red, blue and green symbols, respectively. We observe a 
good agreement with the theoretical curve (black line) for all the IR intensities used to simulate the spectrograms. 
Note that for this specific analysis, the theoretical input curve (black line) has been extended at energies below 27.8 
eV and above 40.5 eV in order to be able to simulate the spectrograms avoiding unphysical abrupt jumps in the 
simulated spectrogram amplitude (see black dashed line in Figure S 2).  

The first step (up to equation (S 16)) of the algorithm is computationally inexpensive compared to the 
optimization step with the stochastic gradient descent algorithm. For this reason, running few iterations (1000 
iterations) with the ACDC algorithm before considering the gradient descent algorithm improves the convergence 
process, reaching a lower final error when compared to the gradient descent algorithm only. 

 
Figure S 2. (a) Retrieved GD using the ACDC algorithm up to the equation (S 16) for IR intensities of 1´1010 W/cm2 (red 
symbols), 5´1010 W/cm2 (blue symbols) and 1´1011 W/cm2 (green symbols). (b) Retrieved GD	using the additional optimization 
step with stochastic gradient descent algorithm for IR intensities of 1´1011 W/cm2 (red symbols), 1´1012 W/cm2 (blue symbols) 
and 1´1013 W/cm2 (green symbols). 

Appendix C: Validation of the ACDC algorithm upon different streaking parameters 

In appendix A we demonstrated the ability of the ACDC algorithm to retrieve fast GD oscillations within few eV 
for different IR intensities. Here we want to test the reliability of the ACDC algorithm reconstructions for different 
XUV bandwidths and chirp values. 

In Figure S 3 (a) we plot the results for XUV with FWHM bandwidths of ~3.8 eV (red line and red shaded area) 
and ~10.7 eV (blue line). We plotted for completeness also the green line representing the result for the FWHM 
bandwidth of ~7.4 eV already reported in Figure S 2 (b). We considered for this analysis a constant IR peak intensity 
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of 1´1012 W/cm2 and XUV chirp of -0.025 fs2. The features of the theory curve (black line) are perfectly resolved 
regardless of the XUV bandwidth considered.  

In the same fashion, we tested the robustness of the retrieval algorithms to the XUV chirp. In Figure S 3 (b) we 
plot the retrieved GDs using values of XUV chirp: 0 fs2 (red symbols), -0.015 fs2 (blue symbols) and -0.025 fs2 
(green symbols). To simulate the spectrograms, we choose an XUV spectrum with FWHM bandwidth of ~7.4 eV 
(grey shaded area) and I0 = 1´1012 W/cm2. For chirped pulses and for the transform limited XUV pulse the retrieved 
GD reproduces accurately the theory curve (black line) making the two algorithms robust to different XUV chirp 
values. We found in general that phase changes near the central energy of the XUV pulse are more difficult to 
retrieve. For the transform-limited pulse, we observe a deviation of the retrieved GD from the theoretical curve of 
few points around the central energy of the XUV spectral intensity. Interestingly, we found that for the case of 
transform-limited pulses the solution is in fact not defined just at the central energy, while for the chirped pulses no 
significant error was observed. 

 
Figure S 3. (a) Red, green and blue symbols show the retrieved GD using the ACDC algorithm for XUV pulses centred at 32.5 
eV, chirp of -0.025 fs2 and FWHM bandwidths of ~3.8 eV (red line), ~7.4 eV (green line) and ~ 10.7 eV (blue line). (b) 
Retrieved GD using the ACDC algorithm for different XUV chirp values: 0 fs2 (red symbols), -0.015 fs2 (blue symbols) and -
0.025 fs2 (green symbols). The XUV spectral intensity is shown with the grey shaded area and is centred at 32.5 eV with 
FWHM bandwidth of ~ 7.4 eV. The IR field is kept constant for the three simulated spectrograms with an intensity of 1´1012 
W/cm2. 

Appendix D: Noise analysis 

Experimental measurements will always present a certain level of noise. Thus, testing the robustness of the 
combined algorithms against noise is important. It is worth highlighting the fact that, since the GD requires a 
differentiation of the retrieved dipole phase (see equation 2), so any noise-fluctuation will be amplified making the 
entire analysis challenging.  

We define the signal-to-noise ratio (SNR) in the following way 
 

SNR = 	
\∑ 𝑃[𝑙,𝑚]$&,%

\∑ 𝑁[𝑙,𝑚]$&,%
 

(S 20) 

 
 
where 𝑁[𝑙,𝑚] is the Poisson noise amplitude at the position of the 𝑙-time pixel and 𝑚-energy pixel. 

Since we want to reconstruct experimental measurements, we considered the XUV and the IR field parameters 
similar to the experimental conditions. In particular, we considered both the XUV spectrum (see grey shaded area 
in Figure S 4) and IR streaking field (I0 = 3´1012 W/cm2) close to the experimental conditions.   
In Figure S 4, the red line represents the reconstructed GD using the ACDC algorithm considering only a window 
of 2 fs in the pump-probe delay of the spectrogram for the noise free case. Such pump-probe delay window is 
enough to retrieve the GD information in the absence of noise.  Adding artificial Poisson noise to the spectrogram, 
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however, leads to a loss of information. An efficient way to recover such information is to reconstruct different 
pump-probe delay windows and average the output GD curves. In this way, the random noise contributions are 
averaged out while the GD information remains unaffected. To test this procedure, we added an amount of noise to 
the simulated spectrogram corresponding to a SNR level of ~7 according to equation (S 20). We reconstruct the 
obtained spectrogram after subdividing it in 19 different pump-probe delay windows, each having a width of 2 fs. 
Another approach would be to reduce the number of trace portions while broadening the pump-probe delay window. 
Assuming that the noise level is constant over the pump-probe delay scan, broadening the pump-probe delay 
window that we consider for the reconstruction will increase the normalized amount information with respect to the 
noise level that we provide to the algorithm. We confirmed this fact considering pump-probe delay of 6 fs of the 
noisy spectrogram and averaging 12 reconstructions. We could achieve the same qualitatively good result which is 
shown in Figure S 4. The SNR value of ~7 was chosen based on the estimated noise levels observed in our 
experimental data. 

 

Figure S 4. Weighted average of 19 reconstructions on different pump probe delay windows of 2 fs of the noisy trace (green 
symbols) together with the weighted average of 12 reconstructions on different pump probe delay windows of 6 fs of the noisy 
trace (blue symbols). The theory curve used as input to generate the simulated spectrogram is shown by the black line. 

In order to estimate the noise level that better approximate the experimental measurement we considered three 
noise levels which correspond to a SNR (defined by equation (S 20)) of approximately 23, 7.3 and 2.2. The original 
spectrogram together with those affected by the three noise levels are shown in Figure S 5. 

In order to evaluate the SNR in the experimental measurement, we considered the photoemitted electron counts 
at each pump-probe delay bin in the Ne spectrogram. In Figure S 6(a) we plot with the blue line the photoemitted 
electron counts for the first delay bin. To isolate the signal, we applied a filtering procedure in the Fourier space 
where we eliminate the high noise components (see Figure S 6(b)). After filtering, the photoelectron count 
distribution results in the red line shown in Figure S 6(a). This photoelectron distribution gives an estimation of the 
signal level in our measurement which is then compared with the measured blue photoelectron distribution. Using 
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this approach, we computed the SNR estimation of the experimental measurement performing the described filtering 
procedure for each pump-probe delay bins and averaging the SNR values obtained over all the delay steps.  

This approach has been used to estimate the SNRs for the noisy simulated spectrograms shown in Figure S 5(b), 
(c) and (d). The resulting SNR values are 36, 12 and 4.4 respectively. In all the three cases the evaluated SNR with  

 

 
Figure S 5. (a) Simulated streaking spectrogram considered for testing the ACDC algorithm upon added Poisson noise. Three 
different noise levels have been considered and compared to the experimental case producing the spectrograms shown in (b) 
(SNR ≈ 23), (c) (SNR ≈ 7.3) and (d) (SNR ≈ 2.2). 

the described filtering procedure is overestimated if compared with the ones computed with equation (S 20) which 
leads to the values of 23, 7.3 and 2.2 respectively. However, the respective ratios are kept approximately the same. 

Computing the SNR using the method described in this section on the experimental spectrogram we obtain the 
values of 13 and 11.7 for Ar and Ne, respectively. This brought us to assert that the SNR level in the experimental 
conditions analysed in this work can approximately be compared with SNR of about 7.3. 

 

 
Figure S 6. Photoelectron counts distribution (blue line) normalized with respect to the filtered distribution (red line) 
corresponding to the first pump-probe delay step of the experimental Ne spectrogram. The energy components in the Fourier 
space of the measured photoelectron distribution are shown in (b) by the blue line. The red dotted line represents the portion of 
spectrum considered after the filter (yellow line) has been applied and which results in the red line in (a). 

Appendix E: Procedure for retrieving the dipole phase from experimental measurement using the ACDC 
algorithm  

In section 5 we reported the dipole phase of Ar (Figure 4) reconstructed from the experimental streaking 
measurement shown in Figure 1 using the ACDC algorithm together with the computed GD difference between Ar 
and Ne (Figure 5). Here we describe in detail all the steps we followed to obtain the final result using the ACDC 
algorithm. 
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The first step consists in the characterization of both the XUV and IR fields. For this purpose, we considered the 
Ne spectrogram as a reference. We reconstructed, using VTGPA, three different pump-probe delay windows of 3 
fs each (3-7 fs, 6-9 fs and 8.5-11.5 fs) of the Ne spectrogram, corresponding to the main oscillations in the streaking 
spectrogram. With the VTGPA we included the DTME of Ne in the reconstruction and extracted the information 
about the XUV and IR fields. We iterate for 3000 iterations and we considered the 𝑑& of Ne from reference [25]. 

To increase the accuracy of the streaking field reconstruction, an additional refinement only on the IR field has 
been performed after the 3000 iterations considering a wider pump probe delay window of 5 fs cantered around the 
original 3 fs pump probe delay window. 

Since the Ar and Ne streaking spectrograms have been measured under the same experimental conditions thanks 
to the coincidence detection of the COLTRIMS apparatus we can assume that the XUV and IR fields characterized 
using the Ne spectrograms apply as well for Ar. 

The characterized XUV and IR fields become then the inputs for the ACDC algorithm where now the target is 
the Ar spectrogram. Keeping fixed the XUV and IR fields characterized using VTGPA from the first pump-probe 
delay window (3-7 fs) of the Ne spectrogram, we selected 12 pump-probe delay windows of 2.5 fs (2.6-5.1 fs, 2.8-
5.3 fs, 3.0-5.5 fs, 3.2-5.7 fs, 3.4-5.9 fs, 3.6-6.1 fs, 3.8-6.3 fs, 4-6.5 fs, 4.2-6.7 fs, 4.4-6.9 fs, 4.6-7.1 fs and 4.8-7.3 
fs), around the 3-7 fs pump-probe delay window, for the Ar spectrogram which have been reconstructed by the 
ACDC algorithm. This procedure has been repeated similarly for the other two pump-probe delay windows used in 
the characterization step with the Ne spectrogram (6-9 fs and 8.5-11.5 fs) resulting in 36 total reconstructions using 
the ACDC algorithm. We considered 1000 iterations using the ACDC algorithm up to equation (S 16) as described 
in appendix A followed by 5000 iterations using the gradient descent algorithm described in appendix A. The final 
36 reconstructions have been weighted averaged and resulted in the final dipole phase of Ar with its corresponding 
standard deviation shown in Figure 4. 

 

Appendix F: Acronyms 

ACDC absolute complex dipole transition matrix element reconstruction 
APT attosecond pulse train 
COLTRIMS Cold target recoil ion momentum spectrometer [18] 
DTME dipole transition matrix element 
FROG-CRAB frequency resolved optical gating for complete retrieval of attosecond burst [21], [22] 
GD	 group delay 
IR infrared 
RABBITT reconstruction of attosecond beating by interference of two-photon transition [8], [9] 
SAP single attosecond pulse 
SFA strong-field approximation 
VTGPA Volkov transform generalized projections algorithm [23] 
XUV extreme ultraviolet 

Table 1. List of the main acronyms used throughout this paper. 

 


