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Abstract 
We have conducted a pilot study within a physics lecture class of 370 students at a major Swiss 
research-intensive university. In a one-year undergraduate physics course, we divided the student 
cohort into two parallel teaching settings. During one semester, we offered a highly interactive flipped 
learning environment (SCALE-UP) to one group of 52 students and a reformed lecture to the 
remaining 318 students. In the second semester, all students were taught in the same lecture setting 
without a flipped learning alternative. Comparing the performance results of both groups we can draw 
conclusions on immediate and medium-term learning effects. In addition, we analyzed student 
feedback in both settings that included data related to class attendance, out-of-class preparation and 
level of intellectual challenge. In this presentation, we will present our results and draw conclusions on 
implementing flipped learning in large courses at a research university. 
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1 INTRODUCTION 
Flipped learning, also known as flipped class and inverted learning, has emerged in the early 2000s as 
a pedagogical approach within the student-centered instructional framework [1]. Paralleled by the 
growing propagation of technology-based instruction, the definition of flipped learning often includes 
explicit references to video instruction and other web-based facilities [2]. For our purpose, we opt for a 
more general definition. We consider flipped learning to be an instructional setting where the major 
part of content delivery is accomplished outside of the classroom and available class time instead is 
used for engaging students in collaborative and hands-on activities. This definition shifts the 
pedagogical focus from self-directed learning, which is moved outside of class, to the more interactive 
learning opportunities that now can be provided during the contact hours. Hereby, flipped learning is 
an instrument to maximize classroom time for interactive learning exercises while systematically 
reducing the lecturing part. In physics education, interactive learning has been identified as one of the 
major teaching assets for quite a long time and is supported by a large body of research [3,4]. 

Implementing flipped learning, however, is not obvious and relies on many factors related to the local 
learning and teaching culture, the existing assessment regulations, the curricular boundary conditions 
and, most important, on scalability considerations. Flipping a class with 30 students might be 
considered a feasible task, but flipping a lecture with 300 students turns out to be rather challenging 
and may potentially require considerable investments, such as room reconfiguration and increased 
teaching manpower [5]. Before any department or university considers adopting flipped learning in a 
given local context, it will be necessary to identify possible assets and drawbacks beforehand.  For 
this reason, we have conducted a pilot study within a typical physics lecture class of 370 students at a 
major Swiss research university. Our aim was to identify and to quantify the main benefits of flipped 
learning compared to physics lectures, based on the premises of a typical European research 
university. 

The present study was conducted to answer the following two questions: 

• What are the students’ short-term and medium-term performance gains that can be expected 
from flipped learning? 

• Did students in the flipped learning setting develop a different learning behavior and did their 
attitudes towards the learning goals differ from those of the lecture students? 
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2 METHODOLOGY 

2.1 Course description 
In a one-year undergraduate physics course, we divided the student cohort into two parallel teaching 
settings. During one semester, we offered a highly interactive flipped class (SCALE-UP pedagogy [6]) 
to one group of 52 students and a reformed lecture to the remaining 318 students (Fig 1). In the 
second semester, all students were taught in the same lecture setting, without a flipped class 
alternative. 

Figure 1. Photos of the lecture hall and of the SCALE-UP classroom. 

Apart from content delivery, the lecture class included 40 demonstrations and 37 conceptual clicker 
questions within a Peer Instruction [7] environment.  The latter engaged students interactively and 
provided immediate feedback to the instructor regarding their level of understanding. Thus, the lecture 
already included some active-learning elements and it was well aligned to the common framework of 
reformed lectures in physics [8].  

The students in the SCALE-UP setting worked through different activities in small groups of 3-4 
students each (Fig. 2). Before each class, students started learning about a topic by doing assigned 
readings and online exercises via MasteringPhysics (www.pearsonmylabandmastering.com). In class, 
the students performed activities that helped them understand the basic concepts from their home 
reading. They applied these concepts in hands-on experiments and in collaborative discussions for 
solving conceptual and numerical problems. Lecturing in SCALE-UP was reduced to a bare minimum. 

Figure 2. Table arrangement of the SCALE-UP classroom. 9 hexagonal tables (formed with two 
trapezoids) for 18 groups of three students (two groups per table). 

The teaching period for the experimental setting extended over 14 weeks with three weekly contact 
hours. An additional weekly recitation session (1 hour) allowed students from both settings to discuss 
numerical problems in groups (15-25 students) together with teaching assistants. 

According to university regulations, we were not allowed to use grading as an incentive to control the 
students’ learning behavior or to administer different grading schemes to the separate groups. Grades 
for both groups were determined by a comprehensive high-stakes final exam that took place eight 
months after the flipped classroom intervention.  

In addition to the performance data, we recorded student feedback data from two separate semester 
evaluation surveys. These surveys included data related to class attendance, time spent on out-of-
class preparation, level of intellectual challenge, and self-confidence in the comprehension of the 
course material. 



2.2 Performance measures 
In order to conduct a comparative study of the two different pedagogical settings, we recorded the 
performance of the complete student cohort (both SCALE-UP and lecture) at different points in time 
for two different subjects (Fig. 3): 

• Physics mid-term exam: 10th week (optional) during the intervention. 
• Math (calculus) exam: 3 months after the intervention (as a secondary control variable). 
• Physics final exam: 8 months after the intervention. 

Both the math and physics final exams are compulsory high-stakes exams. The failing rate for each of 
those exams is typically higher than 20%. These exams are offered twice a year, and within a given 
time frame, students can choose the exam session they wish to attend. 
Participation in the mid-term exam was optional. As an incentive, however, the result of the mid-term 
exam could be counted for 10% of the final grade, but only if ameliorating the result of the final exam. 

The physics mid-term and final exams included conceptual and numerical questions. In the mid-term 
exam, 50% of the points could be achieved by conceptual multiple-choice questions, whereas the ratio 
in the final exam was 40%. Therefore, we were able to split the overall achievement into conceptual 
and numerical performance components. Conceptual questions assess student understanding of the 
underlying phenomena rather than the application of the physics material within a mathematical 
framework. Thus, our study enables us to make a clear distinction between the conceptual 
understanding and its numerical transfer.  

Figure 3. Performance assessment of the student cohort. 

Furthermore, the physics final exam was split into one part covering the topics (mechanics) that were 
introduced during the flipped classroom intervention in spring (Phys1) and another part with the topics 
(electricity and magnetism) that were covered in autumn without a parallel setting (Phys2). With this 
distinction, we are able to draw conclusions on longitudinal effects (Phys1) and on how well the 
learning achievements of the flipped class can be transferred to new topics (Phys2).   

2.3 Participants 
Related to the complex curricular assessment schedule outlined above and also taking into account 
dropouts during the course time, we had to deal with a considerable amount of missing data points. 
Not all students consistently took part in every exam. For instance, 11 of the SCALE-UP students who 
did not pass the math exam consequently did not take the physics final exam. Throughout the 
performance analysis, we are only considering students who took part in all assessments, i.e. the 
math exam and the physics mid-term and final exams. As a result, we had to reduce the overall 
population to 35 students in the SCALE-UP setting and 133 students in the lecture setting. The data 
are still sufficient to run statistical tests, even though we have to deal with an unbalanced design. 



Figure 4. Math performance. 

We did not allocate the students randomly to the SCALE-UP class. Instead, we offered the flipped 
class on a first-come basis. Therefore, it might be argued that students from the lecture and from the 
SCALE-UP setting may differ with respect to their prior knowledge and that our comparative results 
may be biased. To rebut this argument, we can consider the students’ performance in the math exam. 
In the past, many studies have shown evidence that achievement in mathematics correlates positively 
with undergraduate performance in physics (e.g. [9, 10]). A comparison of the math performance from 
the SCALE-UP and from the lecture students (Fig. 4) shows no significant differences: t(166)=0.615, 
p=0.539. For this reason, we assert that our comparative measurements will be unbiased to a certain 
extent. We came to a similar conclusion based on a conceptual physics pre-test that was given to a 
sub-sample of students [11]. 

Finally, the two instructors were expert teachers with extensive experience in their respective teaching 
settings. In the student survey, questions related to the two instructors resulted in similar positive 
appraisal.  

Table 1. Test statistics of the student performance for each set of questions. 

 
SCALE-UP 
Mean (SD) 

LECTURE 
Mean (SD) 

t-statistics Effect size 

complete 

   Mid-term 61.75 (22.59) 48.99 (20.01) 3.27 (p=.001) 0.621 

   Phys1 50.71 (9.34) 46.66 (11.71) 2.16 (p=.034) 0.360 

   Phys2 46.47 (12.61) 44.75 (11.56) 0.77 (p=.443) 0.146 

conceptual 

   Mid-term 64.84 (23.57) 48.12 (21.11) 4.07 (p<.001) 0.773 

   Phys1 57.86 (20.01) 46.76 (18.58) 3.09 (p=.002) 0.588 

   Phys2 61.43 (22.96) 62.26 (19.05) -0.22 (p=.825) -0.042 

numerical 

   Mid-term 58.65 (25.00) 49.85 (23.79) 1.92 (p=.056) 0.366 

   Phys1 68.14 (11.32) 65.28 (16.33) 1.20 (p=.233) 0.185 

   Phys2 59.07 (17.53) 55.64 (16.83) 1.06 (p=.289) 0.202 

NSCALE-UP=35; NLECTURE=133; means are referring to the students’ performance in percent; SD 
= standard deviation; effect sizes associated with independent t-tests are computed using 
Cohen’s d. Statistically significant results are marked in bold. 



3 RESULTS 

3.1 Performance results 
For each set of questions (complete, conceptual, numerical), the points achieved in the three physics 
assessments have been normalized to a percentage scale. In order to compare the performance of 
students from the SCALE-UP setting to those of the lecture, we have conducted a series of t-tests. 
The t-test is a common statistical analysis to determine whether the mean of a population significantly 
differs from the mean of another population. Tab. 1 shows the results from this analysis.  

Figure 5. Performance gains of the SCALE-UP students. The gain is calculated by the difference in 
the means G = MSCALE-UP – MLECTURE. Error bars correspond to the 95% confidence intervals. All values 

are taken from Tab. 1. 



In addition to the t-test statistics, we have calculated the corresponding effect sizes. The effect size 
given by Cohen’s d measures the magnitude of mean differences and gives a concrete sense of 
whether a difference is meaningfully large, independent of whether the difference is statistically 
significant. Effect sizes of d=0.2 are considered to be small, whereas d=0.5 is related to a medium 
effect and d=0.8 to a large effect. 

With the data from Tab. 1, we have calculated the performance gains of the SCALE-UP students by 
taking the difference of the SCALE-UP mean value and the corresponding lecture mean value. The 
resulting gains are plotted in Fig. 5. 

3.1.1 Immediate performance effects 
The mid-term exam took place during the intervention. Therefore, the mid-term is an adequate 
instrument to measure immediate effects of the flipped SCALE-UP setting. Fig. 5 clearly shows that 
the SCALE-UP students outperformed the lecture students in the conceptual questions, whereas their 
gain in the numerical part is only marginal.  

Thus, we see that performance effects attributed to flipped learning are immediately visible. They 
positively affect the conceptual understanding and do not compromise the skills of solving numerical 
problems. Those results are confirmed to a certain extent by other independent studies from physics 
education research (e.g. [12, 13]). 

3.1.2 Medium-term performance effects 
The Phys1 part of the final exam covered the same topics that were taught during the intervention, but 
that exam took place eight months later. While comparing the performance related to Phys1 in Fig. 5, 
we see that the immediate effects still pertain, but that they have diminished considerably.  

We can directly compare the performance recorded in the mid-term exam to the performance in Phys1 
by running a series of dependent t-tests (for paired samples). The corresponding results are shown in 
Tab. 2. Both groups have considerably improved their performance in the numerical part. This gain 
can partially be attributed to exam preparation, where students primarily worked on numerical 
problems. In the conceptual part, however, the SCALE-UP students significantly reduced their 
advantage: -6.98% within a 95% confidence interval of [-0.14, -13.82] (t(34)=-2.07, p=0.046). Students 
from the lecture setting had no significant performance changes on the conceptual part. 

We can conclude that at a medium timescale the effects of flipped learning are still visible, but have 
substantially decreased. Unfortunately, comparative studies on medium-term effects are still missing 
in the literature and we are not able to relate our results to other findings. 

Table 2. Test statistics comparing the performance between Mid-term and Phys1. 

 Mean (SD/SE) t-statistics r 

LECTURE 

  complete -2.23 (17.19/1.49) -1.56 (p=.121) 0.516 

  conceptual -1.36 (22.70/1.97) -0.69 (p=.490) 0.351 

  numerical 15.43 (21.84/1.89) 8.15 (p<.001) 0.458 

SCALE-UP 

  complete -11.03 (17.31/2.93) -3.77 (p=.001) 0.705 

  conceptual -6.98 (19.91/3.37) -2.07 (p=.046) 0.593 

  numerical 9.49 (22.10/3.73) 2.54 (p=.016) 0.468 

NSCALE-UP=35; NLECTURE=133; Mean is referring to the paired mean 
differences: MPhys1 – MMidterm; SD = standard deviation; SE = standard error; r 
= Pearson correlation coefficient. Statistically significant results are marked in 
bold. 



3.1.3 Transfer of learning skills 
In contrast to the lecture students, the SCALE-UP group had to prepare the topics prior to coming to 
class. This flipped approach was new to all of the students. Furthermore, the in-class activities of the 
SCALE-UP group were designed with the goal of training the students in collaborative learning skills. 
We know that for their class preparations and exam studying, a great number of students were making 
use of learning groups, and we wondered if the students would naturally adopt those skills without any 
supervision. In general, we were interested in exploring the question of whether or not the SCALE-UP 
students were able to transfer those new learning approaches and skills to other subjects outside of a 
flipped classroom environment.  

The topics covered by the Phys2 part of the final exam were taught in a lecture environment, and the 
corresponding results may give some evidence about the extent of transferability. Unfortunately, the 
corresponding performance results (Tab. 1 and Fig. 5) show no significant differences between the 
two groups. We may thus conclude that students in the flipped learning environment were not able to 
adopt or to transfer their learning skills in a successful way beyond the SCALE-UP setting. Indeed, 
with only 14 weeks of flipped learning and only 3 contact hours per week, the period may have been 
too short for a fundamental shift in learning behaviors. Other studies suggest that students require 
more than a semester to adapt to the new learning method [14]. 

3.2 Evaluation results 
To support and enhance the quality of teaching, ETH Zurich has implemented a sophisticated survey 
instrument [15]. For each semester, students are invited to evaluate their courses via standardized 
online questionnaires. The survey switches every year between course evaluations, distributed at the 
end of the teaching period, and exam evaluations that are made available right after the exams but 
before the grades have been communicated. The response rate is typically around 40%.  

Our survey sets included 20 (course) resp. 24 (exam) responses for the SCALE-UP class and 105 
(course) resp. 131 (exam) responses for the lecture. Some of the survey questions explicitly address 
the learning behavior and the level of intellectual challenge experienced by the students. By analyzing 
the survey results related to these questions, we are able to draw conclusions about class attendance, 
time spent on out-of-class preparation, and self-confidence.  

Table 3. Selected results from the two student evaluation surveys. 

Survey question Scale Medians U-test 

A1 How often did you attend the 
course unit? 

1: always 
2: usually 
3: half of time 

1/1 p=.140 

A2 
How many hours on average per 
week did you spend doing work 
outside of contact hours? 

1: 0-1h 
2: 2-4h 
3: 5-7h 

2/2 p=.917 

A3 
I am able to explain the most 
important material learned in this 
course to a younger student. 

1: not true 
- 
5: abs. true 

3.5/3 p=.004 

B1 
I am able to explain the most 
important material learned in this 
course to a younger student. 

1: not true 
- 
5: abs. true 

4/4 p=.216 

B2 How many days did you spend for 
the preparation of the exam? 

1: 1-2d 
2: 7-13d 
3:14-20d 
4: >20d 

2/2 p=.490 

B3 How would you estimate your 
grade in the examination? 

1: failed 
- 
6: full points 

3/2 p=.012 

Ax = course survey, Bx = exam survey. Medians: MdnSCALE-UP / MdnLECTURE. Statistically 
significant results are marked in bold. 



Tab. 3 shows the questions with the corresponding median values. For each of the questions we have 
conducted a Mann-Whitney U-test. This statistical analysis is testing whether two samples (here 
SCALE-UP and LECTURE) are likely to derive from the same population. If the test yields a significant 
result, the two samples are considered to be different. 

Course attendance was not compulsory and the high degree of attendance (A1) mirrors the students’ 
high engagement in both settings. 

Two interesting outcomes are apparent. First, students from both groups spent about the same 
amount of time for their out-of-class studying (A2) and for their exam preparation (B2). Even though 
this finding is not completely new [16], the question of time investment is often an issue during 
discussions about flipped learning. It is worth mentioning that we did not enforce any pre-class 
preparation by offering incentives. Other studies have suggested that incentives are imperative for a 
functioning flipped learning environment [17]. 

The second surprising finding concerns the questions related to students’ self-confidence (A3, B1, 
B3). In the course survey, the SCALE-UP students exhibited a significantly higher degree of self-
confidence. However, this difference was leveled out in the exam survey, whereas here the grade 
expectation, a second confidence indicator, now was significantly higher for the SCALE-UP students. 

4 CONCLUSIONS 
Coming back to the main research questions of this study, we can summarize that: 

• During the intervention period, students from the flipped SCALE-UP group outperformed 
students from the lecture setting. This performance gain, however, was substantially reduced 
when evaluated over the medium-term scale.  

• For those students who participated in the 14-week flipped SCALE-UP group, we could not 
identify any transfer or modification of learning behavior that would induce better performance 
outside of a dedicated flipped learning setting. 

• Compared to the lecture students, students from the flipped SCALE-UP group did not invest 
more overall study time, even though they had to come prepared to class. 

• The SCALE-UP students manifested an increased level of self-confidence in their own learning 
achievements. 

Our study has some limitations, being based on a single intervention with only one cohort of students. 
However, we carried out the study within our local curricular, time, legal and resource constraints. 
Those constraints cover the typical setting of a European research-intensive university, and we hope 
that policy-makers and teachers can profit from our results, when they are confronted with making 
decisions and weighing the relative benefits of a shift to flipped learning. 

In the more general context of flipped learning research, we were able to make a contribution to some 
important aspects such as transferability or longitudinal effects that are still missing the literature [18]. 
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