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Abstract

To date, various systems are being studied and developed that operate at the quantum
limit. These systems provide versatile opportunities for quantum sensing and quantum
computation: Fast and high-fidelity single and two-qubit gates have been implemented
using superconducting qubits [1] where on the other side, low propagation loss of quan-
tum signals at room temperature can be implemented using optical photons [2]. Thus,
combining different systems would allow one to benefit from each system’s unique advan-
tages. To couple these systems in a useful way, reliable microwave-to-optical transduction
is needed.
Recent work has demonstrated that phonon modes in high-overtone bulk acoustic wave
resonators (HBARs) are promising candidates for mediating quantum states between
microwave and optical photons [3–8]. Yet, the use of an interim state requires the opti-
mization of transduction to both the microwave and the optical photon states: To achieve
reliable transduction between the microwave photon and the HBAR-phonon mode, we
must maximize the piezoelectric coupling between them, and to obtain reliable trans-
duction between the optical photons and the HBAR-phonon mode, we need to maximize
the Brillouin-like optomechanical coupling. As we therefore want to couple an optical
infrared (IR) laser and a superconducting antenna to the same HBAR-phonon mode, a
major challenge remains to avoid exposing the antenna to IR laser light. Indeed, infrared
light on superconductors leads to quasiparticles, which have various unwanted side ef-
fects.
In this work, we discuss various phonon mode shapes in HBARs that can enable simulta-
neous coupling to infrared laser light and microwaves. We discuss in detail the couplings
of the (1,0)-Laguerre-Gaussian (LG) mode in combination with a ring-shaped supercon-
ducting microwave antenna and the couplings of the (1,0)-Hermite-Gaussian (HG) modes
in combination with a circle superconducting microwave antenna. We will compare both
mode shapes regarding their coupling strengths and their infrared irradiation on the an-
tenna and show that the (1,0)-LG mode appears more promising in this regard.
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Chapter 1

Introduction

In a strongly interconnected society where fake news and trolling influence politicians’
agendas, there is a need for high-security information channels. In fact, confidentiality
is one of the main requirements in peace mediation processes [9]. Quantum technology
offers the possibility of inherently private communication channels, and constructing a
quantum internet lays the foundation for this.
Also, Richard Feynman claimed in the 1980s that the use of quantum computers would
simplify problem solving in physics, chemistry, and biology [10]. Various approaches are
being considered in research on the realization of quantum computers and each one has
its unique advantages. It has recently been shown that superconducting qubits could pro-
vide a powerful basis for building quantum computers and quantum computing nodes [1].
Yet, the microwave signals from superconducting qubits are not suitable for long-distance
transmission. For a practical use of superconducting quantum processors, long-distance
transport of quantum states will be of great importance. Therefore, the ability to trans-
duce a microwave quantum signal into an optical photon will become essential in the
near future.
For implementing microwave to optical transduction, recent work suggests the use of
high-overtone bulk acoustic wave resonator (HBAR)-phonon modes [3–8]. Microwave
states can be transduced into phonon states of the HBAR by piezoelectric coupling.
From there, the phonon states can be read out into optical infrared (IR) photons using
Brillouin-like optomechanical coupling. The reverse path from the IR photons to the
microwave signal works with the same coupling mechanisms. In the center of Figure
1.1, we show a planned experimental setup for the transduction experiment. The HBAR
is placed around an optical cavity, which enables the optomechanical coupling and the
piezoelectric material on the HBAR enables the electromechanical coupling to the an-
tenna of the superconducting qubit.
In performing the transduction experiment, we must be careful of two things. First, the
antenna must not disturb the cavity field. Second, as we aim to couple to the same acous-
tic mode with an infrared laser and a superconducting antenna, we need to consider the
effects of IR light on the superconducting antenna. Radiation of IR light onto supercon-
ductors breaks Cooper pairs and creates quasiparticles. As the density of quasiparticles
rises above the one of Cooper pairs, superconductivity breaks down. But already at
lower concentrations, quasiparticles significantly degrade the coherence time of qubits
[11]. Hence, we seek to protect the superconducting antenna from IR radiation as much
as possible.
While we want to keep the IR radiation on the antenna low, we also want to make the
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1. Introduction

two couplings to the HBAR phonon mode as strong as possible. This work focuses on
understanding what is needed to achieve this. In the beginning we will give an overview
of relevant physical concepts such as phonon modes, piezoelectric coupling, Brillouin-like
optomechanical coupling and quasiparticles. We will then explain the planned device
design and how we simulate acoustic modes inside the HBAR. In chapter 5 we will focus
on two acoustic mode shapes - the (1,0)-Hermite Gaussian (HG) mode and the (1,0)-
Laguerre Gaussian (LG) mode - and explore their qualities in terms of coupling strengths
and avoiding quasiparticles.
We must remember, however, that the full transduction process depends on multiple
interdependent factors. Figure 1.1 shows our strategy to find optimized transduction
parameters. We chose to set the the goals circled in red: Increasing electromechanical
coupling rate, increasing optomechancial coupling rate and decreasing quasiparticle gen-
eration rate on the antenna. These are not the only limiting factors in the transduction
process, but we will focus on them for now. To achieve these set goals, we intend to
adjust three factors: the superconducting antenna, the IR laser cavity mode and the
acoustic HBAR mode. In Figure 1.1, these are shown in blue.

Figure 1.1.: Overview of transduction problem using acoustic HBAR modes for mediating
quantum states between the microwave and the optical quantum states.
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Chapter 2

Background

In this section we recall the physical background of our quantum transduction experi-
ment. We will start by explaining the principles of acoustic wave propagation and how
acoustic waves can form standing modes. We will then explain how these acoustic modes
can couple optomechanically and electromechanically to other quantum systems. Fi-
nally, we will explain the formation of quasiparticles inside a superconductor and discuss
in what way quasiparticles play a role in our quantum transduction experiment.

2.1. Acoustic Modes

The formation of standing acoustic waves is a key feature of our quantum transduction
experiment. To get a better understanding of it, we will work out the basics of acoustic
waves in solids in the following chapter.

2.1.1. Solid Mechanics

Before we can start to understand the propagation of acoustic waves, we need to know
the basic concepts of stress and strain. We will briefly introduce these concepts here.
We consider two neighbouring points M and N inside a three-dimensional solid, which
are displaced by external forces. This displacement happens not necessarily in the same
direction for both points. We can thus define a displacement vector for point M :

~u(~x) = ~x′ − ~x (2.1)

where ~x with coordinates xi is the position vector of the point before the displacement
and ~x′ with coordinates x′i = xi + ui is the position vector after the displacement. The
second pointN has its initial position at ~x+d~x with coordinates xi+dxi. Its displacement
is defined accordingly:

~u(~x+ d~x) = ~u(~x) + d~u (2.2)

where we defined d~u = ∂~u
∂xdx + ∂~u

∂ydy + ∂~u
∂z dz. The gradient of displacement ∂ui

∂xj
is a

second rank tensor and can be split up into a symmetric and an antisymmetric part:

∂ui
∂xj

=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
= Sij + Ωij (2.3)
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2. Background

The antisymmetric part Ωij describes any overall movement such as translations or ro-
tations, whereas the symmetric part Sij describes deformations within the medium and
is defined as the second rank tensor strain:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.4)

Hence, strain is a measure for the deformation inside a medium.
Mechanical contact at the surface or inside the volume and applied fields can lead to
external forces on a solid. The force inside a solid per unit area d~F/ds is called mechanical
traction ~T . Mechanical traction is not necessarily perpendicular to the surface s on which
we define it. Yet we can define a unit vector ~l normal to the surface, which we can relate
to the mechanical traction as follows:

~T (~l) = Tik~l (2.5)

Tik is what we then call the stress tensor.
The relation between the stress and the strain can be expressed in a Taylor expansion:

Tij(Skl) = Tij(0) +

(
∂Tij
∂Skl

)
Skl=0

Skl +
1

2

(
∂2Tij

∂Skl∂Smn

)
Skl=Smn=0

SklSmn + ...

It has been shown experimentally that for small deformations we can omit higher order
terms. We assume here, that there are no external forces acting on the surface of the
solid (Tij(0) = 0), such that we obtain Hook’s law:

Tij = cijklSkl (2.6)

where we define cijkl =
( ∂Tij
∂Skl

)
Skl=0

to be components of the stiffness tensor.
Once we have defined the strain and the stress, we can take a look at the change of
internal energy U per unit volume:

dU = δw + δQ (2.7)

where δQ is the heat gained per unit volume and δw = TijdSij is the change of elastic
potential energy per unit volume. Using Hook’s law we derived above, we get the change
of elastic potential energy:

δw = TijdSij

= cijklSkldSij

=
1

2

(
cijklSkldSij + cijklSijdSkl

)
=

1

2
cijkld(SijSkl)
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2.1. Acoustic Modes

Hence we obtain the elastic potential energy per unit volume ep as a quadratic function
of the strain [12]:

ep =
1

2
cijklSijSkl. (2.8)

2.1.2. Helmholtz Equation and Orthogonal Waves

As we have now defined internal stresses inside a solid Tij , we can use this definition to
write down the equation of motion:

ρ
∂2ui
∂t2

=
∂Tij
∂xj

(2.9)

where ρ is the material density. We have again assumed here, that there are no exter-
nal forces acting on the surface of the solid. Rewriting Hooke’s law (2.6) in terms of
displacement:

Tij =
1

2
cijkl

∂uk
∂xl

+
1

2
cijkl

∂ul
∂xx

= cijkl
∂ul
∂xk

(2.10)

where we used the fact, that cijkl = cijlk, which made the two factors in the summation
equal. We can then use this in the equation of motion:

ρ
∂2ui
∂t2

= cijkl
∂2ul

∂xj∂xk
(2.11)

which is the wave equation in solids [12].
Next, looking for solutions of this wave equation, we consider paraxial waves: A paraxial
wave vector is assumed to make small angles with the acoustic axis which, analogous to
the optical axis, is the general propagation direction of the acoustic wave. To construct
paraxial waves we take a plane wave and modulate it with a slowly varying complex
envelope a:

u(x, y, z) = a(x, y) exp(−ikLz) (2.12)

The transversal envelope a(x, y) must satisfy the paraxial Helmholtz equation:

∇2
Ta(x, y) + k2Ta(x, y) = 0 (2.13)

where ∇2
T = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplace operator and kT the transversal

wave vector. We have made here the assumption that the material is isotropic in the
transversal directions. This is true for longitudinal waves propagating along the c-axis
of sapphire.
We consider two orthogonal sets of functions that solve this equation: HG functions and
LG functions. You can see their intensity distribution in Figure 2.1 and we will later
encounter these distributions when we simulate the acoustic modes inside the acoustic
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2. Background

resonator.
If u(x, y, z) forms a standing mode in the resonator, its phase front has the same shape

Figure 2.1.: Intensity distribution of LG and HG modes [13].

as the surface on which it gets reflected and the longitudinal wavevector kL is fixed by
[14]:

kL =
2πm

Lac
(2.14)

where Lac is the length of the acoustic resonator.

2.2. Optomechanical Coupling

To efficiently transduce the phonon quantum state into a optical quantum state and vice
versa we want to enhance coupling between the phonon and the optical mode. This
coupling mechanism is based on Brillouin scattering. In the following section, we will
first explain the general optomechanical Hamiltonian and then focus on the Brillouin-like
interaction in more detail [15].

2.2.1. Optomechanical Coupling Rate

Optomechanical systems couple mechanical motion to cavity radiation fields. The fun-
damental mechanism that creates this coupling is the momentum transfer between the
phonons of the mechanical motion and the photons of the radiation field. Momentum
transfer from photons to phonons works trough radiation pressure. One of the simplest
forms of radiation pressure is the momentum transfer caused by the reflection inside a
Fabry-Pérot cavity. In our system, however, the radiation pressure mechanism is slightly
more complex.

6



2.2. Optomechanical Coupling

The radiation pressure mechanism in our system uses the electrostrictive force: The pho-
ton field displaces positive ions inside the crystal in direction of the electric field and
negative ions in the opposite direction. The displacement results in an overall strain
in the crystal, namely our phonon mode. The strain on the other hand modifies the
medium’s refractive index, creating an index grating. This grating scatters the photon
into another mode at a slightly different frequency. This type of scattering is called stim-
ulated Brillouin-scattering and accordingly we call the resulting optomechanical coupling
Brillouin-like coupling.
As we have seen in equation 2.12, we can describe the acoustic mode as the product of
an oscillation along the z-axis and a complex envelop in the x-y plane S0(x, y).

S(x, y, z) = s · S0(x, y) · sin(kacz) (2.15)

kac is the wavevector of the acoustic wave and s is here the normalization constant derived
in section 2.2.3. Similarly, we can describe the electric field of the photon which is a mode
of the optical cavity:

E(x, y, z) = e · E0(x, y) · sin(kopz) (2.16)

where kop is the wavevector of the optical cavity field and e is again the normaliza-
tion constant further explained in section 2.2.3. We have introduced here the envelopes
S0(x, y) and E0(x, y) in the x-y plane as this
Accordingly we can now consider the interaction Hamiltonian for the Brillouin-like op-
tomechanical coupling:

H int =
1

2

∫
V
ε0ε

2
rEj+1(x, y, z)Ej(x, y, z)p13S(x, y, z)(â†j+1âj b̂+ âj+1â

†
j b̂
†)dV (2.17)

εr is the relative permittivity of the crystal and p13 is the photoelastic constant which
couples the z-component of the strain S and the x-component of the photon fields Es
and Ep. The term â†j+1âj b̂ represents the annihilation of an optical mode and a phonon
mode to create a photon mode at the sum of their frequency and the other term âj+1â

†
j b̂
†

represents the creation of a photon and a phonon and the annihilation of a photon.
Applying a strong control laser on the lower frequency leads to an effective beamsplitter
Hamiltonian:

H int = −~gom0
√
nc(â

†
j+1b̂+ âj+1b̂

†) (2.18)

where gom0 is the single photon optomechanical coupling rate:

gom0 =
1

2~

∫
V
ε0ε

2
rEj+1(x, y, z)Ej(x, y, z)p13S(x, y, z)dV (2.19)

Thus applying a strong control laser on the lower frequency increases the optomechan-
ical coupling strength by the square root of the intracavity photon number. How this

7



2. Background

correlates with the input laser power is explained in section 2.2.6. Thus, ignoring the
change in photon number of mode j, we note that we can either convert a photon into
a phonon (âj+1b̂

†), which corresponds to Stokes scattering, or we can convert a phonon
into a photon (â†j+1b̂), which corresponds to anti-Stokes scattering [15].

2.2.2. Propertiers of Stimulated Brillouin Scattering

Phase Matching

Taking a deeper look into stimulated Brillouin scattering we can distinguish two types of
it: Depending on the direction of the scattered photon, we call the process either forward
or backward scattering. To achieve the high frequency acoustic phonon, which we need
to get close to the energy or the qubit, we use backward scattering. The wave vector
relation of backward scattering is shown in Figure 2.2.
The stimulated Brillouin scattering process must therefore fulfill the phase matching

Figure 2.2.: Backward Stimulated Brillouin Scattering, where the pumped photon scat-
ters into another photon and a phonon.

condition:

~kj+1 = ~kj + ~kac (2.20)

where ~kj is the wavevector of the photon at whose frequency we pump with the con-
trol laser, ~kj+1 is the wavevector of the photons at the higher frequency and ~kac is the
wavevector of the phonon mode [16].

Energy conservation

We have seen, that a Brillouin-like optomechanical process involves two optical modes:
Due to energy conservation their frequency difference must be equal to the frequency of
the acoustic mode Ωac:

ωj+1 − ωj = Ωac (2.21)

8



2.2. Optomechanical Coupling

Here ωj+1 is the frequency of the higher energy photon and ωj the frequency of the lower
energy photon. Equation 2.21 can give us a deeper understanding of the electrostrictive
force. The pump and the vacuum electric field of the scattered light generate a beating
pattern which gives rise to the electrostrictive force. This force induces then a stress at
the beating frequency which moves at the speed of sound [16, 17].

2.2.3. Normalization of Optical Modes

In order that we can later scale the total coupling strength with the laser power, we need
to scale the amplitudes of the optical fields to the energy of a single photon. We do this
by integrating the energy density over the volume of the optical cavity, which must then
give us the energy of a single photon [15]:∫

V
εr(x, y, z) · |E(x, y, z)|2dV = ~ω0 (2.22)

where

E(x, y, z) = a · E0(x, y) · sin(kz) (2.23)

can describe either of the two photon modes. As we use a Gaussian laser beam to excite
the cavity, the envelope E0 for both photon modes will be Gaussian shaped but not yet
normalized. By substituting this field into the normalization condition above we find a :

a =

√
2~ω0

ε0Aop
· 1

Lac(εc − 1) + Lop
(2.24)

where

Aop =

∫ ∞
−∞

∫ ∞
−∞

E0(x, y)2dxdy (2.25)

is the transversal optical mode area. Lac and Lop are the physical length of the acoustic
and the optical cavity. The whole calculation can be found in Appendix A.2.

2.2.4. Normalization of the Acoustic Mode

Similar to the normalization of optical modes above - since we only couple to a single
acoustic mode at a time - we also need a normalization that accounts for the energy of a
single phonon. We again integrate the energy density over the whole volume and set it
equal to the energy of a single phonon [15]:∫

V
c33 · |S(x, y, z)|2dV = ~ωac (2.26)

9



2. Background

where

S(x, y, z) = s · S0(x, y) · sin(kz) (2.27)

is the strain field of the acoustic mode. Here the envelope S0 is what we get out of the
simulation and this is then not yet normalized. We can find the normalization constant
s by substituting this expression into the normalization condition above:

s =

√
2~ωacLac

c33Aac
(2.28)

where

Aac =

∫ ∞
−∞

∫ ∞
−∞

S0(x, y)2dxdy (2.29)

is the transversal acoustic mode area. The derivation can be found in Appendix A.1

10



2.2. Optomechanical Coupling

2.2.5. Crystal Position dependence

When aiming for maximal optomechancial coupling strength, we must also consider where
within the optical cavity it is best to place the crystal. Earlier we saw that in backward-
stimulated Brillouin scattering, the acoustic wave oscillates at the difference of the two
optical frequencies. However, for stable acoustic modes to build up, it is also important
to ensure that the acoustic wave satisfies boundary conditions at the crystal surfaces.
This can be achieved by properly positioning the crystal within the optical cavity.
For calculating the optimal crystal position, we will take a look at equation 2.19. We
insert the product form of the acoustic and the optical modes (equations 2.15 and 2.16)
and by doing so we decompose the integral into an integration over the transversal plane
and an integration along the z-axis. To determine the influence of the crystal position
we only need to look at the integral along the z-axis. We then define the distance from
the left mirror to the crystal facet as d and adjust the phases of the oscillations in the
integral of equation 2.19 accordingly:

gom0 ∝
∫ d+Lac

d
sin

(
k′j+1(z − d+

d

n
)

)
sin

(
k′j(z − d+

d

n
)

)
sin(kac(z − d))dz

=

∫ d+Lac

d

1

4

[
− sin

(
(z − d)(−2k′j) +

d

n
(k′j+1 − k′j)

)
+ sin

(
d

n
kac

)
+ sin

(
−(z − d)(2k′j+1) +

d

n
(k′j+1 − k′j)

)
+ sin

(
(z − d)2kac +

d

n
kac

)]
dz

=
1

4

[
− 1

2k′j

(
cos

(
d

n
(k′j+1 − k′j)− 2kjLac

)
− cos

(
d

n
(kj+1 − kj)

))
+ Lac sin

(
d

n
kac

)
+

1

2k′j+1

(
cos

(
d

n
(k′j+1 − k′j)− 2kj+1Lac

)
− cos

(
d

n
(kj+1 − kj)

))
+

1

2k′j

(
cos

(
2Lackac +

d

n
kac

)
− cos

(
d

n
kac

))]
≈ Lac

4
sin

(
d

n
kac

)
Here we have applied the sine multiplication rule i and the phase matching condition
(equation 2.20) in the first step and in the second step we compared the amplitudes: The
wavelengths and therefore the inverse optical wave vectors are much smaller than the
acoustic crystal length. Thus all terms except the one with amplitude Lac

4 are negligible.

isin(A) sin(B) sin(C) = 1
4

[
− sin(A-B-C) + sin(A+B-C) + sin(A-B+C)− sin(A+B+C)

]
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2. Background

Thus, we can maximize the integral along the z-axis if we position our crystal at:

d =
πn

2kac

For a setup using CaF2 as crystal, the optimal position is around 0.2 µm apart from a
mirror while the coupling goes to zero as the crystal is positioned at the mirror itself or
0.4 µm apart. In practice, however, it is challenging to position the crystal exactly [15].

2.2.6. Laser Power Requirements

To this point we have only talked about the optomechanical coupling between a single
photon and the acoustic mode. Thus, by shining the laser on the optical cavity, not
only a single photon ends up in the cavity mode at ωj , but multiple of them. The
optomechanical coupling rate gom scales with the number of intra-cavity photons nc:

gom =
√
nc · gom0 (2.30)

The number of photons that end up in the cavity is determined by the input laser power
Pin:

nc =
1

κc

Pin
~ωj

(2.31)

where we have assumed that we are on resonance and that the cavity is symmetric and
has no internal losses. The latter allows us to assume that the optical decay rate κ is
solely determined by the coupling at the mirrors κc, which means κ = 2κc. κc can be
estimated using the mirror reflectivity R and the optical path length of the cavity lop:
κc = c

2lop
(1−R).

A standard way to compare the coupling rate and loss rates in an optomechanical system
is the cooperativity C. Regarding microwave to optical transduction, we aim to achieve
a cooperativity C greater than one:

C =
4(gom)2

κγ
≥ 1 (2.32)

A cooperativity greater than one is generally needed for efficiently transducing quantum
information [18]. For this reason we set the input laser power to a strength that allows
us to work in a regime where C > 1 [19–21]:

Pin ≥ ~ωj
κ2cγ

2gom0
2

(2.33)
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2.3. Electromechanical Coupling

The transduction process from the qubit state to the phonon state happens via piezo-
electric coupling. To understand the mechanism of piezoelectric coupling, we first look at
piezoelectricity in general and then we discuss what the piezoelectric coupling strength
depends on.

2.3.1. Piezoelectricity

As the word piezoelectricity comes from the Greek, it means "electricity through pres-
sure". Exerting a pressure on a material can deform the internal crystal structure. This
can separate the positive and negative charges inside the crystal thus forming little elec-
trical dipoles and polarizing the material. This polarization generates an electric field
and can be used in such a way to transform the mechanical energy from the deformation
into electrical energy.
This process also works in the reverse direction: Applying an electric field separates
positive and negative charges inside a crystal. This leads to a deformation within our
material. The part of strain, which is produced by the piezoelectric effect, Sp, is then
related to the electric field ~E via the piezoelectric strain tensor d:

Spi = dmiEm (2.34)

So the overall strain in the crystal becomes:

Si = sijTj + dmiEm (2.35)

where we used the Voigt notation, i, j = 1 to 6, m = 1 to 3 and sij are the elements of
the inverse of the stiffness tensor cij [22].

2.3.2. Electromechanical Coupling Strength

Now, to calculate the piezoelectric coupling strength gem, we take a look at the interaction
Hamiltonian of the strain field S and the electric field from the antenna Eant [19]:

Hint =

∫
V
d · cE · S(x, y, z) · Eant(x, y, z) (â†b̂+ âb̂†)dV (2.36)

Where the term â†b̂ represents the annihilation of a phonon and the creation of a mi-
crowave photon and the term âb̂† represents the creation of a phonon and the annihilation
of a microwave photon. We assume that the electric field stays constant over the small
length of the piezoelectric layer in our sample (E(x, y, z) = E(x, y)) and we again use
the oscillating strain field from equation 2.15. This way we obtain the electromechanical
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coupling strength:

gem =
1

~
·
(∫ ∞
−∞

∫ ∞
−∞

d · cE · s · S0zz(x, y) · Eant
z (x, y) dy dx

)
·
(∫ tp

0
sin(kz) dz

)
(2.37)

where tp is the thickness of the piezo layer. We assumed here, that the only non-zero
piezo tensor component is d33.From this equation, you can see that if the thickness of
the piezoelectric layer tp is half an acoustic wavelength, the second term is maximized.
We should therefore aim for a tp of half an acoustic wavelength, which is, in the case of
LiNbO3, around 0.27 µm.

2.4. Quasiparticle Generation

A common non-equilibrium effect in superconductors is the formation of quasiparticles
[23]. Quasiparticles are elementary excitations, which are created when Cooper pairs in
superconductors are split by sufficient energy. The energy needed for this is:

ε ≈ 1.65∆ (2.38)

where ∆ is the superconducting gap (for aluminum ∆Al = 0.18 meV [24]).
The formation of quasiparticles at low temperatures is exponentially suppressed [25]. For
superconducting aluminium at temperatures lower than 20 mK only one quasiparticle in
the volume of the Earth should exist [24]. Yet, a significant background of quasiparticles
has been observed in other experiments working at low temperatures [11, 26]. In our
experiment we additionally shine infrared light into the system, which provides even
more energy to create a significant amount of quasiparticles [27, 28].
The effects of quasiparticles in our system are various. To better understand them, we
define the normalized quasiparticle density xqp = nqp/ncp, where nqp is the quasiparticle
density and ncp is the Cooper-pair density. If the normalized quasiparticle density is
greater than one, superconductivity breaks down. But already at smaller densities xqp,
quasiparticles cause relaxation of transmon qubits. The energy relaxation rate of a
transmon due to quasiparticles is:

Γqp =

√
2ωq∆

π2~
xqp (2.39)

where ωq is the qubit frequency [11].
The motion of quasiparticles over our device is quite complex and not yet fully under-
stood. But it is important to note here, that the quasiparticle density is defined locally.
For example, if we have local superconductivity breaking, Cooper pairs from other areas
can rebuild the superconductivity. Furthermore, quasiparticles closer to the transmon
affect the relaxation rate more than those at the antenna.
To be able to estimate the quasiparticles in our system, we therefore need some sim-
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plifications: First we ignore all kind of quasiparticle motion. Then we only consider
quasiparticles generated by the IR laser light and neglect all other sources of quasiparti-
cles. The intensity of the Gaussian laser beam is

I(x, y, z) =
2P0

πw2
0

(
w0

w(z)

)2

exp

(
−2(x2 + y2)

w(z)2

)
(2.40)

where P0 is the total power of the laser beam, w0 is the waist radius at the focus and
w(z) the waist radius at a distance z from the focus. If we divide the local intensity
by the energy needed to form a quasiparticle ε, we get the local quasiparticle generation
rate:

gs(x, y, z) =
∂nqp(x, y, z, t)

∂t
=
I(x, y, z)

ε
(2.41)

We can thus estimate the local QP density generated by a laser pulse of duration τl:

nqp(x, y, z) =
I(x, y, z)

ε
· τl (2.42)

Martina Solini has calculated in her thesis [28] at which generation rate the superconduc-
tivity locally breaks. This happens for gths = 5.5 · 106 µm−2µs−1. We will later use this
value to compare different antenna shapes and to look at what radius around the laser
the generation rate drops below this value. A more complete discussion of the problems
caused by quasiparticles can be found in Martina Solini’s semester thesis [28].
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Chapter 3

Device Design

Figure 3.1 shows the setup of the quantum transduction experiment using acoustic bulk
modes. On a sapphire wafer is a superconducting qubit connected to an antenna. The
antenna emits the electric field of the superconducting qubit trough the piezoelectric
material. The piezoelectric material is deposited on a Calcium Fluoride (CaF2) crystal -
the high-overtone bulk acoustic wave resonator (HBAR, Figure 3.2). Around the HBAR
is an optical cavity with a flat and a concave mirror placed. The flat mirror is near the
HBAR and the concave mirror is on the other side of the sapphire wafer. An infrared
laser shining into the optical cavity can excite standing optical modes there.

Figure 3.1.: Quantum transduction experimental setup

3.1. Bulk Acoustic Wave Resonator

To obtain confined modes in the HBAR, it is needed to introduce curvature in one of
the two surfaces perpendicular to the propagation axis of the IR light. Up to this point,
a spherical dome was usually etched out of one of the surfaces [29]. Measurements have
shown that this dome is well described by the uppermost section of a sphere. This sphere
can have radii between 5 and 60 mm, depending on the material and the fabrication pro-
cess. The dome protrudes only about 1.2 µm from the rest of the surface. Hence, the
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3. Device Design

angle between the crystal surface and the curvature of the dome is very small. In addi-
tion, the mode is localized only at the center of the dome. For this reason, the rest of
the dome shape is not a determining factor for the shape of the mode.

Figure 3.2.: HBAR with curved surface shape

Part of this work was to modify the shape of the curvature on the top to obtain dif-
ferently shaped acoustic HBAR modes. Our goal was to obtain a mode consisting of two
spatially separated parts. One part should be well overlapped with the modes of the op-
tical cavity and the other with the electric field of the antenna from the superconducting
qubit.
The electromechanical coupling between the electric field of the antenna and the acous-
tic mode requires a piezoelectric layer, which for maximum coupling should have the
thickness of half a wavelength (as we have learned in Section 2.3). The layer is always
on the side which is closer to the antenna. Whether it is also on the same side as the
curvature shape, remains to be seen. This depends mainly on the fabrication process. In
the scope of this work, the piezoelectric layer was always assumed to be on the side of
the curvature.
For optimized electromechanical coupling, we also need to adjust the shape of the an-
tenna. Yu Yang tested different shapes in his master’s thesis [30]. In this work, we will
limit ourselves to a ring-shaped and a circular antenna.
Choosing the right materials is also an essential part in optimizing coupling rates. So
far, the HBAR was made of sapphire and the piezoelectric layer was aluminum nitride.
We hope, however, that if we make the HBAR from calcium fluoride (CaF2), we will
be able to benefit from the higher photoelastic constant. Furthermore, we hope that if
we use lithium niobate (LiNbO3) as the piezoelectric material, we can take advantage of
the better piezoelectric constant and smaller microwave losses. We will therefore use the
properties of CaF2 and LiNbO3 for the analyses in this work.
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Chapter 4

Simulation of acoustic modes

As we have seen, the acoustic mode is the link between the microwave signal and the
optical signal in our implementation of quantum transduction. Hence, to get an accurate
estimate of the transduction parameters, it is important to understand the shape and
size of the acoustic mode precisely. In order to do so, we simulate the acoustic mode in
a Python script - the BeamProp simulation. In the following section we will describe the
details of the simulation procedure.
Before we start the simulation process, it is necessary to define various key parameters.
The first thing to set is the length of the crystal and the size of the plane on which the
transversal mode exists. In order to limit the mode along the transversal plane, we then
define an absorption radius, outside of which the intensity of the mode is gradually set
to zero. We can then specify the sound velocity and Brillouin frequency of the crystal,
which allow us to determine the longitudinal mode number via the crystal length.
In order to obtain stable modes in a crystal, at least one surface must be curved accord-
ingly. Adjusting the shape of the crystal surface enables us to modify the mode shape.
For example, we get LG shaped modes if we have a dome-shaped surface on one side as
you can see in Figure 4.1a. And by changing the size of this dome we can modify the the
transversal size of the mode.
When we set the surface of the crystal, we also need to account for the piezoelectric
layer. We do this by changing the thickness of the surface according to the time it takes
for the sound to travel trough the piezoelectric layer. It is important to note here, that
by doing so, we neglect all possible reflections from the interface of the crystal and the
piezoelectric layer.
As we will later find the modes by propagating the acoustic field inside the crystal back
and forth, it is important to choose the shape of the initial field carefully. The symmetry
of this initial shape will be reflected in the symmetry of the modes that we find in our
simulation. For example, we will only find the centrally symmetric Laguerre Gaussian
modes if our initial field was also centrally symmetric (see Figure 4.1b).
Once all initial parameters have been set, we can propagate the acoustic field back and
forth for a range of different acoustic frequencies. Propagating the field one round trip is
done in the following way: Starting on one side of the crystal, we do a Fourier transfor-
mation of the initial field and propagate it to the other side. There we Fourier transform
the field back to the real space and we account then for the reflection by shifting the
phase accordingly. Doing another Fourier transformation, we then propagate back and
we do another Fourier transformation before we reflect at the other surface by again
shifting the phase. For the next round of propagation we take the acoustic field we ob-
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4. Simulation of acoustic modes

tained from the previous round trip. After each round trip the field is added up with the
fields obtained from previous round trips. This way fields can interfere constructively or
destructively. After a certain number of round trips we calculate the magnitude square
of the field to get a local intensity and integrate over the transversal plane which gives us
the total intensity. Calculating this intensity for different frequencies within the acoustic
free spectral range we get a spectrum with peaks at frequencies with constructive inter-
ference, which are the acoustic modes in the crystal (see Figure 4.1c).
In a next step, we want to have a more detailed picture of the shape of the modes. To
achieve this, we use the same initial field as before and let it again propagate back and
fourth at the at the peak frequencies. For each round trip we start again by using the
field obtained from the previous round trip. By doing more round trips than before and
restarting with the found mode profile as initial field, we gain a more detailed picture of
the mode shape in the transversal plane. Figure 4.1d shows an example of such a mode.
This transversal mode shape we will later use to do follow-up calculations.
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a b

c d

Figure 4.1.: a) Curved surface of crystal (dome protrudes flat HBAR surface), b) Cen-
trally symmetric initial acoustic field strength that is used for the simulation
of the spectrum c) and for the simulation of the various acoustic modes
like d). c) Acoustic mode spectrum from added up fields, where two sets of
modes belonging to two different free spectral ranges can be observed (as the
frequencies range over 1.25 of a free spectral range) d) Transversal shape of
the absolute value of the acoustic mode field inside crystal (here the (1,0)-LG
mode)
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Chapter 5

Optimization Analysis for
(1,0)-Hermite-Gaussian and

(1,0)-Laguerre-Gaussian Mode

In the following analysis, we will compare the (1,0)-LG mode and the (1,0)-HG mode
against each other. Both modes consist of two regions with opposite sign - our desired
spatially separated parts which can couple individually electromechanically and optome-
chanically. Also, both mode shapes are mathematically well understood.
We chose to compare the (1,0)-LG and the (1,0)-HG modes for various reasons. On one
hand is their appearance well understood. We can say with confidence, that all parts of
the mode belong to one single mode and that we can excite the whole mode although
spatially overlapping just with one part. On the other hand, the fabrication of their
belonging surface curvature is well developed and understood. In earlier experiments, we
always used the spherical dome shape and also a ellipsoid surface shape fabrication can be
done similar to a spherical dome surface. In contrast, in the case of double dome modes,
where two domes are spatially overlapping and their center are about 10 µm apart, more
work would have to be invested into development of the fabrication procedure. As some
quick testing has shown, the known fabrication procedure does not work here.
We have seen and understood the emergence of these two types of modes in various
BeamProp simulations. For a simple dome we get LG modes if we start the BeamProp
Simulation with a centered symmetric initial field. If the initial field is not centered or
symmetric, we can excite HG modes. Transferring this concept to the real experiment,
one will excite LG modes with a centered Gaussian laser beam and HG modes with a
non-centered beam. For the ellipsoid surface shape, as we have a lack of central symme-
try, we only get HG modes. But since the (1,0)-HG mode has a zero at the center, we
obtain this mode solely by exciting the HBAR not centrally. The initial fields are shown
in Figures 5.1b and 5.1c. We can note here that the different sizes of the initial fields
do not affect the mode shape as long as they initial field has the same symmetry as the
mode shape.
To provide a basis for a comparable situation, we decided to take the LG and HG modes
of the same spherical dome. As we will see later, the size of the modes plays an important
role and this way we can ensure that they have a comparable size. Figure 4.1a shows the
surface we used to get the (1,0)-Hermite- and (1,0)-LG mode (Figures 5.1d and 5.1e) we
will compare in the following chapter. In Section 5.4, we will, however, also discuss how
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we can change the shape of the HG mode to further optimize our system.
It is important to note here, that the purpose of this analysis is not only to compare
LG and HG modes but also to serve as a guide in case one wants to analyze other mode
shapes in the future.

a

b c

d e

Figure 5.1.: a) Spherical HBAR surface, b) non centered initial field to obtain (1,0)-HG
mode, c) centered initial field to obtain (1,0)-LG mode, d) (1,0)-HG mode
and e) (1,0)-LG mode.
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5.1. Electromechanical Coupling to (1,0)-Hermite-Gaussian
and (1,0)-Laguerre-Gaussian Mode

The transduction process between the superconducting qubit and the phonon of the
acoustic mode is determined by the electromechanical coupling strength. Thus, to enable
fast operations between the two quantum states, the electromechanical coupling strength
needs to be optimized. What is needed to achieve this and what we need to consider
when doing so is treated in this section.
Equation 2.37 describes the electromechanical coupling strength gem split into an integral
along the z-axis and an integral over the transveral plane. Earlier we showed that the
integral over the z-axis is maximized when we set the thickness of the piezoelectric layer
to half an acoustic wavelength. Now, we will ask ourselves what it needs to optimize the
integral over the xy plane.
For the optimization of the transversal integral we can adjust two points: If we first
choose suitable materials, we have a high piezoelectric strain coefficient d and a high
stiffness coefficient cE . We believe that the piezoelectric Lithium Niobate can offer us
this. If we then adjust the shape of the antenna and the acoustic mode, we can increase
their overlap integral. Unlike you will see in the optomechanical case, the overlap in the
electromechanical case gets maximized when the shape of the electric field and the shape
of the acoustic mode are the most similar.

5.1.1. Antenna Size and Shape

To find antennas with a suitable electric field, Yu Yang simulated several electric fields
from different antennas shapes using the software ANSYS. For the (1,0)-HG mode we
selected circular antenna shapes that will overlap with one half of the mode and for the
(1,0)-LG mode we selected ring antenna shapes that will overlap with the outer circle of
the mode. In Figure 5.2 both modes with the according antennas and optical fields are
shown. In the following section, we will now try to find the optimal sizes.
In Figure 5.3a we show the electromechanical coupling to the (1,0)-HG mode for dif-

ferently sized antennas. For each calculation, the antenna was positioned such that the
electromechanical coupling was the strongest. We observe that the coupling strength for
antennas with radii between 22 and 32 um increases as the antenna becomes larger.
However, as the antenna gets larger, its edge gets closer to the position of the laser beam,
which is at the other maximum of the acoustic mode. For a better understanding of this,
Figure 5.3b shows the distance between the edge of the antenna and the center of the
laser beam. This distance peaks at a radius of 26 µm and decreases thereafter. Hence,
for the following analysis, we will focus on the antenna with a radius of 26 µm, which
couples with a coupling strength of gem = 351 · 2π kHz.
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a b

Figure 5.2.: a) (1,0)-HG mode couples with circular antenna and optical field. b) (1,0)-
LG mode couples with ring antenna and optical field

a b

Figure 5.3.: a) Electromechanical coupling strength for different antenna radius, b) Dis-
tance from center of laser to the antenna edge.

Table 5.1 shows the electromechanical coupling from the (1,0)-LG mode to different
ring antennas. The coupling between the (1,0)-LG mode and the ring antenna is stronger
than the coupling between the (1,0)-HG mode and the circular antenna. The reason for
this might be that the ring better matches the shape of the (1,0)-LG mode than the
circle matches the shape of one side of the (1,0)-HG mode.
For choosing the optimal antenna shape one must consider three things: First, the cou-
pling to the acoustic mode must be strong. Then, the antenna should not be too close
to the laser, which is centered in the middle. And finally, the antenna surface must be
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as small as possible, so that minimal laser power is absorbed. Ring 4 seems to be well
suited for these criteria as we will discuss in more detail later.

rinner [µm] router [µm] gem/2π [kHz]
1 40 60 1283
2 43 52 1163
3 45 50 1035
4 45 55 1143
5 77 88 248

Table 5.1.: Electromechanical coupling to different antennas

5.1.2. Electromechanical selectivity

The coupling strength to the selected acoustic mode is not the only determining factor
for the transduction efficiency. It is in addition essential to prevent the antenna from
coupling strongly to other acoustic modes. We can achieve this in two ways. First, by
keeping the overlap of the other modes with the antenna small, we call this the spatial
selectivity. Second, by separating the frequencies of the modes so that we excite only
one mode with the frequency of the antenna field.
Figure 5.4 shows the spectra of the dome from Figure 5.1 which were obtained by the non-
centered excitation (5.4a) and the centered excitation (5.4b). Thus, Figure 5.4a shows
the spectrum when exciting the (1,0)-HG mode and Figure 5.4b shows the spectrum
when exciting the (1,0)-LG mode. The frequency spacing in the spectrum when exciting
the (1,0)-LG mode is twice as large as that of the spectrum when we excite the (1,0)-
HG mode. Hence, we conclude that for the (1,0)-LG mode, we can better suppress the
excitation of other modes and thus have better selectivity (provided that the coupling
rate to unwanted modes is similar in both cases).

a b

Figure 5.4.: a) Spectrum of non-central excited HBAR b) Spectrum of central excited
HBAR
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5.2. Optomechanical Coupling to (1,0)-Hermite-Gaussian
and (1,0)-Laguerre-Gaussian Mode

To transduce a quantum state between the acoustic mode and an optical mode of the cav-
ity, good optomechanical coupling is needed. In principle, the optomechanical coupling
rate can be increased simply by adding more photons to the cavity - meaning increasing
the power of the laser. But if we send more photons into the cavity, more photons end
up on the antenna where they generate quasiparticles. So to keep the number of photons
low but still increase the coupling rate, we need to optimize the single photon coupling
rate gom0 .
Several factors contribute to the single-photon coupling rate described in equation 2.19:
The relative permittivity εr and the photoelastic constant p13 are determined by the
material choice. As finding suitable materials is outside the scope of this work, we will
not discuss it further. The overlap integral of the two photon modes and the acoustic
mode is determined by the respective mode shape, which we would like to optimize here.
We have already seen in section 2.2 that it is possible to split the overlap integral into an
integral along the z-axis and an integral over the transversal plane. For maximizing the
integral along the z-axis, it is essential to find the right crystal position. For maximizing
the integral over the transversal plane, the situation is a littler more complex. While the
overlap of two normalized functions gives a maximum when both functions are equal, we
need to have a closer look at the situation with three normalized functions (see equation
5.2).

5.2.1. Overlap Integral of three normalized Gaussian functions

To gain an intuition on how three normalized functions must relate to each other in order
to maximize their overlap integral, we consider 3 Gaussian distributions:

fi(x) =

√
2

πW 2
i

· exp

(
−x

2 + y2

W 2
i

)
(5.1)

In the experiment, the two optical modes will have the same width Wop, whereas the
acoustic mode width Wac can be different. Thus, the overlap integral gives

O =

√
8

π
· Wac

2W 2
ac +Wop

(5.2)

The extensive calculation of the overlap integral can be found in Appendix A.3. Equation
5.2 is plotted in Figure 5.5. We observe that having a fixed optical width bigger than
a certain value, we find a optimal width of the acoustic mode at Wac =

√
Wop/2. But

most importantly, there is no optimal optical waist size. Decreasing the optical waist
size always improves the optomechanical coupling strength.
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Figure 5.5.: Overlap of three Gaussians. Two modes have the same waist - the optical
waist, which matches the laser waist, and the third mode, the acoustic mode,
has a different waist.

5.2.2. Laser Width and Position

For the analysis here, we do not consider Gaussian-shaped acoustic modes but LG and
HG modes which form higher order modes of the HBAR. Hence, the question arises how
the behavior from Figure 5.5 can be applied to these modes. To figure this out, we take
the HBAR modes described in Figure 5.1 and calculate the optomechanical coupling be-
tween them and two optical modes with varying waist sizes.
Figure 5.6 shows the coupling to the LG mode. The centers of the two optical modes and
the LG mode thereby always coincide. We can again observe that for small waist sizes,
the coupling becomes increasingly stronger and we can further observe that at an optical
waist size of about 42 µm the coupling is weakest. Here the optical modes overlap with
both parts of the (1,0)-LG mode with opposite signs, in such a way that the coupling
almost disappears.
In Figure 5.7, we see the optomechanical coupling strength to the HG mode. In the
case of HG mode, it is not immediately obvious where we must place the optical modes
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to achieve the strongest coupling. For this reason, we vary not only the waist size but
also the center of the optical modes. Again, we observe that for smaller optical modes
the coupling strength increases. Moreover, we can see that for small optical modes, the
strongest coupling arises, when placing the optical mode on the maximum of the acoustic
mode. For larger optical modes the maximum then shifts away from the center, such
that overlapping with the part of the mode of opposite sign is avoided.

Figure 5.6.: Single photon optomechanical coupling rate between the (1,0)-LG mode
shown in Figure 5.1e and optical modes with varying waist sizes.

Figure 5.7.: Single photon optomechanical coupling rate between the (1,0)-HG mode
shown in Figure 5.1d and optical modes with varying waist sizes and varying
positions.

30



5.2. Optomechanical Coupling to (1,0)-Hermite-Gaussian and (1,0)-Laguerre-Gaussian Mode

The above observations suggest us to use smaller optical modes to improve the op-
tomechanical coupling strength. This can be achieved by reducing the size of the laser
waist. In doing so, however, we are limited by the optical cavity setup.
A look at the optical laser setup allows us to estimate the smallest usable optical mode
waist: We shine the laser through a hole of about 1.5 mm in diameter and focus the laser
at some distance later, where the HBAR is located. This distance is fixed by the optical
cavity length, which itself is determined by its free spectral range corresponding to the
Brillouin frequency. If we reduce the waist size in the focus of a Gaussian laser beam, the
waist size along the z-axis diverges stronger. That means we can reduce the size of our
focused waist size only so much that the waist size 2 cm in front of it still fits through
the hole. Calculations, which are in the Appendix A.6, suggest that this minimum waist
size is approximately 20 µm.
To ensure that we can still assume a constant optical waist size over the length of the
HBAR, we need to consider the Rayleigh length. The Rayleigh length is a measure for
the length over which a Gaussian beam waist increases by a factor of

√
2. Going to

smaller focused waist sizes, the Rayleigh length decreases and the beam diverges more
strongly. At an optical wavelength λop of 1550 nm and a focused waist size of 20 µm,
the Rayleigh length zR = πW 2

op/λop is approximately 1.62 mm. Comparing this to the
length of the HBAR (l=0.42 mm), we can assume that the beam waist remains constant
over the entire HBAR.
At the smallest possible laser waist wop = 20 µm, we can now compare the single-photon
coupling rate. For the LG mode we set the laser in the center and get gom0 = 92 · 2π Hz.
To get the rate of the HG mode, we set the laser to the maximum of the HG mode and
get gom0 = 98 · 2π Hz. In terms of optomechanical coupling strength, both modes seem
to perform equally well.

5.2.3. Optomechanical Selectivity

In the realization of quantum transduction it is not only important to increase the cou-
pling between the selected modes but also to avoid coupling to other non-selected modes.
For the optomechanical coupling this specially holds for the transduction of a optical
quantum state to the acoustic quantum state. If the optical modes couple too much with
other acoustic modes, the quantum state ends up in multiple acoustic modes and can
not be transduced to the antenna properly.
The coupling is strongest to those modes which are closest in frequencies to the selected
mode. For the (1,0)-LG mode this are the (0,0)- and the (2,0)-LG modes and analogously
for the (1,0)-HG mode this is the (0,0)- and the (2,0)-HG mode [30].
Figure 5.8a shows the single-photon optomechanical coupling rate between the (0,0)-,
the (1,0)- and the (2,0)-Hermite Gaussian mode. Figure 5.8b shows the coupling rate
to the (1,0)-Hermite Gaussian mode divided by the sum of the coupling rates to the
non-selected modes.
We can again observe the increase of coupling as we go smaller in laser waist. In addi-
tion, the ratio of coupling to the selected mode to coupling to non-selected modes also
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increases. Regarding the (1,0)-Hermite Gaussian Mode, this implies that we can not
only increase optomechanical coupling but also optomechanical selectivity if we reduce
the laser waist.
We further observe that we can reach an optimal selective coupling to the (1,0)-Hermite
Gaussian mode if we shine the laser onto the right position. As we shine the laser onto
the maximum of the (1,0)-Hermite Gaussian mode, the coupling strength gets as big as
the sum of the couplings to the (0,0)- and (2,0)-Hermite Gaussian modes.
Figure 5.9a shows the single photon coupling strength to the (0,0)-, (1,0)- and (2,0)-LG

a b

Figure 5.8.: a) Single photon optomechanical coupling rate to the (0,0)-, (1,0) and (2,0)-
HG mode for different optical mode positions and waist sizes. b) Single
photon optomechanical coupling rate to the (1,0)-HG mode divided by the
sum of the coupling rates to the (0,0) and the (2,0) mode, divided only by
the coupling rate to the (0,0) mode and divided only by the coupling rate to
the (2,0) mode.

modes and Figure 5.9b shows the ratio of the coupling strength to the (1,0)-LG mode
divided by the coupling strength to the non-selected modes. As with the HG modes,
we see that not only the coupling strength improves for smaller waists, but also the op-
tomechanical selectivity. For the LG modes, there are two optimal positions where the
coupling to one mode becomes much larger compared to the coupling to the other modes.
Yet, exciting the mode at these position is unfavorable as they lie closer to the antenna.
In the beginning of this section we have mentioned that also frequency spacing between
the modes plays an important role in selectivity. Comparing the spectra obtained from
the same surface shape but differently excited (Figure 5.4), we observe that exciting the
mode non-centrally to get the HG modes leads to double the amount of excited modes
and thus to half the frequency spacing between the individual modes.
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Thus, two aspects play a role in the overall selectivity: the spatial and the frequency
selectivity. The spatial selectivity from Figure 5.9 performs slightly better for the (1,0)-
HG mode, but overall rather poorly. Yet, in terms of frequency selectivity, the (1,0)-LG
mode outperforms the (1,0)-HG mode. Considering the poor spatial selectivity for both
modes, it is eventually more advisable to aim for better frequency selectivity.

a b

Figure 5.9.: a) Single photon optomechanical coupling rate to the (0,0)-, (1,0) and (2,0)-
LG mode for different optical mode positions and waist sizes. b) Ratio of
single photon optomechanical coupling rate to the (1,0)-LG mode divided by
the sum of the coupling rates to the (0,0) and the (2,0) mode, only by the
coupling rate to the (0,0) mode and only by the coupling rate to the (2,0)
mode.
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5.3. Quasiparticle Generation Rate on Antenna

In section 2.4 we have seen many negative effects of laser light shining onto a supercon-
ductor. By using the two-part (1,0)-LG mode and the (1,0)-HG mode we hope to reduce
the absorbed laser power on the antenna. Here we will check how well this works and we
will briefly look in general at what distance away the antenna would be best to keep the
local quasiparticle generation rate g(r) on the antenna below some threshold.
To determine the quasiparticle generation rate on the antenna we need to specify the
input laser power. Regarding microwave to optical transduction, we aim to achieve a
cooperativity C greater than one (as we have seen in section 2.2.6). For comparing the
different designs from above, we set the laser power of each design such that we get a
cooperativity C > 1 (see equation 2.33).
For each setup we examine the total absorbed laser power, the resulting average laser
power per area, and we look at what distance from the laser center superconductivity
stops breaking locally. This happens when the local generation rate exceeds a value of
gs = 5.5 · 1024 m−2s−2. We will call this distance the critical radius.

5.3.1. Comparing (1,0)-Hermite- and (1,0)-Laguerre-Gaussian Mode

Using the (1,0)-HG mode allows us to couple one part of the mode with the optical modes
and one part with the electric field of the antenna from the superconducting qubit. The
observations in Yu Yang’s master’s thesis [30] suggest to use a circular antenna to couple
to one part of the (1,0)-HG mode.
For a laser waist of wop = 20 µm and the (1,0)-HG mode from Figure 5.1d we reach an
optomechanical coupling rate of 98 · 2π Hz. To achieve a cooperativity greater than one
we thus need a laser input power of Pin = 13 µW. At this laser power and for this waist
size we get a critical radius of 33 µm.
Figure 5.10 shows the critical radius (red) in relation to the position of the antenna
(brown) for the antenna setup from section 5.1. This antenna setup offers an electrome-
chanical coupling of gem = 351 ·2π kHz with an antenna radius of 26 µm. Yet the number
of quasiparticles created cannot be determined by the distance from the antenna only,
but also depends on the laser power absorbed by the antenna. In this case, the total
absorbed laser power is Pabs = 111 nW. As quasiparticles are assumed to be in motion,
we shall consider also the absorbed power per area. Here, there is a mean intensity of
Imean = 52 W/m2.
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Figure 5.10.: Quasiparticle generation rate on a antenna (r = 26 µm) placed 47.5 µm
away from the position of the laser with waist 15 µm and Ptot = 12.78
µW. On the antenna the absorbed power is Pabs = 111 nW and the mean
intensity Imean = 52 W/m2.

In the setup that utilizes the (1,0)-LG mode the laser shines onto the middle part of
the mode. The electric field is produced by a ring shaped antenna and couples to the
outer part of the LG mode.
As before, we set the laser waist to its minimum of wop = 20 µm and shine it centered onto
the mode in Figure 5.1e. This way we reach a single photon coupling rate of gom0 = 92 ·2π
Hz. Thus, to reach a cooperativity greater than one, an input power of Pin = 15 µW is
needed. Superconductivity therefore breaks at a critical radius of 34 µm.
The critical radius is shown in Figure 5.11. It shows again the situation with the antenna
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that leads to a strong coupling of gem = 1143 · 2π kHz, while having the inner radius of
the antenna as large as possible. The total absorbed laser power is Pabs = 0.6 nW which
is smaller than in the antenna setup of the HG mode. Divided by the antenna area we
get a mean intensity of Imean = 0.2 W/m2.

Figure 5.11.: Quasiparticle generation rate on a antenna (rsmall = 45 µm and rlarge = 55
µm) placed around the laser with waist 20 µm and Ptot = 15 µW. On
the antenna the absorbed power is Pabs = 0.6 nW and the mean intensity
Imean = 0.2 W/m2.

In terms of quasiparticle generation on the antenna, the setup with the (1,0)-LG mode
seems to perform an order of magnitude better. This is mainly because the distance of
the antenna edge to the center of the laser is larger in the case of the (1,0)-LG mode.
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5.3.2. Dependence of Laser Position and Width on Generation Rate

The size of the critical radius depends on the laser power and on the beam waist. Figure
5.12 shows how the radius changes as we adjust these two parameters. We observe that
the laser waist plays a much more important role than the laser power. Hence, decreasing
the laser waist not only increases the optomechanical coupling but also decreases the
amount of absorbed laser power on the antenna. You can find the derivation for the
waist dependence and power dependence of the critical radius in the Appendix A.5.

Figure 5.12.: Critical radius where superconductivity stops breaking as a function of laser
power and laser waist.

5.4. Mode Shape Adjusting

Up to this point, we have only looked at the HG modes created by a spherically symmet-
ric dome on the HBAR surface. A significant advantage the HG modes offer is that they
can also occur when we fabricate an ellipsoidal HBAR surface. An ellipsoidal HBAR
surface provides us more parameters to customize the acoustic mode shape. Further,
we have seen that for ellipsoidal surfaces the two individual parts of the (1,0)-HG mode
approximate more closely a Gaussian distribution than they do in the spherical dome.
To verify this, we simulate the modes of an HBAR with an ellipsoidal surface having
parameters similar to the dome from above. The dome from above was simulated as the
cut through a sphere with a radius r = 65 cm. For the ellipsoidal surface we again take
the cut, but this time from an ellipsoid. An ellipsoid can be described using the length
of the three principal axis a, b and c, where we cut along a plane perpendicular to the
c-axis. To create a more comparable situation, we choose the axis length similar to the
radius of the sphere from above. Namely: a = 65 cm, b = 40 cm and c = 65 cm.
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Using this ellipsoidal surface and a laser waist of wop = 20 µm we get a maximal single-
photon optomechanical coupling rate of gom0 = 103 · 2π Hz. In Appendix A.7.3, the
corresponding surface, the spectrum and the modes are shown. To get a cooperativity
greater than one, an input laser power of Pin = 11.45 µW is needed. Using a circle
antenna with radius r = 22 µm and placing it at a distance of 27.5 µm left of the cen-
ter seems to offer a good trade-off between increasing electromechanical coupling and
decreasing quasiparticle generation. It then leads to an electromechanical coupling of
328·2π kHz.
Figure 5.13 shows the critical radius we get for this setup. Comparing this to the setup
of the (1,0)-HG mode from above we notice that the optomechanical coupling increases
for an ellipsoid surface shape but the absorbed laser power and the mean intensity on
the antenna stays on a similar level.
Knowing now that a surface ellipsoid changes the shape of HG modes, we can ask how
strongly we can manipulate it. For this purpose, we simulated the shape of the (1,0)-HG
mode for different surface ellipsoids. To keep fabrication simple, we set the c-axis of these
ellipsoids to 22 cm. In Figure 5.14a we additionally kept the shorter b-axis constant at
15 cm and in Figure 5.14c we did it the other way around and kept the long a-axis at 35
cm and swept the short b-axis.
For the (1,0)-HG mode shapes, we evaluated four quantities: The distance of the maxi-
mum and the minimum (red) and the distances from the maximum to 1/e of the max-
imum value of the field to the top (grey), to the middle (blue) and to the left (green).
We notice that by making the long axis a longer, the distance between the maximum
and the minimum becomes larger, and by making the short axis b longer, we get larger
widths to the top.
For increasing optomechanical coupling we aim for smaller mode waists and for decreas-
ing the generation of quasiparticles a larger distance between the maximum and the
minimum is needed. In Figure 5.14b and Figure 5.14d we show the ratio of the distance
between the maximum and the minimum divided by the mean width. We defined the
mean width as the arithmetic mean of the width to the left, the width to the middle and
twice the width to the top (as the width to the top and the bottom are identical). In
other words, we see that we get the best mode shapes for the smallest possible short axes
b and the largest possible long axes a. However, the improvement here is only small and
we still must ensure that stable modes can be build up from the surface shape.
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Figure 5.13.: Quasiparticle generation rate on a antenna (r = 22 µm) placed 42.5 µm
away from the position of the laser with waist 15 µm and Ptot = 11 µW.
On the antenna the absorbed power is Pabs = 21 nW and the mean intensity
Imean = 13 W/m2.
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a b

c d

Figure 5.14.: a) Shape parameters when changing the long axis of the ellipsoid while
keeping the short axis at 15 cm, b) Distance between the maximum and
the minimum divided by the mean width of one part of the (1,0)-HG mode
when changing the long axis of the ellipsoid (short axis: 15 cm), c) Shape
parameters when changing the short axis of the ellipsoid while keeping the
long axis at 35 cm,b) Distance between the maximum and the minimum
divided by the mean width of one part of the (1,0)-HG mode when changing
the short axis of the ellipsoid (long axis: 35 cm).
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Chapter 6

Conclusion and Outlook

In this work, we have addressed several aspects that need to be considered when us-
ing HBAR-phonon modes for storing interim states in microwave to optical transduc-
tion: First, for increasing the electromechanical coupling of the phonon mode to the
microwave photon, the shape and size of the superconducting antenna play an important
role. Second, for increasing the optomechanical coupling between the phonon mode and
the optical photon, we can lower the laser waist sizes and achieve ever larger coupling
strengths. Here we are, however, limited in minimizing the laser waist by the distance
between the pinhole, where the beam enters the microwave cavity, and the focus of the
laser. Finally, for decreasing the quasiparticle generation on the superconducting an-
tenna, we can mainly increase the distance between the laser center and the antenna and
by again decreasing the laser waist. Additionally, we have seen that increasing the laser
power does not lead to a large increase of the critical radius. Thus placing the antenna far
away from the laser, we can increase the optomechanical coupling by increasing the laser
power. This way we generate less additional quasiparticles on the antenna compared to a
situation, where the antenna is placed closer to the laser. For this reason, it is important
to be able to place the antenna far away from the laser.
For two different acoustic mode shapes - the (1,0)-HG mode and the (1,0)-LG mode -
and appropriate antenna shapes, we have calculated certain key values. For the (1,0)-HG
mode and a circle antenna with radius 26 µm we reach an electromechanical coupling
strength of 351·2π kHz. With a fixed optical mode waist of 20 µm, we need an input
laser power of 12.8 µW to reach a cooperativity greater than one. This way, the antenna
absorbs a total laser power of 111 nW. For the (1,0)-LG mode and a ring antenna we
reach an electromechanical coupling strength of 1143·2π kHz. Here, we need a input
laser power of 14.5 µW to reach a cooperativity greater than one, which leads to 0.6 nW
of absorbed laser power.
These values show us that microwave to optical transduction using HBAR-phonon modes
for storing nterim states is indeed possible for both acoustic mode shapes. However, with
respect to the key values considered here, the (1,0)-LG mode performs remarkably better.
But the key values are not the only reasons why the (1,0)-LG modes seem to be more
suitable: A central laser excitation leads on one hand to a less dense spectrum which
increases both the electromechanical and the optomechanical selectivity and it leads on
the other hand to an easier alignment of the laser onto the surface shape of the HBAR.
Finally, we have shown in this thesis, if transduction efficiency is to be enhanced, which
parameters are worth adjusting and which are not. For example, decreasing the laser
waist yields to amplification of optomechanical coupling strength and reduction of quasi-
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6. Conclusion and Outlook

particle generation on the antenna. It is important to mention that quantum transduction
is a multi-parameter problem and we have considered only a limited subset of them here.
In case certain parameters change substantially in the future, this work can be used as a
guideline to find optimal acoustic modes.
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Appendix A

Appendix

A.1. Normalization of Acoustic Mode

In order to calculate the overlap for the coupling strengths correctly, we must normalize
the acoustic mode: For this we integrate the energy density of a single phonon mode over
the whole HBAR and set it equal to the energy of a single phonon with the corresponding
frequency ωac. ∫

V
c33 · |S(x, y, z)|2dV = ~ωac (A.1)

where c33 is the stiffness coefficient and S(x, y, z) is the strain field. Using a as the
normalization constant we want to find and S(x, y, z) = a · S0(x, y) sin(kz) we get:

~ωac = c33

∫ ∞
∞

∫ ∞
∞

∫ Lac

0
a2|S0(x, y)|2 sin2(kacz)dxdydz

= c33a
2

∫ ∞
∞

∫ ∞
∞
|S0(x, y)|2dxdy︸ ︷︷ ︸
=Am

·
∫ Lac

0
sin2(kacz)dz

= c33a
2Am

[
z

2
− sin(2kacz)

4k

]z=Lac

0

= c33a
2Am

[
Lac

2
− sin(2kacLac)

4kac

]
Where Lac is the length of the aocustic cavity. We thus find the normalization constant
a:

a =

√
2~ωac

c33AmLac
(A.2)

Where we used the fact that sin(2kac · Lac) = 0, since 2kac ·Lac = 2 · 2πλac
·Lac = m · π for

λac of an acoustic mode and m ∈ N.
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A. Appendix

A.2. Normalization of Optical Mode

To calculate the overlap in the optomechanical coupling strength, we also need to nor-
malize the optical modes. For this, we again integrate the energy density of a single
mode over the optical cavity and set it equal to the energy of a single photon mode with
corresponding frequency ω0:

~ω0 =

∫
V
ε(r) · |E(x, y, z)|2dV (A.3)

(A.4)

where ε(r) is the permittivity of the material. We again want to find the normalization
constant b, where E(x, y, z) = b ·E0(x, y) sin(kz). But here it is important to note, that
we integrate over two different volumes: the vacuum and the HBAR.

~ω0 =

∫ 0

−Lac

∫ ∞
−∞

∫ ∞
−∞

εcε0b
2E0(x, y)2 sin2(kmatz)dxdydz
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∫ d0

0
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=b2ε0
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·
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−∞

E0(x, y)2dxdy︸ ︷︷ ︸
=Bm

·
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εc
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2
−
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(
4πn
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z
)

8πn
λ0
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(
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(
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2
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1

2
b2ε0Bm(Lac(εc − 1) + Lop)

Where kvac and kmat are the optical wavevectors in the vacuum and in the HBAR mate-
rial, εc is the relative permittivity of the HBARmaterial and λ0 is the vacuum wavelength.
In the first step, we split the integration over the length of the optical cavity Lop into an
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A.3. Overlap of three Gaussian functions

integration over the crystal length Lac and over the length of the optical cavity without
a crystal d0 = Lop − Lac. In the last step we used the fact that the acoustic and the
optical waves are standing modes of the acoustic and the optical cavity:

kacLac =
2π

λac
· Lac

=
2π

1/2λop
· Lac

=
4πn

λ0
· Lac

= q · π

where λop is the optical wavelength in the material, λ0 the vacuum wavelength, n the
refractive index of the material and q ∈ N. And we also used the fact that:

sπ = kop · Lac + k0 · d0

=
2π

λop
· Lac +

2π

λ0
· d0

=
2πn

λ0
· Lac︸ ︷︷ ︸

= q
2
π

+
2π

λ0
· d0

where s ∈ N. The last term then also needs to be l/2 · π, where l ∈ N and therefore
sin
(
4π
λ0
· d0
)

= 0. Thus, we have

b =

√
2~ω0

ε0Bm
· 1

Lac(εc − 1) + Lop
(A.5)

A.3. Overlap of three Gaussian functions

Having a fixed acoustic mode with a gaussian shape and a width Wac, we want to know
the width Wop of the optical modes so that the optomechanical coupling is maximized.
For this we analyse the overlap integral of the three gaussians from equation 2.37.
In a first step we normalize the gaussians, so their integral over the xy-plane is equal to
one. For this we take a gaussian:

f(x) = a · exp

(
−x

2 + y2

W 2

)
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where a is the normalization constant we are looking for.∫ ∞
−∞

∫ ∞
−∞

a2 · exp

(
−2

x2 + y2

W 2

)
dxdy = 1

a2 ·
∫ ∞
−∞

exp

(
−2

x2

W 2

)
dx ·

∫ ∞
−∞

exp

(
−2

y2

W 2

)
dy = a2

W 2π

2
= 1

gives us

a =

√
2

πW 2
.

Calculating the overlap:

O =

∫ ∞
−∞

∫ ∞
−∞

fac(x, y) · fj(x, y) · fj+1(x, y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

2

πW 2
op
e
−2x2+y2

W2op ·

√
2

πW 2
ac
e
−x2+y2

W2ac dxdy

=

√
8

π3W 4
opW

2
ac

∫ ∞
−∞

e
−( 2

W2op
+ 1

W2ac
)x2

dx ·
∫ ∞
−∞

e
−( 2

W2op
+ 1

W2ac
)y2

dy

=

√
8

π3W 4
opW

2
ac

π
2

W 2
op

+ 1
W 2

ac

=

√
8

π3W 4
opW

2
ac

πW 2
opW

2
ac

2W 2
ac +W 2

op

=

√
8

π
· Wac

2W 2
ac +W 2

op

We see that O goes to infinity as Wop goes to 0. Therefore the overlap of the increases
as the width of the optical gaussians goes to zero.

A.4. Crystal Position

The optomechanical coupling strength depends on the position of the HBAR inside the
optical cavity. To find the optimal position, we take a look at the optomechanical coupling
strength in the supplementary information of [3]:

gom0 =Aε0ε
2
rp13kac

√
~

ρALacΩac

√
ωjωj+1

ε0εeffr ALop
·∫ d+Lac

d
sin

(
k′j+1(z − d+

d

n
)

)
sin

(
k′j(z − d+

d

n
)

)
sin(kac(z − d))dz
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where d is the position of the crystal inside the optical cavity, εeffr is defined by εeffr ∗Lop =
Lac(εc − 1) + Lop and A is the optical and acoustic mode area (they are assumed to be
the same here). Using the identity S19 and the phase matching condition kac = k′j+1 +k′j
gives us:

gom0 =Aε0ε
2
rp13kac

√
~

ρALacΩac

√
ωjωj+1

ε0εeffr ALop
·∫ d+Lac

d

1

4
(− sin

(
(z − d)(−2k′j) +

d

n
(k′j+1 − k′j)

)
+ sin

(
d

n
kac

)
+ sin

(
−(z − d)(2k′j+1) +

d

n
(k′j+1 − k′j)

)
+ sin

(
(z − d)2kac +

d

n
kac

)
)dz

=Aε0ε
2
rp13kac

√
~

ρALacΩac

√
ωjωj+1

ε0εeffr ALop
· 1

4

[
− 1

2k′j
(cos

(
d

n
(k′j+1 − k′j)− 2kjLac

)
− cos

(
d

n
(kj+1 − kj)

)
+ Lac sin

(
d

n
kac

)
+

1

2k′j+1

(cos

(
d

n
(k′j+1 − k′j)− 2kj+1Lac

)
− cos

(
d

n
(kj+1 − kj)

)
+

1

2k′j
(cos

(
2Lackac +

d

n
kac

)
− cos

(
d

n
kac

)
)
]

≈Aε0ε2rp13kac

√
~

ρALacΩac

√
ωjωj+1

ε0εeffr ALop
· Lac

4
sin

(
d

n
kac

)

Therefore we get maximal coupling rate for

d =
πn

2kac

A.5. Critical Radius

Local quasiparticle generation increases with IR-laser intensity. For a Gaussian laser
beam, the intensity is Gaussian distributed and decreases exponentially from the center
of the beam. From equation 2.40 we know:

I(x, y, z) =
2P0

πw2
0

(
w0

w(z)

)2

exp

(
−2(x2 + y2)

w(z)2

)
(A.6)

We will ideally focus on the flat side of the HBAR. However, as the length of the crystal
is smaller than the Rayleigh length of the laser beam, we can consider the situation on
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the antenna at z = 0:

I(x, y) =
2P0

πw2
0

exp

(
−2(x2 + y2)

w2
0

)
(A.7)

=
2P0

πw2
0

exp

(
−2r2

w2
0

)
(A.8)

where we defined the radius r as the distance from the center of the laser beam.
The local quasiparticle generation rate can now be defined as:

gs(r) =
I(r)

ε
(A.9)

=
2P0

πw2
0ε

exp

(
−2r2

w2
0

)
(A.10)

where ε is defined in equation 2.38. Martina Soldini [28] has shown, that at a value of
gths = 5.5 · 106 µm−2 µs−1 the number of quasiparticles reaches the number of Cooper
pairs and we have superconductivity breaking. We can therefore find a radius rth at
which the quasiparticle generation rate reaches this value and there is superconductivity
breaking:

gths =
2P0

πw2
0ε

exp

(
−2r2th
w2
0

)
(A.11)

Which leads to:

rth =

√
1

2
w2
0 · ln

(
2P0

gths πw
2
0ε

)
(A.12)

We thus see, the critical radius depends on the laserwaist w0 and the input laser power
P0.

A.6. Limited Optical Waist Size

A Gaussian beam’s amplitude in the transversal plane is Gaussian distributed with waist
w(z). Along the axis of propagation this waist changes according to:

w(z) = w0

√
1 +

(
z

zR

)2

(A.13)

with the Rayleigh length zR:

zR =
πw2

0n

λ0
(A.14)
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A.6. Limited Optical Waist Size

As we want to go lower in optical waist size we are now limited due to the cavity geom-
etry: In the cavity geometry we shoot the laser beam through a pinhole with radius of
approximately 1.5 mm. Around 2 cm behind the pinhole lies the focus with waist w0.
As we go lower in waist at the focus w0, the waist at the pinhole w(z = 2 cm) increases.
We therefore need to find the minimal waist w0, which allows us to pass the most part
of the laser beam trough the pinhole.
Aiming for a waist at the hole of 0.5 mm, we get a focus waist size of 20 µm. However,
it should be noted here that the 2cm between the hole and the focus is rather large, and
it would probably also work with 1 cm. So you could also try a smaller waist size at the
focus.
Additionally, by changing the optical waist size, the radius of curvature of the beam front
changes as well. To adapt the system to the changed radius of curvature, it is necessary
to find suitable mirrors. However, at a distance of 2cm the radius of curvature does not
change too much and suitable mirrors can be found for a wide range of different waist
sizes.
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A.7. BeamProp Simulations

A.7.1. Dome Surface Laguerre Gaussian Modes

a Spectrum

b HBAR surface c Mode 0, (0,0)-LG Mode d Mode 1, (1,0)-LG Mode

e Initial Excitation Field f Mode 2, (2,0)-LG Mode g Mode 3, (3,0)-LG Mode
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A.7. BeamProp Simulations

A.7.2. Dome Surface Hermite Gaussian Modes

a Spectrum

b HBAR surface c Mode 0, (0,0)-HG Mode d Mode 1, (1,0)-HG Mode

e Initial Excitation Field f Mode 2, (2,0)-HG Mode g Mode 3, (3,0)-HG Mode
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A.7.3. Ellipsoid Surface

a Spectrum

b HBAR surface c Mode 0, (0,0)-HG Mode d Mode 1, (1,0)-HG Mode

e Initial Excitation Field f Mode 3, (2,0)-HG Mode g Mode 4, (3,0)-HG Mode

A.7.4. Simulation parameters

Here are the parameters listed we used for the simulation:

Parameter Value Comment
Brillouin frequency 13.4 · 109 Hz of CaF2

Longitudinal sound velocity 7204 m/s in CaF2

HBAR length 420 µm wafer thickness
Exponential Correction Factor 2.473 corrects for the slowness surface
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