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Abstract— Cr-doped ZnS and ZnSe are excellent gain mediums
for high power and broadband ultrashort pulse generation in
the 2 – 3 µm wavelength range. SESAM modelocked Cr:ZnS
oscillators have the advantage of reliable, self-starting passive
modelocking. We present a diode-pumped, SESAM modelocked
Cr:ZnS oscillator delivering ultrashort pulses of 189 fs at 550 mW
average output power with a repetition rate of 435 MHz with
low relative intensity noise (RIN) and timing jitter. We measured
an integrated RIN of 0.05% within a frequency span of [10 Hz,
5 MHz] dominated by the 1560-nm pump diode, and a very low
integrated timing jitter of 10.9 fs [2 kHz, 10 MHz]. This type of
laser source benefits not only from very low noise but also from
reduced complexity and cost due to direct diode pumping, which
is suitable for many applications such as spectroscopy, ranging,
and frequency conversion.

Index Terms— Optical frequency comb, diode-pumped ultra-
fast laser, SESAM modelocking, low-noise source, infrared laser,
Cr:ZnS gain medium, transition metal doped II-VI laser.

I. INTRODUCTION

SHORT wavelength infrared (SWIR) modelocked lasers
in the 2 – 3 µm wavelength range are of great interest

for many applications such as for example atmospheric trace
gas sensing, biomedical tissue ablation, or ranging (LIDAR)
[1], [2], [3]. Another emerging application area uses ultrashort
SWIR pulses for nonlinear frequency conversion into the mid-
infrared or soft x-ray regime [4], [5], [6].

Optically pumped chromium (Cr2+)-doped II-VI chalco-
genide (ZnS and ZnSe, referred to as ZnS(e)) solid-state
lasers offer a uniquely broad emission bandwidth in the
2 – 3 µm wavelength range which makes them ideally suited
for versatility and ultrashort-pulse generation [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16]. These lasers support
high-power operation due to favorable thermal properties
and the high pump absorption efficiency [15], [17], [18].
Kerr-lens modelocking (KLM) [19] is beneficial for few-
cycle pulse generation [11], [16], [20] but requires critical
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cavity alignment and an external perturbation to start mod-
elocking. In contrast, semiconductor saturable absorber mirror
(SESAM) modelocking is favorable for robust, self-starting
modelocking [21] with longer transform-limited femtosecond
pulses in the soliton modelocking regime [22]. Hence, the
SESAM only starts and stabilizes passive modelocking. The
final pulse duration is obtained with soliton formation which
relaxes the requirement on the recovery time of the SESAM
to obtain lower nonsaturable losses and requires no critical
cavity alignment close to the stability limit. This also enables
higher pulse repetition rates [23] and the ability of compact
cavity designs together with low-noise operation [24]. Com-
pared to previous results [8] we recently have demonstrated
SESAM modelocked high-power (1 W, 250 MHz, 120 fs,
and 0.8 W, 250 MHz, 79 fs) [18] and gigahertz repetition
rate (0.8 W, 2 GHz, 155 fs) [25] Cr:ZnS lasers using a
high-performance GaSb-based SESAM with strongly reduced
nonsaturable losses and a few picosecond recovery time
[26], [27]. These lasers have been pumped with a 1.55-µm
Er-fiber laser amplifier system.

Direct diode pumping of the gain medium is attractive
since this approach drastically reduces the cost and foot-
print of the pump. A cost reduction for pumping of more
than 90% can be achieved with a semiconductor laser diode
compared to widely used Er-fiber laser amplifier systems.
However, achieving efficient modelocking of a bulk-crystal
oscillator is more challenging with diode pumping due to
the low beam brightness. Additionally, the noise properties
of a diode-pumped SESAM modelocked Cr:ZnS(e) laser have
not been investigated to date. Previously a single emitter
diode-pumped SESAM modelocked Cr:ZnSe laser has been
demonstrated [28], but the laser performance was limited to an
average power of 50 mW with 180-fs pulse duration at a pulse
repetition rate of 100 MHz. In addition more recently a diode-
pumped KLM Cr:ZnSe laser has been demonstrated showing
few-cycle pulse generation with lower relative intensity noise
(RIN) compared to a fiber-pumped system [16].

Here we demonstrate a diode-pumped Cr:ZnS oscillator
using our recently developed SESAMs [18], [27]. We report
on a directly diode-pumped SESAM modelocked Cr:ZnS laser
achieving stable, self-starting modelocking with 550 mW out-
put power, 189-fs pulses, a pulse repetition rate of 435 MHz
at a center wavelength of 2371 nm. The pump laser is a fiber-
coupled 1560-nm semiconductor diode laser driven by a low-
noise current source to achieve low-noise performance.
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Fig. 1. Laser oscillator design. (a) The X-fold standing-wave cavity consists
of the Brewster cut Cr:ZnS gain crystal, three curved mirrors with different
radii of curvature R0, R1 and R2, a 4-mm YAG window for dispersion
compensation, a SESAM as one end mirror, and a flat output coupler (OC).
The cavity is pumped by a fiber-coupled 1560-nm pump diode. (b) Calculated
beam waist of the horizontal axis versus cavity position. The red dashed lines
highlight positions of intracavity interfaces. A beam radius of 110 µm, 80 µm
and 310 µm is achieved at the position of the SESAM, the Cr:ZnS gain
medium, and the YAG window, respectively.

The RIN and integrated timing jitter have been charac-
terized. We could show the lowest rms integrated RIN for
any Cr:ZnS(e) oscillator of only 0.05% for an integration
frequency range of [10 Hz, 5 MHz], and a very low integrated
timing jitter of only 10.9 fs integrated over [2 kHz, 10 MHz].
No significant noise is observed for a higher integration limit.
We give a detailed description of the cavity design and its
modelocking performance. Subsequently, noise characteriza-
tion methods and results are discussed and guidelines for
further noise reduction are given in the conclusion.

II. LASER DESIGN

The diode-pumped Cr:ZnS laser setup employs an X-fold
cavity design with a p-polarized output beam which is shown
in Fig. 1a. The output polarization is defined by Brewster
elements in the cavity. All cavity elements are mounted on a
transportable optical breadboard and fully boxed using a solid
polyvinylchloride housing. The oscillator consists of the gain
medium placed between two concave mirrors, the SESAM
with a focusing mirror on one side and a 4-mm-long Yttrium-
Aluminum-Garnet (YAG) window together with a flat 3%
output coupler (OC) on the other side.

Fig. 1b depicts the beam waist throughout the cavity for
the horizontal axis using the ABCD-matrix formalism for
Gaussian beam propagation. Red dashed lines highlight the
positions of intracavity optic interfaces along the beam path.

The Brewster cut, 3.8-mm-long polycrystalline Cr2+:ZnS
(chromium doped: zinc sulfide) gain medium (IPG Photonics)

has a specified doping concentration of 9.1 × 1018 cm−3. The
crystal is contacted with indium foil and mounted on a water-
cooled Peltier-controlled copper heat sink stabilized at 16 ◦C.
A three-axis stage combined with a rotation mount allows for
optimization of pump threshold and low losses at the crystal
facets. All curved intracavity mirrors are ion beam sputtering
(IBS) coated (Optoman) for broadband high reflectivity from
2.1 – 3.0 µm and have flat group delay dispersion (GDD). The
two concave mirrors with radius of curvature R1 = −50 mm
and R2 = −75 mm are placed under an 8◦ nominal angle
of incidence and scale the beam waist to 80 µm in the gain
crystal to ensure an optimal overlap with the pump beam.
A third curved mirror (radius of curvature R0 = −50mm)

is placed under a 12◦ angle of incidence to compensate for
astigmatism originating from intracavity Brewster elements
and other curved mirrors and is used to focus the intracavity
mode radius to 110 µm on the SESAM. The described cavity
properties determine the optical cavity length of 34.5 cm and
consequently the repetition rate for fundamental modelocking.

The recently developed, high-quality SESAM is grown with
molecular beam epitaxy at the FIRST cleanroom facility, ETH
Zurich [26], [27]. It consists of an absorber section with
three In0.33 Ga0.67 Sb quantum wells on top of a 24-pair
AlAs0.08 Sb0.92/GaSb distributed Bragg reflector. The substrate
is a (001)-oriented GaSb wafer. The SESAM has a broad
stopband of more than 250 nm centered at 2.31 µm. Further,
we have characterized the SESAM’s nonlinear reflectivity and
temporal response under intracavity lasing conditions using
120-fs pulses from an optical parametric oscillator operated
near the gain emission peak wavelength at 2.35 µm [26].
From the nonlinear reflectivity measurement [29], we obtain
the saturation fluence Fsat = 12µJ/cm2, modulation depth
1R = 1.5%, non-saturable losses Rns = 0.4%, and rollover
parameter F2 = 32mJ/cm2. Compared to earlier work in
the field [8], the device has substantially lower loss, which
enables efficient operation with low output coupling rates.
The temporal response is characterized using our pump-probe
setup and reveals a very fast recovery within 1 ps due to
its strain relaxed quantum well structure (details are given
in [27], see SESAM 3). The achieved SESAM parameters
are very suitable for fundamental soliton modelocking even
for repetition rates in the gigahertz regime [25]. The SESAM
is soldered onto a copper mount, which is temperature sta-
bilized using a Peltier element with a passive cooling fin to
avoid mechanical vibrations that can arise with water cooling.
At a temperature setpoint of 22 ◦C, stable modelocked laser
operation is achieved.

A 4-mm-long YAG window placed at Brewster’s angle is
used for balancing cavity roundtrip GDD. The plane OC is
IBS coated (University of Neuchâtel) and the coating has a
transmission of 3% over a spectral range from 2.2 – 2.5 µm
with a flat, close to zero GDD. The transmission is chosen to
provide sufficient intracavity power for modelocked operation.

We pump the cavity with a commercial InP 1560-nm fiber-
coupled pump diode delivering up to 5.5 W output power from
a 105-µm core diameter multi-mode fiber (SemiNex Corp.).
This was identified as the most suitable option for a fiber-
coupled diode available on the market, even though the gain



HEIDRICH et al.: LOW-NOISE FEMTOSECOND SESAM MODELOCKED DIODE-PUMPED Cr:ZnS OSCILLATOR 1300107

crystals absorption peak lies slightly higher at 1680 nm [30].
A low-noise diode driver with a low-noise DC power supply
is used as the current source. For optimal stability of the
emission wavelength and output power, we have mounted the
pump diode on a water-cooled thermoelectrically temperature
stabilized heat sink at 23 ◦C. The beam is collimated using
an aspheric lens with a focal length of 50 mm. As the pump
exhibits a favorable shift to longer wavelengths for high output
powers, we operate it at maximum power and use a large
aperture, which is mounted after the collimation lens, for fine-
tuning the power on the gain medium. The obtained beam
quality was measured with a scanning slit profiler, yielding
an M2 of 17 for a fully opened aperture. The divergence
of this low-brightness beam inhibits the use of the pump for
positioning the cavity optics. Therefore, we used an external
collinear green laser. Although the pump polarization state
after the multimode fiber was not linear, by rotating a 1550-nm
λ/4 plate with respect to the fiber output port, we maximize
the optical power in the p-polarized plane to 75% in order
to reduce Fresnel reflections for the wrong polarization when
coupling light into the Brewster-cut gain crystal. Due to space
constraints, the λ/4 plate was placed between the fiber tip and
the collimation lens. The collimated pump beam is focused
through the input coupler mirror onto the gain crystal with a
second 50-mm aspheric lens. The input coupler mirror has a
high transmission of 95% at the pump wavelength of 1560 nm.
The focal spot size of 75 µm radius is measured with a
scanning slit profiler, which is slightly smaller than the cavity
mode size of 80 µm. With the given pump configuration,
a single pass absorption of 75% in the gain medium is achieved
even in non-lasing conditions.

With this laser setup, we achieve fundamental passive
modelocking in a normal lab environment at an average output
power of 550 mW. The cavity operates in the negative disper-
sion regime where soliton pulse formation is strongly deter-
mined by the balance between negative cavity roundtrip GDD
and nonlinear phase shift due to self-phase modulation [22].
The main contribution of −560 fs2 negative GDD originates
from the 4-mm YAG Brewster window whereas most of the
nonlinear phase shift happens in the ZnS crystal due to its
length combined with the focused cavity mode and a high
nonlinear refractive index. In the given soliton modelocking
regime, the SESAM serves for self-starting and stabilization
of the pulse formation against background radiation. It is
operated at an average fluence of 110 µJ/cm2, close to the
rollover point F0 ≈ 80µJ/cm2 where the maximum reflectivity
is reached [18], [25], [31]. We have neither observed any
SESAM damage during operation nor during the nonlinear
reflectivity characterization where the SESAM is exposed to
fluences up to 800 µJ/cm2 [27].

III. MODELOCKING OPERATION

For the pulse characterization during modelocking opera-
tion, we use a 13.7-GHz microwave spectrum analyzer (MSA),
an optical spectrum analyzer (OSA), and an intensity autocor-
relator (AC). As there are no multi-GHz photo detectors (PD)
for the 2.4-µm range available, we use a home-built second

Fig. 2. Modelocking characteristics at 550 mW output power. (a) Microwave
spectrum of the frequency-doubled beam recorded with a 45-GHz high-speed
PD around the pulse repetition rate of 435 MHz at 1-kHz resolution bandwidth
(RBW). Inset: wide span of the microwave spectrum showing equal power
distribution of the repetition rate’s higher harmonics (RBW = 10 kHz).
(b) Normalized optical spectrum sampled with 0.1 nm resolution. Inset:
intensity autocorrelation measurement indicating transform-limited 189-fs
pulses. The calculated time-bandwidth product is 0.315.

Fig. 3. Laser output power stability and beam characteristics. The average
output power of 548 mW is measured at 4.8 W pump power over more
than 1 h. This corresponds to rms fluctuations below 0.16%. Inset: bolometer
camera image and M2 measurement. The fit for both axes reveals an M2
below 1.16.

harmonic generation (SHG) for high-frequency measurements.
Here a 5-mm periodically poled lithium niobate crystal is
used to convert the laser light to the near-infrared [18].
The converted light is subsequently sampled with a 45-GHz
InGaAs photodiode followed by a 25-dB amplifier connected
to the MSA for the measurement shown in Fig. 2a. The beam
quality was characterized with a bolometer camera and an M2

measurement using a scanning slit profiler on a linear stage
(Fig. 3).

The laser reliably starts modelocked operation at a threshold
pump power of 4.6 W on the crystal. The highest output



1300107 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 59, NO. 1, FEBRUARY 2023

power of 550 mW is achieved at a pump power of 4.8 W
on the crystal corresponding to an optical-to-optical efficiency
of 15.3% considering the output power versus the absorbed
pump power. The cavity alignment was performed by not
only optimizing for high output power but also maintaining
a TEM00 mode of the output beam. Higher output powers
could only be achieved in higher order mode operation which
introduces much more noise.

Another important aspect of cavity alignment is the strong
thermal lensing of the gain medium that depends primarily on
the pump power. We estimate the thermal lensing parameter
as Fth = 1/ f = (Pabs/2κ A)(dn/dT ) ≈ 100 m−1, with the
absorbed pump power Pabs, the thermal conductivity κ =

17 W/(m · K), the laser beam area A, and the temperature-
induced refractive index change dn/dT = 46×10−6 K−1 [32].
Therefore, tuning the cavity such that modelocking operation
starts at lower pump powers is feasible, but with the drawback
of limited output power scaling.

Fig. 2 shows the modelocking characteristics recorded at
550 mW output power. Using a resolution bandwidth (RBW)
of 1 kHz, we obtain a sharp peak with more than 60 dB signal-
to-noise ratio at the repetition rate frequency of 435 MHz
corresponding to our optical cavity length of 34.5 cm. A wide
span MSA spectrum ranging from 0 to 10 GHz exhibits the
higher harmonics of the pulse repetition rate with equal power
distribution confirming fundamental modelocking (Fig. 2a).
The optical spectrum is centered at a wavelength of 2371 nm
and has a full width at half maximum (FWHM) bandwidth
of 31 nm (Fig. 2b). As the laser is operated in a normal
lab environment with 40 – 50% humidity, the spectrum
exhibits water absorption features [33]. These features could
be removed by nitrogen purging of the boxed cavity [34] but
did not influence the laser’s modelocking performance. Since
purging introduces additional challenges, such as changes to
the cavity dispersion and restricted access to the cavity tuning
options, we omitted this step and operated in ambient air. The
intensity AC measurement reveals transform-limited pulses
with a short pulse duration of 189 fs, which corresponds
to a pulse peak power of 5.9 kW. Hence, we calculate a
time-bandwidth product of 0.315 which is consistent with the
expected soliton pulse shaping mechanism [22].

The long-term power stability of the system is shown in
Fig. 3. The average output power of 548 mW is recorded
for more than one hour with small fluctuations below 0.16%
and without any drift. We investigate the beam quality by
measuring the beam profile and the M2 value at the highest
power. The measurements, which are shown as insets in Fig. 3,
show an M2 for the x- and y-axis below 1.16 and 1.08,
respectively, and a slightly elliptical, single-mode beam shape.

IV. NOISE ANALYSIS

Another significant advantage of diode pumping a Cr-doped
solid-state laser is its potential for superior noise performance
compared to Er-fiber amplifier pumping [13], [25]. Here,
we present the one-sided power spectral density (PSD) of the
relative intensity noise (RIN) and the timing jitter [35].

The RIN of the modelocked laser output is measured
with a high-dynamic-range configuration. A biased InGaAs

Fig. 4. Power spectral density (PSD) for relative intensity noise (RIN)
and timing jitter (TJ). (a) The one-sided PSD for the RIN at maximum
output power of 550 mW (blue) and for the pump laser (green) stitched
at approximately 100 kHz (see text for more explanation). The background
for the low-frequency (bg LF) and high-frequency (bg HF) amplifier is
shown in dashed grey and black, respectively. The shot noise limit (brown)
is at -153 dBc/Hz. The rms integrated RIN (red) reaches 0.05% [10 Hz,
5 MHz]. (b) One-sided PSD of the timing jitter (light blue) as a function of
frequency offset f from the first harmonic (measured at the 35th harmonic and
scaled correspondingly) and integrated timing jitter (TJ) (light red). Significant
changes in the integrated timing jitter [f, 10 MHz] are marked with dashed
circles.

photodetector with a wavelength cutoff at 2.6 µm and an
electronic 3-dB bandwidth of 20 MHz (DET05D2, Thorlabs)
is installed inside the laser housing and exposed to 0.6 mW
of the laser output beam. A focusing lens ensures that the full
beam is sampled to prevent additional noise from possible
beam-pointing instabilities. For the acquisition of the full
RIN spectrum, two subsequent measurements with different
amplifiers connected to a signal source analyzer (SSA) are
performed [36]. First, we use a low-noise transimpedance
amplifier (DLPCA-200, Femto) for recording frequency com-
ponents <200 kHz with optimal sensitivity. Then, higher
frequencies (1 kHz – 10 MHz) are measured with a bias-tee
(BT45R, SHF Communication Technologies AG) splitting AC
and DC signal components and a low-noise voltage amplifier
(DUPVA-1-70, Femto). Both measurement traces are stitched
together at about 100 kHz.

Fig. 4a shows the baseband measurement of the power
spectral density (PSD) of the RIN of the laser at full output
power and the corresponding RIN spectrum of the pump
diode analyzed with the same measurement configuration.
We have further measured the electronic noise background
of the low-frequency (bg LF) and high-frequency (bg HF)
amplifier configuration by blocking the incident laser beam
onto the photo detector to ensure a high enough signal-to-noise
ratio. The laser noise is dominated by technical noise sources
such as mechanical perturbations for frequencies <1 kHz. For
higher frequencies >1 kHz, the RIN exhibits a typical plateau
behavior [16] which is clearly dominated by the noise from the
pump diode. Hence, diode-pumping favors low-noise operation
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and reduces the strong noise increase in the multi-kHz regime
in comparable Er-fiber pumped Cr:ZnS(e) lasers [13], [25].
At frequencies >1 MHz, the noise is damped because of the
limited response time of the Cr:ZnS gain medium. Compared
to rare-earth doped crystals, the material responds faster due to
its shorter upper-state lifetime and higher cross-section [30].
Slightly above 1 MHz, we observe a spike in the RIN spec-
trum that contributes significantly to the overall laser noise.
We attribute this to be related to the relaxation oscillation of
the laser, as it was observed that the intensity and frequency of
the peak could be changed while tuning for example the pump
power. The shot noise limit at −153 dBc/Hz is reached at a
frequency of approximately 5 MHz. When integrating the RIN
over [10 Hz, 5 MHz], we obtain an rms noise of only 0.052%
which is, to the best of our knowledge, the lowest noise of a
Cr:ZnS laser reported so far. Additionally, we have measured
the transfer function of the laser [37]. Here, the pump and laser
output powers are measured with a lock-in amplifier during a
frequency sweep from 10 Hz to 10 MHz with a small (∼1%)
sinusoidal current modulation of the diode driver. We again
observe a strong feature at the relaxation oscillation frequency
of the laser.

To measure the timing jitter of the laser, we detect the
pulse train from the SHG frequency conversion setup with a
highly linear 22-GHz photodiode (DSC30S, Discovery Semi–
conductors inc.). As with the MSA measurement from Fig. 2a
and in earlier work [25], we measure the SHG because of
the lack of suitable high-frequency detectors at 2.4 µm. This
approach makes the reasonable assumption that the timing
jitter is not significantly influenced by the SHG process. The
35th harmonic of the pulse repetition rate is selected with a
bandpass filter, amplified, and sampled with the SSA. As the
timing jitter PSD around the nth repetition rate harmonic
is proportional to n2, the timing noise is measured at a
higher harmonic to improve the measurement sensitivity after
normalization to the first harmonic [35]. This also ensures
that the noise sidebands are not dominated by the intensity
noise. The obtained one-sided timing jitter PSD measured
from 10 Hz to 10 MHz is shown in Fig. 4b together with
the integrated timing jitter (TJ). The timing jitter PSD follows
the qualitative behavior of the laser RIN, which is expected
as RIN can couple to timing jitter [38], [39]. The influence
of the relaxation oscillation peak above 1 MHz raises the
integrated timing jitter to a value of 7.2 fs. Nevertheless, when
integrating from 2 kHz – 10 MHz a very low timing jitter of
10.9 fs is obtained. When including the influence of lower
frequencies down to 10 Hz in the timing jitter calculation, the
jitter accumulates to 3.2 ps. This increase can be explained
by mechanical noise sources. The stability at low frequencies
would benefit significantly from a fully integrated prototype
setup and active stabilization [38], which goes beyond the
scope of this paper. Overall, the low timing jitter at electronic
noise frequencies indicates the ability of diode-pumping for
highly stable low-noise laser systems.

V. CONCLUSION

In summary, we have demonstrated a directly diode-pumped
SESAM modelocked Cr:ZnS laser delivering low-noise

modelocked pulses in the molecular fingerprint region above
2 µm. This new type of laser only needs a low-cost multimode
near-infrared (1560 nm) pump diode together with a low-
noise power supply which substantially reduces the system
footprint and complexity. Self-starting passive modelocking is
achieved by using an in-house grown high-performance GaSb
SESAM. Transform-limited 189-fs pulses at a repetition rate
of 435 MHz are obtained at a high average output power of
550 mW, corresponding to a peak power of 5.9 kW. Further
power scaling efforts would benefit from high-brightness and
high-power pump diodes ideally at the peak absorption wave-
length of 1680 nm. The laser delivers a long-term stable output
power together with a good beam quality (M2 < 1.16 for
both axes).

Noise analysis of the free-running Cr-doped ZnS laser at
standard lab conditions reveals a record-low integrated rms
RIN of only 0.05% [10 Hz, 5 MHz] and a low integrated
timing jitter of 10.9 fs [2 kHz, 10 MHz]. Wavelength stabilized
pump diodes could improve the noise performance even fur-
ther. Finally, the presented result demonstrates the capabilities
of this type of laser: reliable self-starting SESAM modelock-
ing, a cost-effective and low complexity pumping scheme,
and highly stable low-noise performance. This paves the
way towards compact SWIR laser-based precision frequency
metrology, spectroscopy, and nonlinear frequency conversion.
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