

ETH zürich Outline
Why and how was the SESAM invented?
 Challenge: need fast saturable absorber for shorter pulses Solution: Defect management (low temperature growth, AIAs traps, surface traps)
 Problem: Q-switching instabilities for passively modelocked solid-state lasers Solution: SESAM parameters (semiconductor saturable absorber material + mirror design freedom ideal)
 Challenge: SESAM damage Solution: Mode size and inverse saturable absorption
 Problem: Need fast saturable absorber for solid-state lasers (with no dynamic gain saturation) Solution: Soliton modelocking
 Problem: Pulses so short that position of electric field underneath pulse envelope needs to be stabilized Solution: Carrier envelope offset frequency (CEO) stabilization this solution also enabled the frequency metrology revolution
 Modelocking and frequency metrology: stabilized frequency combs
Frontier lasers need different SESAM design parameters ongoing research.

ETHZ	rürich 20 year	s of SESAM – looking	back
	Appl Phys B (2010) 100: 15–28 DOI 10.1007/s00340-010-4045-3	Appl. Phys. B 100 , 15-28, 2010	Applied Physics B Lasers and Optics
	Ultrafast solid-state 20 years with no end	laser oscillators: a success story for th d in sight	e last
	U. Keller	How did it all This is the pa	l happen? per to read
	Received: 21 April 2010 / Published onl © The Author(s) 2010. This article is pu	line: 13 May 2010 ublished with open access at Springerlink.com	
	20 years of ultr	afast solid-state lasers: invit	ted paper
	• Why was it assur cannot be passiv	med that diode-pumped solid-state las vely modelocked?	sers
	How was the SE	SAM invented?	
	• State-of-the-art p	performance and future outlook.	
		Ultrafast Laser Physics — Alle ETH zürich	

Thank you to Stanford, Bell Labs and ETH Zurich		
TOUD UNOP	Eell Laboratories	ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich
Stanford University	Bell Labs, Holmdel	ETH Zurich
Ph.D. student	MTS	tenured Professor in Physics
1985-1989	1989-1993	since 1993
laser physics ultrafast measurement techniques	+ access to state-of-the-art semiconductor materials (MBE)	+ resources to be fully empowered
microwave measurement tools	Enabled interdisciplinary approa solid-state lasers, semiconducto measurement techniques.	nch with the combination of or physics, and microwave
	Ultrafast Laser Physics ———————————————————————————————————	

Moving from Ti:sapphire to diode-pumped ss-laser		
390 OPTICS LETTERS / Vol. 16, No. 6 / March 15, 1991		
Coupled-cavity resonant passive mode-locked Nd:yttrium lithium fluoride laser	1991	
U. Keller and T. K. Woodward AT&T Bell Laboratories, Holmdel, New Jersey 07733	RPM modelocked Nd:YLF	
D. L. Sivco and A. Y. Cho AT97T Bell Laboratories, Murray Hill, New Jersey 07974		
April 1, 1992 / Vol. 17, No. 7 / OPTICS LETTERS 505		
	1992	
Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor	A-FPSA modelocked Nd:YLF	
Fabry–Perot saturable absorber	Nd:YLF laser pumped with	
U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom AT&T Bell Laboratories, Crawfords Corner Road, Holandel, New Jensey 07733	Ti:sapphire laser	
640 OPTICS LETTERS / Vol. 18, No. 8 / April 15, 1983	1993	
Passively mode-locked diode-pumped solid-state lasers that	"mailed A-FPSA to California"	
use an antiresonant radry-Perot saturable adsorder	A-PFSA modelocked	
K. J. Weingarten Lightwave Electronics Corporation, 1181 San Antonio Road, Mountain View, California 94043	diode-pumped Nd:YLF and	
U. Keller, T. H. Chiu, and J. F. Perguson AT&T Bell Laboratories, Gravfunds Corner Road, Holmdel, New Jersey 07733	Nd:YAG laser	
Ultrafast Laser Physics ———————————————————————————————————	ich	

ETH zürich Outline
Why and how was the SESAM invented?
 Challenge: need fast saturable absorber for shorter pulses Solution: Defect management (low temperature growth, AIAs traps, surface traps)
 Problem: Q-switching instabilities for passively modelocked solid-state lasers Solution: SESAM parameters (semiconductor saturable absorber material + mirror design freedom ideal)
 Challenge: SESAM damage Solution: Mode size and inverse saturable absorption
 Problem: Need fast saturable absorber for solid-state lasers (with no dynamic gain saturation) Solution: Soliton modelocking
 Problem: Pulses so short that position of electric field underneath pulse envelope needs to be stabilized Solution: Carrier envelope offset frequency (CEO) stabilization this solution also enabled the frequency metrology revolution
 Modelocking and frequency metrology: stabilized frequency combs
Frontier lasers need different SESAM design parameters ongoing research.
Ultrafast Laser Physics ETH zurich

ETH zürich Outline
Why and how was the SESAM invented?
 Challenge: need fast saturable absorber for shorter pulses Solution: Defect management (low temperature growth, AIAs traps, surface traps)
 Problem: Q-switching instabilities for passively modelocked solid-state lasers Solution: SESAM parameters (semiconductor saturable absorber material + mirror design freedom ideal)
 Challenge: SESAM damage Solution: Mode size and inverse saturable absorption
 Problem: Need fast saturable absorber for solid-state lasers (with no dynamic gain saturation) Solution: Soliton modelocking
 Problem: Pulses so short that position of electric field underneath pulse envelope needs to be stabilized Solution: Carrier envelope offset frequency (CEO) stabilization this solution also enabled the frequency metrology revolution
 Modelocking and frequency metrology: stabilized frequency combs
Frontier lasers need different SESAM design parameters ongoing research.

ETH zürich Outline
Why and how was the SESAM invented?
 Challenge: need fast saturable absorber for shorter pulses Solution: Defect management (low temperature growth, AIAs traps, surface traps)
 Problem: Q-switching instabilities for passively modelocked solid-state lasers Solution: SESAM parameters (semiconductor saturable absorber material + mirror design freedom ideal)
Challenge: SESAM damage Solution: Mode size and inverse saturable absorption
 Problem: Need fast saturable absorber for solid-state lasers (with no dynamic gain saturation) Solution: Soliton modelocking
 Problem: Pulses so short that position of electric field underneath pulse envelope needs to be stabilized Solution: Carrier envelope offset frequency (CEO) stabilization this solution also enabled the frequency metrology revolution
 Modelocking and frequency metrology: stabilized frequency combs
Frontier lasers need different SESAM design parameters ongoing research.
Ultrafact Laser Rhydice U

ETH zürich Outline	
• Why and how was the SESAM invented?	
Challenge: need fast saturable absorber for shorter Solution: Defect management (low temperature gr	er pulses rowth, AIAs traps, surface traps)
 Problem: Q-switching instabilities for passively mo Solution: SESAM parameters (semiconductor saturable absorber material + mirr 	odelocked solid-state lasers ror design freedom ideal)
Challenge: SESAM damage Solution: Mode size and inverse saturable absorpt	tion
 Problem: Need fast saturable absorber for solid-st saturation) Solution: Soliton modelocking 	tate lasers (with no dynamic gain
 Problem: Pulses so short that position of electric fineeds to be stabilized Solution: Carrier envelope offset frequency (CEO) this solution also enabled the frequency metrological stability. 	ield underneath pulse envelope) stabilization ogy revolution
Modelocking and frequency metrology: stabilized f	frequency combs
Frontier lasers need different SESAM design para	meters ongoing research.

ETH zürich Outline
Why and how was the SESAM invented?
 Challenge: need fast saturable absorber for shorter pulses Solution: Defect management (low temperature growth, AIAs traps, surface traps)
 Problem: Q-switching instabilities for passively modelocked solid-state lasers Solution: SESAM parameters (semiconductor saturable absorber material + mirror design freedom ideal)
 Challenge: SESAM damage Solution: Mode size and inverse saturable absorption
 Problem: Need fast saturable absorber for solid-state lasers (with no dynamic gain saturation) Solution: Soliton modelocking
 Problem: Pulses so short that position of electric field underneath pulse envelope needs to be stabilized Solution: Carrier envelope offset frequency (CEO) stabilization this solution also enabled the frequency metrology revolution
Modelocking and frequency metrology: stabilized frequency combs
Frontier lasers need different SESAM design parameters ongoing research.
Ultrafast Laser Physics — Effiziench

ETHziHow can you measure	optical frequencies?
Frequency comb detector detector unknown optical frequency (many 100 THz) frequency comb spacing (100 MHz – 10	 optical frequencies too high for a direct measurement with high accuracy With frequency comb: measure unknown frequency with the beat signal on the detector
Ultrafast Laser Physics —	Alle ETH zürich

E	TH zurich Outline
•	Why and how was the SESAM invented?
•	Challenge: need fast saturable absorber for shorter pulses Solution: Defect management (low temperature growth, AIAs traps, surface traps)
•	Problem: Q-switching instabilities for passively modelocked solid-state lasers Solution: SESAM parameters (semiconductor saturable absorber material + mirror design freedom ideal)
•	Challenge: SESAM damage Solution: Mode size and inverse saturable absorption
•	Problem: Need fast saturable absorber for solid-state lasers (with no dynamic gain saturation) Solution: Soliton modelocking
•	Problem: Pulses so short that position of electric field underneath pulse envelope needs to be stabilized Solution: Carrier envelope offset frequency (CEO) stabilization this solution also enabled the frequency metrology revolution
•	Modelocking and frequency metrology: stabilized frequency combs
•	Frontier lasers need different SESAM design parameters ongoing research.

E	Frontier lasers need different SESAM parameters
•	High average power (i.e. 100 W to 1 kW) ultrafast solid-state laser: SESAM modelocked thin disk lasers (TDLs)
	high saturation fluence, large mode size (special mounting techniques), faster
	Satu Talk Thursday 14:00 SSL-5.2, Ivan Graumann – Yb:LuO TDL
	Talk Friday 8:45 am
	SSL-6.3, Andreas Diebold – SESAMs for TDLs
•	Gigahertz femtosecond diode-pumped solid-state lasers:
	SESAM modeloci Talk Tuesday 11:15 am low saturatic SSL-1.3, Aline Mayer – mid-IR frequency comb
•	Gigahertz optically pumped semiconductor disk lasers (SDLs): SESAM modelocked VECSELs, MIXSELs
	fully integrate Talk Friday 8:30 am absorber, brook SSL-6.2, Sandro Link – record low pulse duration of SDLs and Poster Thursday PO-3.21
	and in all cases low non-saturable losses: $\Delta R_{ns} << \Delta R$
	Ultrafast Laser Physics ———————————————————————————————————

