Tutorial on short pulse generation with VECSELs and MIXSELs

Ursula Keller

Department of Physics, Institute for Quantum Electronics, ETH Zurich, Switzerland

SPIE Photonics West 2020 SPIE LASE, Vertical External Cavity Surface Emitting Lasers (VECSELs) X San Francisco, 4. Jan. 2020

ETH zürich

Acknowledgements

Cesare Alfieri (2018)

Dominik Waldburger (2018)

Aline Mayer (2018)

Sandro Link (2017)

Christian Zaugg (2014)

Alexander Klenner (2015)

Dr. Bauke Tilma (2015)

Oliver Sieber (2013)

Valentin Wittwer (2012)

Martin Hoffmann (2011)

Dr. Thomas Südmever (2011)

Rudin (2010)

Aude-Reine **Bellancourt** (2009)

Jacob Nürnberg

Dr. Matthias Golling

Deran Maas (2008)

Ultrafast Laser Physics

ETH zürich

AD NO BERT

1. Introduction to ultrafast semiconductor disk lasers

- 2. SESAM-modelocked VECSELs
- 3. MIXSEL
- 4. 100-fs VECSEL
- 5. 139-fs MIXSEL
- 6. Outlook

ETHzurich cw optically pumped VECSEL

OP-VECSEL = Optically Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Laser

M. Kuznetsov et al., IEEE Photon. Technol. Lett. 9, 1063 (1997)

 Semiconductor gain structure with reduced thickness (≈ 10 µm)

IEEE JQE 38, 1268 (2002)

SDLs = semiconductor disk lasers

Ultrafast Laser Physics —

Endzin Optically pumped semiconductor laser?

- Maybe a bad idea coming from semiconductor diode lasers?
- But for sure a good idea coming from diode-pumped solid-state lasers:
 - more flexibility in operation wavelengths
 - broad tunability
 - efficient mode conversion from low-beam-quality high-power diode lasers
 - modelocking possible with SESAMs
 - waferscale integration cheaper ultrafast lasers in the GHz pulse repetition rate regime

ETH zürich

Semiconductor materials: bandgap engineering

VECSELs: cw spectral coverage (Jennifer Hastie, 2013)

- 2-2.8 μm GaInAs ${\bf Sb}$ / AlGaAs ${\bf Sb}$
- 1.5 µm InGaAs / InGaAsP
- 1.2-1.5 μm AlGaInAs / InP (fused)
- 1.2-1.3 μ m Galn**N**As / GaAs
- 1-1.3 µm InAs QDs
- 0.9-1.18 µm InGaAs / GaAs
- 850-870 nm GaAs / AlGaAs
- 700-750 nm InP QDs
- 640-690 nm InGaP / AlGaInP
- Frequency-doubled VECSELs have been reported throughout the visible^{0.01} and into the UV

Infrared review: N. Schulz et al., *Laser & Photonics Reviews* **2**, 160 (2008) Visible and UV review: S. Calvez et al., *Laser & Photonics Reviews* **3**, 407 (2009) 2013 updated by Jennifer Hastie, University of Strathclyde, group of Prof. Martin Dawson

ETHZU VECSELS: cw spectral coverage (Mircea Guina, 2017)

Figure 1: Output powers vs. wavelength covered by major types of VECSEL technologies: left - frequency converted (second harmonic generation - SHG, and Raman shifting); and right - fundamental emission.

M. Guina et al., "Optically pumped VECSELs: review of technology and progress" *J. Phys. D: Appl. Phys.* **50**, 383001 (2017)

SDLs = semiconductor disk lasers

OPSLs = OP-VECSELs

Superior Reliability & Performance

Optically Pumped Semiconductor Lasers

Dichroic

Output Coupler

EHZUVECSEL gain structure (basic principle)

Ultrafast Laser Physics -

ETHzürich

VECSEL structure

ETH zürich

VECSEL structure

ETHzürich VECSEL gain structure (basic principle)

- 7 In_{0.13}Ga_{0.87}As QWs (8 nm) in anti-nodes of standing-wave pattern, designed for gain at ≈ 960 nm
- GaAs spacer layers
- Strain-compensating GaAs_{0.94}P_{0.06} layers
- Pump at 808 nm

ETHzurich cw optically pumped VECSEL

OP-VECSEL = **O**ptically **P**umped **V**ertical-**E**xternal-**C**avity **S**urface-**E**mitting Semiconductor **L**aser

M. Kuznetsov et al., IEEE Photon. Technol. Lett. 9, 1063 (1997)

 Semiconductor gain structure with reduced thickness (≈ 10 µm)

IEEE JQE 38, 1268 (2002)

- Pump: high power diode bar
- External cavity for diffraction-limited output

Ultrafast Laser Physics —

B. Rudin, A. Rutz, M. Hoffmann, D. J. H. C. Maas, A. R. Bellancourt, E. Gini, T. Südmeyer, U. Keller *Opt. Lett.* **33**, 2719 (2008)

Ultrafast Laser Physics ————	$\langle $		M I	316	1
------------------------------	-------------	--	-----	-----	---

Ultrafast VECSELs: Modelocking with SESAMs

Review article for VECSELs: U. Keller and A. C. Tropper, *Physics Reports* **429**, Nr. 2, pp. 67-120, 2006

Ultrafast Laser Physics —————	\mathbb{N}	ETHzürich
-------------------------------	--------------	-----------

Motivation for semiconductor lasers: Wafer scale integration

2015 Review: B. W. Tilma *et al.,* "Recent advances in ultrafast semiconductor disk lasers", *Light Sci Appl* **4**, e310 (2015)

Passively modelocked VECSEL vertical external cavity surface emitting laser D. Lorenser et al., *Appl. Phys. B* **79**, 927, 2004 Review: *Physics Reports* 429, 67-120, 2006

MIXSEL

modelocked integrated external-cavity surface emitting laser

D. J. H. C. Maas et al., Appl. Phys. B 88, 493, 2007

Ultrafast Laser Physics

MIXSEL wafer scale integration

ETHzürich

A. R. Bellancourt et al., "Modelocked integrated external-cavity surface emitting laser" *IET Optoelectronics*, vol. 3, Iss. 2, pp. 61-72, 2009 (invited paper)

Ultrafast Laser Physics -

ETHzürich

Development to the MIXSEL

²²THzürich Gigahertz frequency comb sources

Ti:sapphire

- ✓ performance
- X complexity
- X cost
- spectral flexibility

fiber lasers

- performance
- complexity
- cost
- spectral flexibility

Yb-based lasers

- ✓ performance
- ✓ complexity
- cost
- spectral flexibility

Outline

No of Barriston

- 2. SESAM-modelocked VECSELs
- 3. MIXSEL
- 4. 100-fs VECSEL
- 5. 139-fs MIXSEL
- 6. Outlook

Semiconductor disk lasers

AD NO BI GI COLONIA

SESAM

ETH zürich

semiconductor saturable absorber mirror

Semiconductor disk lasers

3-GHz pulse repetition rate: cavity length of \approx 5 cm

VECSEL

ETHzürich

vertical external-cavity surface-emitting laser

SESAM

semiconductor saturable absorber mirror

ETHzürich

SESAM properties

SESAM Semiconductor saturable absorber mirror

U. Keller et al., *Optics Lett.* **17**, 505 (1992) U. Keller et al., *IEEE J. Sel. Top. Quant.* **2**, 435 (1996)

- *F*_{sat}: Saturation fluence (fluence at which reflectivity increases by 37 %)
- ΔR : Modulation depth
- ΔR_{ns} : Non-saturable losses
- Induced absorption (IA) effects lead to roll-over at high fluences

SESAM design

1) SESAMs with low saturation fluence:

Appl. Phys. B 81, 27–32 (2005)

DOI: 10.1007/s00340-005-1879-1

Applied Physics B Lasers and Optics

Semiconductor saturable absorber mirror structures with low saturation fluence

¹ETH Zurich, Physics Department, Institute of Quantum Electronics, Wolfgang-Pauli-Strasse 16, 8093 Zürich, Switzerland

²Time-Bandwidth Products, GigaTera Product Group, Technoparkstr. 1, 8005 Zürich, Switzerland

SESAM design

SESAM design

1) SESAMs with low saturation fluence:

Appl. Phys. B 81, 27–32 (2005) DOI: 10.1007/s00340-005-1879-1 Applied Physics B Lasers and Optics

G.J. SPÜHLER¹ K.J. WEINGARTEN² R. GRANGE¹ L. KRAINER¹ M. HAIML¹ V. LIVERINI¹ M. GOLLING¹ S. SCHÖN¹ U. KELLER¹, ...

Semiconductor saturable absorber mirror structures with low saturation fluence

¹ETH Zurich, Physics Department, Institute of Quantum Electronics, Wolfgang-Pauli-Strasse 16, 8093 Zürich, Switzerland

²Time-Bandwidth Products, GigaTera Product Group, Technoparkstr. 1, 8005 Zürich, Switzerland

2) SESAMs with inverse saturable absorption:

 Appl. Phys. B 80, 151–158 (2005)
 Applied Physics B

 DOI: 10.1007/s00340-004-1622-3
 Lasers and Optics

R. GRANGE^{1,} M. HAIML¹
R. PASCHOTTA¹
G.J. SPÜHLER¹
L. KRAINER¹
M. GOLLING¹
O. OSTINELLI^{2,3}
U. KELLER¹
H. KELLER¹
L. KRAINER¹
H. GOLLING¹
D. OSTINELLI^{2,3}
L. KELLER¹
L. KRAINER¹
L. KRA

Endzürich Inverse saturable absorption (ISA)

the reflectivity decreases at higher pulse energies

the roll-over = inverse saturable absorption

$$R_{ISA}(F_{\rm p}) = R_P(F_{\rm p}) - \frac{F_{\rm p}}{F_2}$$

- *F*₂ is the inverse slope of the roll over
- The smaller F_2 , the

stronger is the roll-over

Dynamic gain saturation in semiconductor lasers

Important difference between semiconductor lasers and diode-pumped solid-state lasers

ETHzürich SESAM-VECSEL modelocking

• First room temperature VECSEL:

20 µW average power:

J.V. Sandusky et al., IEEE Photon. Technol. Lett. 8, 313 (1996)

• High-power cw operation:

0.5 W in TEM₀₀ beam: M. Kuznetsov et al., *IEEE Photon. Technol. Lett.* 9, 1063 (1997)
1.5 W: *W. J. Alford et al., J. Opt. Soc. Am. B* 19, 663 (2002)
30 W: J. Chilla et al., *Proc. SPIE* 5332, 143 (2004) - Coherent
20 W in TEM₀₀ beam: B. Rudin et al., *Optics Lett.* 33, 2719, 2008

• Passive mode locking with SESAM:

20 mW: S. Hoogland et al., *IEEE Photon. Technol. Lett.* 12, 1135 (2000)
200 mW: R. Häring et al., *Electron. Lett.* 37, 766 (2001)
950 mW: R. Häring et al., *IEEE JQE* 38, 1268 (2002)
2.1 W, 4.7 ps, 4 GHz, 957 nm
2.2 W, 6 ps, 1.5 GHz, 957 nm
A. Aschwanden et al., *Opt. Lett.* 30, 272 (2005)

Modelocked VECSEL review: Physics Reports 429, 67, 2006

Outline

Man Banna

2. SESAM-modelocked VECSELs

3. MIXSEL

- 4. 100-fs VECSEL
- 5. 139-fs MIXSEL
- 6. Outlook

Semiconductor disk lasers

AD HE HE HAD

3-GHz pulse repetition rate: cavity length of ≈ 5 cm

MIXSEL

ETHzürich

modelocked integrated external-cavity surface-emitting laser

D. J. H. C. Maas et al., Appl. Phys. B 88, 493, 2007

Ultrafast Laser Physics —
Towards Absorber Integration

ETHzürich

Ultrafast Laser Physics -

Towards Absorber Integration

antiresonant SESAM

ETHzürich

resonant SESAM

Challenge 2

Problem: increase of modulation depth

 $F_{\rm sat} \cdot \Delta R = {\rm const.}$

No possibility for uncoupled $F_{\rm sat}$ and ΔR for QW SESAMs

What can we do?

Towards Absorber Integration: Quantum Dots (QDs)

QDs absorbers offer more growth parameters than QWs absorbers

QD size and size distribution

	determine	absorption	spectrum
--	-----------	------------	----------

QD growth

- Stranski-Krastanov growth on MBE
- InAs on GaAs substrate
- In ML coverage determines density

Self-assembled QD formation:

 $\Delta R\,$ can be tuned with dot density, while $F_{\rm sat}$ stays constant!

Ultrafast Laser Physics

ETHzürich SESAM-VECSEL modelocking

Towards Absorber Integration: "1:1 modelocking"

Modelocking with identical mode sizes on gain and absorber:

D. Lorenser et al., IEEE J. Quantum Electron. 42, 838-847 (2006)

ETHZU SESAM-VECSEL modelocking and MIXSEL

First MIXSEL demonstration: 35 ps, 40 mW, 2.8 GHz

Resonant design

Sections:

- 30 pair bottom mirror for the laser
- 1 layer of self-assembled InAs QD
- DBR to increase field in absorber
- 9 pair mirror for the pump
- active region with 7 InGaAs QWs
- AR coating

- heat sink output coupler T=0.35%, R=60 mm etalon MIXSEL chip as grown cavity length 54 mm
- D. J. H. C. Maas et al., Applied Physics B 88, 493-497 (2007)

Antiresonant MIXSEL Design

resonant MIXSEL structure

Advantages

- less variations in absorber enhancement
- reduced GDD for shorter pulses
- less sensitive to growth errors

Requirement

- QDs with strong saturation
- study on QD-growth parameters optimization of growth temperature and post-growth annealing

A.-R. Bellancourt, Y. Barbarin, D. J. H. C. Maas, M. Shafiei, M. Hoffmann, M. Golling, T. Südmeyer, U. Keller, OE, 17, 12, (2009) D. J. H. C. Maas, A. R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, U. Keller, OE, 16, 23, (2008)

Photoluminescence (PL) shift during annealing

The QDs are annealed in the growth of a MIXSEL:

Strong blueshift of the PL peak

D.J.H.C. Maas, A.-R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, *Optics Express* **16**, 18646 (2008)

Ultrafast Laser Physics –

ETHZ QD-SESAM annealing benefits: lower F_{sat}

Ultrafast Laser Physics

High Power MIXSEL

Average power	6.4 W
Center wavelength	959.1 nm
Pulse duration	28.1 ps
FWHM spectral width	0.15 nm

- optical pumping 36.7 W at 808 nm
- pump / laser spot radius: ≈215 µm
- cavity length: 60.8 mm ⇒ 2.47 GHz
- fluence on the MIXSEL : 252 µJ/cm²

highest average power from an ultrafast semiconductor laser

UD RE BRENDE

B. Rudin, V.J. Wittwer, D.J.H.C. Maas, M. Hoffmann, O.D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, U. Keller, OE 18, 27582 (2010)

Pulse Shortening

an walland

EnHzuricNovel quantum well saturable absorber

Saturable absorber

- Single InGaAs quantum well
- Embedded in AIAs
- Grown by molecular beam epitaxy (MBE)
- Low-temperature grown (< 300° C)
- Operated close to the **bandedge**

Absorbers for integration	InGaAs QWs	InAs QDs
Low saturation fluence	+	+
Fast recovery dynamics	+	-
Simple fabrication	+	-
Non-saturable losses	+	+
Temperature sensitivity	-	+
Design freedom	-	+

ETHzürich 2013 First femtosecond MIXSEL

• Beam quality: M² < 1.05

M. Mangold et al., Opt. Express 21, 24904 (2013)

ETHZURICH Repetition-rate scaling of MIXSEL

M. Mangold et al., Opt. Express 22, pp. 6099 (2014)

Ultrafast Laser Physics -----

ETHzürich Femtosecond 100-GHz MIXSEL

Pulse duration:	570 fs
Average output power:	127 mW
Repetition rate:	101.2 GHz
Av. mode power (-30 dB):	7.5 mW
	2

M. Mangold et al., Opt. Express 22, pp. 6099 (2014)

Ultrafast Laser Physics -

Endour Picosecond MIXSEL noise characterization

MIXSEL: >645 mW output power, 14.3 ps pulses, 2 GHz pulse reprate

- **127 fs** timing jitter free-running [100 Hz, 100 MHz]
- **31 fs** timing jitter stabilized [100 Hz, 100 MHz]
- < 0.15% amplitude noise [1 Hz, 10 MHz]

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, U. Keller, *IEEE Photonics Journal* **6**, 1500309 (2014)

Ultrafast Laser Physics –

Endzon Picosecond MIXSEL noise characterization

MIXSEL: >645 mW output power, 14.3 ps pulses, 2 GHz pulse reprate

- 127 fs timing jitter free-running integrated over [100 Hz, 100 MHz]
- Pulse repetition rate 2 GHz -> 0.5 ns between the pulses = 1/ (2 GHz)
- 127 fs / 0.5 ns ≈ 2.5 10⁻⁴ comb line spacing variations, integrated over 1/ (100 Hz) = 10 ms!

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, U. Keller, *IEEE Photonics Journal* **6**, 1500309 (2014)

Ultrafast Laser Physics -

Endzine Motivation for further pulse shortening

Research Article

Vol. 27, No. 3 | 4 Feb 2019 | OPTICS EXPRESS 1786

Optics EXPRESS

Optics Express 27, 1786 (2019)

Tightly locked optical frequency comb from a semiconductor disk laser

Dominik Waldburger

D. WALDBURGER,^{1,*} A. S. MAYER,¹ C. G. E. ALFIERI,¹ J. NÜRNBERG,¹ A. R. JOHNSON,² X. JI,³ A. KLENNER,² Y. OKAWACHI,² M. LIPSON,³ A. L. GAETA,² AND U. KELLER¹

¹Department of Physics, Institute for Quantum Electronics, ETH Zurich, Auguste-Piccard-Hof 1, 8093 Zürich, Switzerland ²Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA

³Department of Electrical Engineering, Columbia University, New York, New York 10027, USA *dominikw@phys.ethz.ch

122-fs pulses &160-mW

No additional amplification and pulse compression with Silicon nitride waveguide

Ultrafast Laser Physics

— ETHzürich

Outline

Manth Hamin

- 2. SESAM-modelocked VECSELs
- 3. MIXSEL

4. 100-fs VECSEL

- 5. 139-fs MIXSEL
- 6. Outlook

World-record 100-fs 100-mW 1.63-GHz VECSEL Pulse duration vs Power in near infrared (NIR) Center for Micro- and Nanoscience ● VECSEL ■ MIXSEL 0.9% 10 kW output pulse peak power new result pump 1 kW coupler L 100 W 10 W **VECSEL** L, Brewster plate 1 W 100 fs 1 ps SESAM pulse duration QW-SESAM (single InGaAs) LT (260 degrees) MBE grown in AIAs barriers recovery times 560 fs/5.5 ps SiN_x top coating for field enhancement 2 4.3 μ J/cm², Δ R = 2% Dominik Dr. Matthias Waldburger Golling

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, **M. Golling**, B. W. Tilma, U. Keller, Optica **3**, 844–852 (2016)

Ultrafast Laser Physics -

Pulse shortening strategies

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, U. Keller, *Appl. Phys.* B **113**, 133-145 (2013)

Ultrafast Laser Physics —

InGaAs quantum well position in VECSEL chip

D. Waldburger et al., *Optica* **3**, 844–852 (2016)

Ultrafast Laser Physics —

InGaAs quantum well position in VECSEL chip

D. Waldburger et al., *Optica* **3**, 844–852 (2016)

Ultrafast Laser Physics

En InGaAs quantum well position in VECSEL chip

D. Waldburger et al., *Optica* **3**, 844–852 (2016)

Ultrafast Laser Physics —

InGaAs quantum well position in VECSEL chip

D. Waldburger et al., *Optica* **3**, 844–852 (2016)

Pulse formation simulation

- ✓ Broad gain bandwidth
- ✓ High gain saturation fluence
- X Reduced overall gain

Field enhancement

Ultrafast Laser Physics —

InGaAs quantum well position in VECSEL chip

D. Waldburger et al., *Optica* **3**, 844–852 (2016)

Pulse formation simulation

- ✓ Broad gain bandwidth
- ✓ High gain saturation fluence
- X Reduced overall gain

AIAs

Ultrafast Laser Physics

GaAs

> Optimize pump absorption

Field enhancement

ETH zürich

Anti-reflection coating

UD HALIBARDON

D. Waldburger et al., *Optica* **3**, 844–852 (2016)

Ultrafast Laser Physics —

Anti-reflection coating

D. Waldburger et al., *Optica* **3**, 844–852 (2016)

Ultrafast Laser Physics —

Anti-reflection coating

D. Waldburger et al., Optica 3, 844–852 (2016)

Pulse formation simulation

- Broad gain bandwidth
- ✓ High gain saturation fluence
- Flat & zero group delay dispersion
- X Reduced overall gain

Group delay dispersion

GaAs

ETH zürich

World-record 100-fs 100-mW 1.63-GHz VECSEL

Ultrafast Laser Physics

Outline

Went gante

- 2. SESAM-modelocked VECSELs
- 3. MIXSEL
- 4. 100-fs VECSEL
- 5. 139-fs MIXSEL
- 6. Outlook

139-fs NIR MIXSEL at 1.034 µm center wavelength

C. G. E. Alfieri^{*}, D. Waldburger^{*}, J. Nürnberg, M. Golling, U. Keller,

"Sub-150-fs from a broadband MIXSEL", Opt. Letters 44, 25 (2019)

Ultrafast Laser Physics -

— ETHzürich

C. G. E. Alfieri^{*}, D. Waldburger^{*}, J. Nürnberg, M. Golling, U. Keller,

"Sub-150-fs from a broadband MIXSEL", Opt. Letters 44, 25 (2019)

Ultrafast Laser Physics -

C. G. E. Alfieri*, D. Waldburger*, J. Nürnberg, M. Golling, U. Keller,

"Sub-150-fs from a broadband MIXSEL", Opt. Letters 44, 25 (2019)

Ultrafast Laser Physics -

Opt. Letters 44, 25 (2019)

Design novelties

- ⇒ Quaternary GaAs/AlGaAsP DBR
 - \Rightarrow Ga to decrease oxidation
 - \Rightarrow P for strain compensation
- ⇒ Strain-compensated QW absorber
- ⇒ Large-bandgap AIAsP straincompensation for the active region:
 - ⇒ Reduced TPA losses

C. G. E. Alfieri, A. Diebold, F. Emaury, E. Gini, C. J. Saraceno, U. Keller. Opt. Express 24, 27587-27599 (2016)

Ultrafast Laser Physics

Design novelties

⇒ Quaternary GaAs/AlGaAsP DBR

Femtosecond MIXSEL Opt. Letters 44, 25 (2019)

- \Rightarrow Ga to decrease oxidation
- \Rightarrow P for strain compensation
- ⇒ Strain-compensated absorber
- ⇒ Large-bandgap AIAsP straincompensation for the active region:
 - ⇒ Reduced TPA losses
 - ⇒ Optimized pump absorption
 - ⇒ Better carrier confinement
 - ⇒ No spectral filtering

Design novelties

⇒ Quaternary GaAs/AlGaAsP DBR

Femtosecond MIXSEL Opt. Letters 44, 25 (2019)

- \Rightarrow Ga to decrease oxidation
- \Rightarrow P for strain compensation
- ⇒ Strain-compensated absorber
- ⇒ Large-bandgap AIAsP straincompensation for the active region:
 - ⇒ Reduced TPA losses
 - ⇒ Optimized pump absorption
 - ⇒ Better carrier confinement
 - ⇒ No spectral filtering

⇒ Dielectric IBS top coating:

- \Rightarrow Precise layer thickness
- \Rightarrow Protection against oxidation
- \Rightarrow Reduced TPA losses

Ultrafast Laser Physics

Femtosecond MIXSEL Opt. Letters 44, 25 (2019)

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, *Opt. Express* **23**, 5521 (2015). S. M. Link, D. J. H. C. Maas, D. Waldburger, U. Keller, *Science* **356**, 1164 (2017).

End Group delay dispersion (GDD) optimization

To reach short sub-200-fs pulses, small but positive cavity dispersion (0 fs² <GDD< 50 fs²) is required over a large spectral range

- + GDD from the MIXSEL (IBS top-coating)
- + GDD from the output coupler
- + 2 × GDD from a 1-mm thick Calcite crystal

O. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold. M. Golling, B. W. Tilma, T. Südmeyer, U. Keller, Appl. Phys. B 113, 133 (2013)

Entry Group delay dispersion (GDD) optimization

To reach short sub-200-fs pulses, small but positive cavity dispersion (0 fs² <GDD< 50 fs²) is required over a large spectral range ^[1]

- + GDD from the MIXSEL (IBS top-coating)
- + GDD from the output coupler
- + 2×GDD form a 1-mm thick Calcite crystal

= Cavity GDD balanced in the 1025-1035 nm region

Ultrafast Laser Physics —

- ETHzürich

Modelocking performance

Opt. Letters 44, 25 (2019)

center wavelength [nm]	1033
bandwidth [nm]	13
pulse duration [fs]	139
average output power [mW]	30
pulse repetition rate [GHz]	2.73
Dual-comb operation	\checkmark

- ✓ <u>13 nm of FWHM bandwidth</u> (prev. 7.4 nm)
- ✓ Central wavelength tuned to C_2H_2
- ✓ First sub-150-fs MIXSEL
- ✓ Sufficient output power for spectroscopy
- ✓ Sufficient resolution for spectroscopy
- ✓ Turn-key for hundreds of hours

C. G. E. Alfieri*, D. Waldburger*, J. Nürnberg, M. Golling, U. Keller, "Sub-150-fs from a broadband MIXSEL", Opt. Letters 44, 25 (2019)

Spectroscopy of acetylene

ETH zürich

I. E. Gordon et. Al., J. Quant. Spectrosc. Radiat. Transf. 203, 3 (2017).

- Acetylene absorption lines (HITRAN 2016)
- Weak absorption in the near IR
- MIXSEL spectrum not perfectly matched

J. Nürnberg^{*}, C. G. E. Alfieri^{*}, Z. Chen, D. Waldburger, N. Picqué, U. Keller, *Optics Express* **27**, 3190 (2019)

|--|

Spectroscopy of acetylene

- Absorption in commercial fiber coupled multipass gas cell* *Manufacturer: Wavelength References
- 740 Torr pressure of acetylene (C_2H_2)
- 80 cm absorption path length
- A posteriori calibration to optical domain

J. Nürnberg*, C. G. E. Alfieri*, Z. Chen, D. Waldburger, N. Picqué, U. Keller, Optics Express 27, 3190 (2019)

Outline

WIN MANUS OF

- 2. SESAM-modelocked VECSELs
- 3. MIXSEL
- 4. 100-fs VECSEL
- 5. 139-fs MIXSEL

6. Outlook

Outlook: Dual-Comb LIDAR

- Signal reflects of reference and target
- Beatnote contains two interferograms
- Time delay encodes distance

time [ms]

I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury, Nat. Photonics 3(6)

Motion tracking

- Measure displacement of a 10 Hz shaker
- Reference to He-Ne-interferometer
- RMS deviation < 5 µm

Near infrared InGaAs SDLs

Outlook

10 10 10 10 10

[1] D. Waldburger et al., Optica 3, 844 (2016); [2] C. G. E. Alfieri^{*}, D. Waldburger^{*} et al., Opt. Letters 44, 25 (2019)
[3] A. S. Mayer et. al., Opt. Express 23, 15440 (2015); [4] D. Waldburger et al., Opt. Express 27, 1786 (2019)

Near infrared InGaAs SDLs

Outlook

[1] D. Waldburger et al., Optica 3, 844 (2016); [2] C. G. E. Alfieri^{*}, D. Waldburger^{*} et al., Opt. Letters 44, 25 (2019)
[3] A. S. Mayer et. al., Opt. Express 23, 15440 (2015); [4] D. Waldburger et al., Opt. Express 27, 1786 (2019)

