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Abstract

Hybrid quantum systems for coupling superconducting qubits to acoustic quantum states
are promising platforms for studying novel approaches to quantum information process-
ing. It has potential in quantum computing, quantum communication, and quantum
sensing. In our setup, we utilize bulk acoustic waves (BAW), due to their low loss and
orthogonal modes with frequencies in the GHz regime. The properties of these modes are
important to our system performance. In this project, we design an experiment to mea-
sure these acoustic modes properties. An electrical resonator is designed and coupling
to a BAW resonator piezoelectrically. We design using a network analyzer to measure
the frequency and phase response of the system. To fit the data and obtain values for
the coupling and coherence properties of the involved modes, a model is derived from
the basic input-output theory. Experiment parameters are designed based on simulation
results. In the experiments performed within the scope of this project, we measured bare
electrical resonators and analyzed the data. We also introduce the acoustic resonator
based quantum circuit (ARQC) which is to use phonon modes in combination with a
superconducting qubit to simulate a quantum circuit. And show a simulation of experi-
ment demonstration which we can realize on our platform based on ARQC. Based on our
research, we discuss some application directions of our system and suggest some ways to
improve the coupling between the qubit and phonon modes.
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Chapter 1

Introduction

Humans always pursue more powerful computing ability. By Moore’s law, the number
of transistors on a chip in a dense integrated circuit doubles about every two years [1].
However, during the last decades, this exponential growth starts to saturate. Further
reduction in insulator thickness would have resulted in unacceptable and exponential
increases in gate leakage current through direct quantum tunneling [2]. Moreover, tradi-
tional computers are inefficient in certain important problems, such as prime factorization
[3].
Therefore we need to find a new way to achieve more powerful computing, and one of

the most attractive solutions is quantum computation [4]. Quantum computation is gov-
erned by quantum mechanics. In quantum computation, we no longer use discrete values
as 0 and 1 to represent one bit of information, but instead, we use the advantage of super-
position and entanglement in quantum mechanics to encode information. Compared with
traditional classical computers, quantum computers have a great advantage in searching
algorithms, hidden subgroup problems, and quantum simulation. Quantum computation
has been developing for decades, both in theory and experiment. Many different physical
platforms have so far been investigated for quantum information processing. Examples
are superconducting quantum circuits, trapped ions, quantum dots, nuclear magnetic res-
onance quantum computers, diamond-based quantum computers and so on [5–9]. Each
candidate shows their advantages but also shortcomings (e.g. superconducting qubits are
easy to scale but have low coherence time, compared to diamond-based quantum com-
puter). We still have a long way to go to achieve a real commercial universal quantum
computer.
Besides quantum computation, quantum communication is also a field of growing in-

terest. It is mainly based on the transmission of entangled photon pairs by fiber or in
free space. Because of the quantum no-cloning theorem, quantum communication can
provide unconditional security, which means a security result is expected to hold against
all attacks allowed by quantum mechanics [10]. Satellites utilizing this concept have al-
ready been launched and intercontinental quantum communications between China and
Austria have been realized [11–13].
Quantum sensing is also a distinct and rapidly growing branch of research within the

area of quantum information and has shown significant progress in recent years [14].
Quantum systems and their properties are used to measure physical quantities beyond
classical limits. It has higher sensitivity and accuracy and shows great potential value in
other fields of science such as biomedical imaging and metrology.
All different branches of quantum information are based on physical implementation.
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1. Introduction

Figure 1.1.: The schematic of the experiment design

Quantum systems normally need well characterized qubits, good coherence, strong two
qubit interactions, initialization of the system, fast and high fidelity of readout [15].
However, every system has some disadvantages in several of these properties. The aim of
using hybrid quantum systems is to couple different kinds of quantum systems together
and combine the advantages of each part [16]. Recently, the coupling of a superconducting
qubit and a bulk acoustic resonator has been realized [17, 18]. This hybrid system can
take advantage of the long coherence time of the acoustic phonon and controllability
of the qubit. This hybrid system shows potential in quantum computation, quantum
communication, and quantum sensing. For instance, we could use phonon modes as
quantum memories and the qubit as a processor to investigate new models for quantum
computation. With this system, we can also realize microwave to optical transduction
on the single photon level. We could use this as a single IR photon source but also as a
communication link between two superconducting quantum processors.
The purpose of this thesis is to investigate the coupling between qubits and acoustic

resonators. In the circuit quantum acoustic dynamics (CQAD) systems, the supercon-
ducting qubit is coupled to an acoustic resonator by piezoelectric effect [17, 18]. The
properties of the coupling process such as the coupling strength and decay rate of phonon
modes determine how many operations can be performed in each sequence of the exper-
iment. Therefore we want to characterize these properties. For simplicity of the mea-
surement and fabrication, we design the device of coupling the acoustic resonator with
an electrical resonator to measure these values, which is more convenient in experiment
compared to a superconducting qubit.
The schematic of the overall look of the experiment design is shown in Fig 1.1. We

print an electrical resonator on one chip. And the acoustic resonator is on another
chip. These two resonators are coupled by the piezoelectric effect. The two chips are
bonded together and set inside a cavity. There is a pin in the cavity and coupled with
the electrical resonator. The pin is connected to a vector network analyzer (VNA) to
perform the measurement.
In the second chapter, we will derive a model for our system based on the input-

output theory. We begin from the Hamiltonian of our system and the quantum Langevin
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equation, combined with the microwave scattering matrix to get the relation between
the input signal and the output signal. In the third chapter, we will show the design
of each part of the system. The parameters are chosen based on the derived model and
the simulation results. In the fourth chapter, we will introduce the fabrication method
and measurement setup. We talk about the fabrication of the electrical resonator and
acoustic resonator first. The multiplexing setup and dilution fridge setup are introduced
afterward. In chapter five, we show the measurement results and data analysis, and we
discuss it. In chapter six, we introduce the acoustic resonator based quantum circuit
and explain how and why it works. We also simulate a proof-of-principle experiment of
this kind of circuit, which we hope to implement on our system. In the last chapter, we
make an overall conclusion of the thesis and close with some further outlook on hybrid
quantum systems.
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Chapter 2

Input-output theory

We want to characterize the properties of acoustic resonators by coupling them to an
electrical resonator. The input-output theory is a powerful tool to describe the response
of a driven quantum mechanical system. It is applicable to describe transmission or
reflection type experiments where an incident pulse is applied to the system and derive
the output response of the system to the input field.

2.1. Derivation of input-output theory

We start by computing an electrical resonator coupled to an input-output field. Here,
we assume the electrical resonator is the system, the input and output field is the bath
[19]. The model can be described by the following Hamiltonian

Ĥ = Ĥs + Ĥb + Ĥint, (2.1)

where Ĥs, Ĥb and Ĥint represent the Hamiltonians of system, bath, and interaction
respectively. Currently, we keep the system Hamiltonian generic and use creation and
annihilation operators to represent the bath and interaction Hamiltonians. Therefore

Ĥb = }
∫ ∞
−∞

dωωb̂+(ω)b̂(ω), (2.2)

Ĥint = }
∫ ∞
−∞

dω[κ(ω)b̂+(ω)ĉ+ κ∗(ω)ĉ+b̂(ω)]. (2.3)

Because photons are bosons, which obey Bose-Einstein statistics. So, operator b̂+,
b̂, which represent the bath field, and ĉ+, ĉ, which represent creation and annihilation
operators of the system, have the following commutation relations:

[b̂(ω1), b̂+(ω2)] = δ(ω1 − ω2), (2.4)

[ĉ, ĉ+] = 1. (2.5)

In the Heisenberg picture, we obtain the differential equation for the time evolution of
the bath field operator:
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2. Input-output theory

˙̂
b(ω) =

i

}
[Ĥ, b̂(ω)]

= −iωb̂(ω) + κ(ω)ĉ.
(2.6)

The evolution of the system field is

˙̂c =
i

}
[Ĥ, ĉ]

=
i

}
[Ĥs, ĉ] +

∫ ∞
−∞

dωκ(ω)(−b̂(ω)).
(2.7)

Integrating Eq. (2.6), then we get

b̂(ω) = e−iω(t−t0)b̂0(ω) + κ(ω)

∫ t

t0

dt′e−iω(t−t′)ĉ(t′), (2.8)

where t0 < t is the initial time. The first term describes the free evolution of the
bath mode. The second term is the dynamics due to the coupling to the system mode.
Substituting Eq. (2.8) into Eq. (2.7), we find

˙̂c =
i

}
[Ĥs, ĉ]−

∫ ∞
−∞

dω

∫ t

t0

dt′ κ(ω)2e−iω(t−t′)ĉ(t′)−
∫ ∞
−∞

dω κ(ω)e−iω(t−t0)b̂0(ω). (2.9)

The first term describes the free evolution of the system. The second term is the sys-
tem coupled to its earlier mode, which can be seen as a memory term. The third term is
the system couple to the earlier mode of the bath. Now, we use the first Markov approx-
imation. Here we assume κ is frequency independent, which is a good approximation in
the frequency range we care about. We use γ to represent resonator-bath coupling rate.

κ(ω) =
√
γ/2π (2.10)

Now we define the input field as

b̂in(t) = − 1√
2π

∫ ∞
−∞

dωe−iω(t−t0)b0(ω). (2.11)

Using the relation ∫ ∞
−∞

dωe−iω(t−t′) = 2πδ(t− t′). (2.12)

The commutation relation of the input field can be shown to satisfy

[b̂in(t), b̂+in(t′)] =
1

2π

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2e
−iω1(t−t0)eiω2(t−t0)[b̂(ω1), b̂+(ω2)]

= δ(t− t′).
(2.13)
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2.2. Input-output theory of an electrical resonator coupling with an acoustic resonator

Employing the identity
∫ t
t0
c(t′)δ(t− t′)dt′ = 1

2c(t), we can get∫ ∞
−∞

dω

∫ t

t0

dt′κ(ω)2e−iω(t−t′)ĉ(t′) =
γ

2π

∫ t

t0

dt′
∫ ∞
−∞

dωe−iω(t−t′)ĉ(t′)

= γ

∫ t

t0

dt′δ(t)ĉ(t′) =
γ

2
ĉ(t).

(2.14)

Putting all these pieces together, we get the Heisenberg equation for the field operator

˙̂c =
i

}
[Ĥs, ĉ]−

γ

2
ĉ+
√
γbin(t). (2.15)

This equation is called the quantum Langevin equation [20]. The first term describes
the dynamics of the system. The second term represents the damping of the system.
The last term represents the influence of an external mode on the system. We can also
define the output field as

b̂out(t) =
1√
2π

∫ ∞
−∞

dωe−iω(t−t1)b1(ω), (2.16)

where t1 >t and b1(ω) = b(ω′)|t=t1, and in analogy to the input mode, we get

˙̂c =
i

}
[Ĥs, ĉ] +

γ

2
ĉ−√γb̂out(t). (2.17)

From Eqs. (2.11) & (2.17), we can get the boundary condition of the input-output
field

b̂in + b̂out =
√
γĉ. (2.18)

2.2. Input-output theory of an electrical resonator coupling
with an acoustic resonator

For our system, the setup is an electrical resonator piezoelectrically coupled to an acoustic
resonator. The Hamiltonian of the system is

Ĥs = }ωaâ+â+ }ωcĉ+ĉ+ }gea(â+ĉ+ âĉ+), (2.19)

where â and â+ are the annihilation and creation operators for the acoustic mode. ĉ
and ĉ+ are the annihilation and creation operators for the electrical mode. gea is the
coupling strength between the electrical mode and the acoustic mode. The first term
describes the energy of the acoustic mode. The second term is the Hamiltonian of the
electrical mode. The third term is the interaction between the two resonators. The time
evolution of the electrical mode is

˙̂c = −iωc − igeaâ−
κtotal

2
ĉ+
√
κcb̂in, (2.20)

7



2. Input-output theory

Figure 2.1.: Schematic diagram of our system. κc is the coupling rate between the mea-
surement device and the electrical resonator, gea is the coupling rate between
the electrical resonator and the acoustic resonator. κi and Γ are the decay
rate of the photon in the electrical resonator and the phonon in the acoustic
resonator respectively.

where κtotal = κi + κc. κc is the coupling rate of the electrical resonator to the mea-
surement device and κi is the decay rate to other channels. From Eq. (2.11), The time
evolution of the acoustic mode can be written as

˙̂a =
i

}
[Ĥs, a]− Γ

2
â

= −iωaâ− igeaĉ−
Γ

2
â.

(2.21)

The driving frequency is ω. Therefore in equilibrium condition, we can assume â(t) =
ãe−iωt, ĉ(t) = c̃e−iωt. And plugging these into Eq. (2.21)

− iωã = −iωaã− igeac̃−
Γ

2
ã. (2.22)

From this, we get the relation between c̃ and ã:

ã =
−igeac̃

Γ
2 − i(ω − ωa)

. (2.23)

Let us now substitute Eq. (2.23) into Eq. (2.20), and we can find

c̃ =

√
κcb̃in

2g2ea
Γ−2i(ω−ωa) + κtotal

2 − i(ω − ωc)
. (2.24)

The boundary condition can be written as

b̃out = −b̃in +
√
κcc̃. (2.25)

8



2.3. Reflection construction and hanger construction

Finally, we can get the output field and define the reflection as

S11 =
b̃out

b̃in
=
− 2g2ea

Γ−2i(ω−ωa) + κc−κi
2 + i(ω − ωc)

2g2ea
Γ−2i(ω−ωa) + κc+κi

2 − i(ω − ωc)
. (2.26)

2.3. Reflection construction and hanger construction

There are several constructions of an experiment to measure the spectrum [21, 22]. Here,
we emphasize two of them. One is reflection construction, which measures the reflection
signal. Another one is referred to as hanger construction, in which an unbalanced tee
replaces the circulator of the reflection circuit (see Figs 2.2, 2.4).

2.3.1. Reflection construction

We already derived the measured signal for the reflection construction in the last section
using the input-output theory (Eq. (2.26)). We can also use methods from microwave
engineering to derive it [23]. This will help us to understand the formula derived in
section 2.3.2. We assume the total impedance in the red block in Fig 2.2 is Ztotal. And
the characteristic impedance of port 1 and port 2 is Zref0 . Based on the circuit analysis
from Fig 2.2, Sref11 is derived in Appendix A. The result is

Sref11 =
Ztotal − Zref0

Ztotal + Zref0

. (2.27)

Based on Eq. (2.26), the amplitude response and phase response of the spectrum
can be seen in Fig 2.3. In the spectrum simulation, we assume the coupling factor
of the electrical resonator and measurement device is κc = 10MHz, the internal loss
rate of the electrical resonator is κi = 50 kHz, frequency of the electrical resonator is
ωc = 6GHz, frequency of the acoustic resonator is ωa = 6.013GHz, coupling rate between
the electrical resonator and the acoustic resonator is gea = 500 kHz, the decay rate of
the acoustic mode is Γ = 20 kHz. These values are chosen based on the previous articles’
results and the simulation which will be explained in the next chapter [18, 21]. From
the plot we can see that both, amplitude and phase response, show a wide peak around
6GHz, corresponding to the electrical resonance. The thinner peak near 6.013GHz is
the resonance of the acoustic resonator. The width of the resonance of the electronic
resonator is κi + κc, and the contrast ratio is κi

κi+κc
, explaining the contrast of the peak

is much smaller than 1.

2.3.2. Hanger construction

The advantages of the hanger construction are no requiring special circuits elements and
support for many resonators to be multiplexed measured with the same input-output
lines[21]. Fig 2.4 shows the circuit representation of the hanger measurement. It looks
similar to the reflection measurement, except the signal outputs from port 2 directly

9



2. Input-output theory

Figure 2.2.: Circuit representation of reflection measurement construction. Element R1,
C1, and L1 represent electrical resonator. Element R2, C2, and L2 represent
the acoustic resonator. The electrical resonator is capacitively coupled with
the measurement device. The acoustic resonator is coupled with electrical
resonator piezoelectrically, which also be represented with the electrical cir-
cuit for convenience. The input signal comes in from port 1. The reflected
signal comes out from a circulator and to port 2.

Figure 2.3.: Frequency response of Sref11 . The blue curve represents phase response of
Sref11 spectrum. The red curve represents amplitude response of Sref11 spec-
trum

10



2.3. Reflection construction and hanger construction

Figure 2.4.: Circuit representation of hanger measurement construction.

instead of reflecting back. We assume the total impedance in the red block in Fig 2.2 is
Ztotal, which similar to the reflection measurement. The characteristic impedance of port
1 and port 2 is Zhanger0 . From analyzing the scattering matrix of this circuit (Appendix
B), the transmission signal Shanger21 can be written as

Shanger21 =
Ztotal

Ztotal +
Zhanger
0

2

. (2.28)

If we set Zhanger0 = 2Zref0 , then we can find the simple relation between Shanger21 and
Sref11

Shanger21 =
1

2
(1 + Sref11 ) =

1

2
(1 +

− 2g2ea
Γ−2i(ω−ωa) + κc−κi

2 + i(ω − ωc)
2g2ea

Γ−2i(ω−ωa) + κc+κi
2 − i(ω − ωc)

). (2.29)

We can understand this equation in the following way: In hanger construction, an
unbalanced T shape replaces the circulator in reflection construction. From the load
impedance side (red block in Fig 2.4), the effective impedance of the wire is a parallel
connection of port 1 and port 2 which is equal to half Zhanger0 . In this way, part of the
incident energy does not dissipate in the load impedance, and part of the reflected energy
from the load impedance goes to port 1.
Fig 2.5 is the phase and the amplitude response of the hanger construction with the

same parameters as in Fig 2.3. Comparing the amplitude response of these two con-
structions, we can find the contrast of the electrical resonance is deeper in the hanger
construction in the regime that κc � κi.
In the real experiment, because of the convenience to measure multiple resonators at

the same time, we decided to use the hanger construction. We will measure the Shanger21 (ω)

11



2. Input-output theory

Figure 2.5.: Frequency response of Shanger21 . The blue curve represents phase response of
Shanger21 spectrum. The red curve represents amplitude response of Shanger21

spectrum

and using Eq. (2.29) to fit gea and Γ, which we expect to measure. This is the logic of
this thesis.

12



Chapter 3

Simulation and device design

In last chapter, we have shown the derived formula of the spectrum we expect to measure.
And we will get the values we want by fitting with this formula. Therefore we need to
choose the experiment parameters for easier fitting. In this chapter, we first introduce
the flip-chip construction in section 3.1. Followed by the introduction of the electrical
resonator and high overtone bulk acoustic resonator in section 3.2 and 3.3, and finally we
show how we choose the design parameters of our experiment in the rest of this chapter.

3.1. Flip-chip construction

We use flip-chip construction to implement the experiment. The electrical resonator and
acoustic resonator are on two different chips which are bonded together. The distance
between two chips is designed to be 4µm. This geometry allows us to design, optimize,
and fabricate the electrical resonator and acoustic resonator separately to reduce the
acoustic resonator decay while enhancing the selectivity of the coupling to a single mode
[18]. There is an antenna connected to the electrical resonator. The antenna overlaps with
the piezo layer on the other chip, which induces coupling between the electrical resonator
and the acoustic resonator. The thickness of the piezoelectric material is about 1µm.

Figure 3.1.: Schematic of flip chip construction.

Fig 3.1 is the schematic of the flip-chip construction. The top chip is made of sap-
phire, which has excellent electrical insulating properties and thermal conductivity. The
electrical resonator is printed onto the top chip and is made of aluminum. We choose
aluminum because it becomes superconducting at low temperature, reducing the internal
loss. Beneath the antenna of the electrical resonator, the bottom chip made of sapphire

13



3. Simulation and device design

is bonded in place. The cross section of the bottom chip resonator is covered with a
dome-shaped aluminum nitride (AlN) layer, which is aligned with the electronic antenna
on the top chip during the bonding process. The bottom chip itself functions as a high
overtone bulk acoustic resonator (HBAR), where modes are confined to the cross section
defined by the AlN layer. The thickness of the chip depends on the wafer chosen, which
is normally 420µm.

3.2. Electrical resonator

We use the electrical resonator to measure the properties of the acoustic wave. The
electrical resonator we use is a half-wavelength resonator, which indicates the length of
the resonator is integral times of the half-wavelength. The resonator is put inside a cavity
along the longitude direction. There are two holes on the cavity to let a copper pin get
through the cavity, where the input signal transits through. The electrical resonator
couples with the pin and the cavity capacitively. The cavity is the ground plane. We
want to couple the superconducting qubit to acoustic phonons in the future. Therefore,
we are more curious about the properties of the phonons that have frequencies in the
range of 5 to 7GHz, the same as the typical operating range of our transmon qubits
[24]. So, we also need to design the resonator in this range, which corresponds to a total
length of resonator pad and antenna lead roughly 12mm to 18mm.

Figure 3.2.: Schematic of the electrical resonator. There are three parts of the electrical
resonator. The left part is the resonator pad, and the right part is the
antenna. The resonator pad and the antenna are connected by a thin antenna
lead. The electrical resonator is put inside a cavity and capacitively coupling
to the cavity and the pin.

14



3.3. Acoustic resonator

3.3. Acoustic resonator

3.3.1. Quantization of phonon mode

Analogous to electromagnetic modes, suppose the phonon mode has the form of [25–27]

~u(~r, t) = u0e
−iωt ~f(~r) + c.c. = u0(t)~f(~r) + c.c. , (3.1)

where ~u(~r, t) represents displacement at point ~r and time t, ~f(~r) is the spatial dependence
and polarization of the displacement which is normalized to∫ ∣∣∣~f(~r)

∣∣∣2dV = 1. (3.2)

~u(~r, t) should fulfill Newton’s second law:

ρ
∂2~u

∂t2
= ∇

↔

T (~x), (3.3)

where T is the stress tensor. Expressing the stress tensor by the displacement, we get

ρ
∂2 ~ui
∂t2

=
∑
jlm

cijlm
∂2ul

∂xj∂xm
, (3.4)

where cijlm is the stiffness tensor. i, j, l,m change from 1 to 3 and represent the three
canonical directions. The Hamiltonian of the system is

H = T + V

=

∫
(
ρ

2

∑
i

∣∣∣∣∂ui∂t
∣∣∣∣2 +

1

2

∑
ijlm

cijlm
∂ui
∂xj

∂ul
∂xm

)dV.
(3.5)

Revisiting the potential energy term:

V =

∫
1

2

∑
ijlm

cijlm
∂ui
∂xj

∂ul
∂xm

dV

=
1

2

∫ ∑
ijlm

[
∂

∂xj
(ui

∂ul
∂xm

)− ui
∂2ul

∂xj∂xm
]dV

=
1

2

∫
dSn̂ · (

∑
ijlm

uj
∂ul
∂xm

)− 1

2

∫
dV
∑
j

uj
∑
jlm

cijlm
∂2ul
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(3.6)

15



3. Simulation and device design

where the left term is the energy flow leaves from the boundary surface of the volume,
which can be assumed to be 0 in our model. The derivation of the right term uses Eq.
(3.4). Inserting this result in Eqs. (3.6) & (3.5), we can get

H =
1

2
ρω2|iu0(t)− iu∗(t)|2

∫ ∣∣∣~f(~r)
∣∣∣2dV +

1

2
ω2ρ|u0(t) + u∗0(t)|2

∫ ∣∣∣~f(~r)
∣∣∣2dV. (3.7)

If we define the conjugate variables:

p̂ = −ωρ(u0(t) + u∗0(t))), (3.8)

q̂ = −(iu0(t)− iu∗0(t)). (3.9)

We obtain the harmonic oscillator Hamiltonian:

H =
p̂2

2ρ
+

1

2
mω2q̂2. (3.10)

Then we use creation and annihilation operators to replace p̂ and q̂

p̂ = −i
√
ρ}ω

2
(â− â†), (3.11)

q̂ =

√
}

2ρω
(â+ â†). (3.12)

And we can get
H = }ωâ†â+ const. (3.13)

Therefore, the quantum displacement operator can be written as

û(r̂, t) =

√
}

2ρω
(iâ(t)− iâ†(t)). (3.14)

Finally, we have found the expression for the quantized phonon mode.

3.3.2. Shape of phonon mode

Due to our acoustic cavity design, in analogy to a Fabry-Perot optical cavity, the acoustic
phonon modes in our experiment have a Hermite-Gaussian mode profile. For simplicity,
we select the cavity axis as the polarization direction, so we only have to consider the
strain field along the z-axis. For simplicity, we can consider it has the form

S33 =
∂u3

∂x3
= sn,m(x, y)cos(q · z). (3.15)

Here, S33 is the strain field along the z-axis. sn,m represents the transverse profile of the
strain field, where n and m represent the transverse mode numbers, and q is the wave
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3.4. Coupling between the electrical resonator and the measurement device

vector of the phonon mode. For Hermite-Gaussian modes, sn,m can be expressed as

snm(x, y) =
S0

r0

√
n!m!

2n2m
e

(
(x−x0)

2+(y−y0)
2

2r20
)
Hn(

xx0

r0
)Hm(

yy0

r0
), (3.16)

where H is a Hermite polynomial equation, and S0 is a normalization factor. For different
n,m values, sn,m is orthogonal to each other.

S0 =

√
8}ω
c33l

(3.17)

From Fig 3.3, we can find that the 00 Hermite-Gaussian mode is in a two-dimensional
Gaussian shape and have the same phase on the transverse plane. We want to couple
the acoustic resonator with the 00 mode. However, there always exist several transverse
modes for each longitudinal phonon mode in the acoustic resonator. In order to selectively
couple to a dedicated transverse mode, we need to design the antenna shape according
to 00 mode. Therefore we need to design the antenna shape to emit Gaussian transverse
electric field or as close as possible to avoid coupling to other modes.

3.4. Coupling between the electrical resonator and the
measurement device

We want to get the values of gea and Γ by using Eq. (2.29) to fit Shanger21 (ω). In
order to have higher fitting precision, we need to choose appropriate coupling strength
between the electrical resonator and the measurement device. The way we choose it
is by generating simulated spectra based on Eq. (2.29) with different κc and fitting
the simulated spectra and comparing fitting errors of gea and Γ. For each value of κc,
we generate 1000 simulated spectra with different random noise. The random noise
is of 0.25% level. Then we fit each spectrum and calculate the standard deviation of
fitted geq and κi. Remaining parameters in simulated spectra are set as κi = 50 kHz,
ωc = 5.994GHz, ωa = 6GHz, Γ = 20 kHz, gea = 400 kHz. These values are chosen based
on previous paper and simulation experience [18, 21].
We use two different approaches to fit the result. One is using the absolute value of

Eq. (2.29) to fit for amplitude, another one is using the complex formula Eq. (2.29)
to fit directly. The result is shown in Figs 3.4 & 3.5. Both approaches are fitted with
the least square method [28]. We can see from the figure that the complex fitting has
a better result compared to the amplitude fitting. This is expected since the complex
function contains an additional degree of freedom. The figure also shows, for κc bigger
than 5MHz, the fitting error for gea and Γ are suppressed. This suppression can be
understood as, we measure the acoustic resonator mediated by the electrical resonator,
a stronger coupling between the electrical resonator and the measurement cavity also
improves the signature of the acoustic resonator in the spectrum. From these results,
we aim for a value of κc above 5MHz. In the simulation of our setup, the highest κc we
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3. Simulation and device design

Figure 3.3.: Shape of different Hermite-Gaussian transverse modes.
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3.5. Coupling between the electrical resonator and the acoustic resonator

Figure 3.4.: Fitting result of gea
based on artificial data

Figure 3.5.: Fitting result of Γ
based on artificial data

could get is about 50MHz. So there is no upper bound for appropriate κc in our system.
The next question we need to think about is what design parameters determine the κc

value. Intuitively, the coupling factor should depend on the relative distance from the
electrical resonator to the pin connecting the input and the output port of the cavity.
It should also be related to the geometry of the resonator. We make a simple model in
ANSYS to simulate the experiment as shown in Fig 3.6.
The sketch of the relative position of pin and oscillator is shown in Fig 3.7. First,

we fix the relative z distance and the width of the resonator, and sweep the relative y
distance. The result is shown in Fig 3.8. When the relative y distance is 1 mm, κc is
maximised. When we sweep the relative distance in z-direction shown in Fig 3.9, κc is
bigger if the relative distance is smaller.
Fixing the relative position of pin and resonator and changing the width of the oscilla-

tor, we observe increasing κc for increasing resonator width, which is shown in Fig 3.10.
This can be understood as, the resonator is capacitively coupling to the pin and cavity
box, the bigger the size, the higher the capacitance, and the stronger the coupling.
To summarize, we can tune κc by changing the relative position of pin and resonator,

or by changing the geometry of the resonator pad. κc bigger than 5MHz can be achieved,
in which regime we hope to be able to precisely fit our data.

3.5. Coupling between the electrical resonator and the
acoustic resonator

In the last section, we have discussed the coupling between the electrical resonator and
the measurement device. In this section, we will discuss the coupling between the elec-
trical resonator and the acoustic resonator. In the future experiment, we want to achieve
fast operations between the qubit and acoustic modes, so we need to find the appropriate
design for large coupling between these two. Therefore, in our characterization experi-
ment, we also want to achieve faster coupling between the electrical resonator and the
acoustic mode.
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3. Simulation and device design

Figure 3.6.: The sketch of the simple model in ANSYS. We use a cuboid as the cavity
in the simulation for simplicity. It has similar dimensions to the actual
cavity. The two transparent blue chips are sapphire. The pink part is the
piezoelectric layer. The green stripline is the electrical resonator, which is
set as a perfect conductor. The light yellow tube is the measurement pin.
The two green rings are set as 50Ω as the boundary condition. The cavity
is set as a perfect conductor as the boundary condition.

Figure 3.7.: Sketch of the relative position of pin and electrical oscillator
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3.5. Coupling between the electrical resonator and the acoustic resonator

Figure 3.8.: κc changes with relative y
distance

Figure 3.9.: κc changes with relative z
distance

Figure 3.10.: κc changes with width of oscillator

The coupling between the electrical resonator and the acoustic resonator is mediated
by the piezoelectric effect. The electric field generated from the antenna causes a strain
in the piezoelectric crystal that excites the phonon mode at the electric field frequency.
For simplicity, we only consider the electric field perpendicular to the chip, which is
z-direction in our setting. The coupling strength between these two resonators is [17]

gea =

∫
V
σ(x, y, z)S(x, y, z)dV , (3.18)

where σ(x, y, z) = c33d33E(x, y, z) is the stress field in the piezoelectric layer. c33 and
d33 are the stiffness tensor and the piezoelectric tensor along the z-direction respectively.
E(x, y, z) is the electric field along the z-direction. S(x, y, z) is the strain field of the
phonon mode. Integration volume V is the whole volume of the piezoelectric layer. In
our simulation, gea normally ranges from 300 kHz to 700 kHz depending on the shape of
the antenna and the size of the mode.
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3. Simulation and device design

Figure 3.11.: electric field generated by an 60µm radius antenna

In order to calculate the coupling factor between the two resonators, we also need
to know the electric field generated by the antenna. The electrical field data can be
exported from ANSYS and analyzed. The electric field generated by a circular antenna
does not produce a Gaussian shape. We can see from Fig 3.11, the field at the edge is
larger than the field in the center, which can cause the coupling to other higher order
transverse Hermite–Gaussian modes. Therefore, we need to find an appropriate radius
for the antenna to achieve higher coupling with the 00 mode and smaller coupling to
other modes. However, these two requirements mostly contradict each other, so we need
to have a more specific criterion to design the antenna.

3.6. Antenna design

3.6.1. Criterion for design of antenna

As we mentioned in the last section, we need a criterion to design the antenna to balance
higher coupling to the 00 mode and smaller coupling to other orthogonal modes. One
criterion that can be used is the fidelity of the swap gate. For this, we prepare the qubit
initially in the excited state and the phonon mode in the zero Fock state. We let the
qubit frequency be the same as 00 mode frequency of the resonator, and simulate the
population of a single phonon excitation due to a swap operation. Here we assume, if
the electrical resonator and superconducting qubit have the same antenna, the shape
of the electric field generated by the antenna is the same in both resonator and qubit
case. Thus, for simplicity, we can use the electrical resonator to simulate. We can use
parameters in previous research in our simulation, where T1 of qubit is 7µs, T1 of phonon
mode is 64µs, and T2 of phonon mode is 40µs [18].
Figs 3.12a & 3.12b show the change of the fidelity of the swap operation for increasing

coupling strength to the 01 mode and 02 mode separately. For these two plots, we use a
coupling strength to the 00 mode of 600 kHz. We can deduce the decay of the system will
cause infidelity of about 3.6%, which is shown at the 0 coupling point. Comparing these
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3.6. Antenna design

a b

Figure 3.12.: (a) swap gate fidelity changing with coupling factor to 01 mode. (b) swap
gate fidelity changing with coupling factor to 02 mode. Coupling factors
to other mode are set 0. We plot the fidelity for both with and without
considering the decay in the system.

two figures, we find that the coupling factor to the 01 mode has a much stronger effect
because it is less detuned from the qubit frequency. Furthermore, the effect of detuned
coupling to the further higher-order transverse modes can be neglected. If we can keep
the 01 mode coupling factor below 25 kHz, and 02 mode coupling factor under 50 kHz,
the effect of coupling to higher transverse mode is not the dominant term of the infidelity
for the swap operation.
As we mentioned before, if we use the simple circle shape of the antenna, the field

generated is lager on the edge and smaller in the center, which is a different shape
compared with 00 Hermite–Gaussian mode, and can cause the coupling to other modes.
From here, we can try two things, one is we simulate different radii of the antenna circle
and use this swap gate fidelity criterion to search for the appropriate radius. Second, we
can try several different shapes of the antenna in the simulation.

3.6.2. Different radius for circle antenna

We assume the 00 mode we want to couple has a radius of 47µm. This radius is chosen
based on the previous fabrication result. We sweep the radius of the antenna in AN-
SYS and export the simulation field data. The coupling factors between the electrical
resonator and the six different transverse phonon modes with the lowest energy are cal-
culated. Furthermore, based on the coupling factor, the fidelity of the swap gate was
calculated. The higher order transverse modes have much bigger detuning and much less
effect on fidelity. Therefore this is a reasonable simplification.
From Fig 3.13, we can see the coupling rate to 00 mode gets higher for larger radii up

to 68µm. Also, the coupling rate to 10 mode gets smaller in this range. However, the
coupling rate to 20 mode gets lager very fast with increasing radius. Therefore, at the
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3. Simulation and device design

Figure 3.13.: Simulation result of changing the radius of antenna circle. The red curve
is the coupling factor between the electrical resonator and the acoustic
resonator 00 mode. The green curve is the coupling factor with the 10
mode. The yellow curve is the coupling factor with the 20 mode. The blue
curve is the fidelity calculated based on the coupling factor of the simulation
result

radius of 60µm, the fidelity of the swap gate gets a maximum of 96.49%, which is the
compensation point of the two effects mentioned above.

3.6.3. Different shape of antenna

Besides using a circular shaped antenna, we can also try different antenna shapes based
on the swap gate fidelity criteria. Because we know at the edge of the antenna, there is
a larger electrical field, one intuitive approach is increasing the perimeter length of the
antenna. Thus we tried simulating a polygon shape antenna.
From Fig 3.14 we can see, the electric field generated by a polygon shape antenna is

"flower" shaped. The "petal" of the flower has length 60um and the top part of the
petal’s width is 14µm.

shape 00mode 01mode 02mode 10mode 11mode 20mode fidelity

circle(kHz) 617 4.1 25.7 0.37 0.4 2.7 96.49%
polygon(kHz) 615 5.2 26.5 0.02 0.04 2.07 96.47%

Table 3.1.: Table of coupling strength to different mode for circle and polygon shape
antenna.

Table.3.1 shows the coupling strength to different phonon modes and also the fidelity of
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3.6. Antenna design

Figure 3.14.: Electrical field gener-
ated by polygon shape
antenna.

Figure 3.15.: Shape of the polygon
antenna.

the swap gate for both antenna shapes, circular and polygon. From the simulation result,
they show roughly the same result for coupling strength to each mode and final fidelity.
We also calculate the fidelity of the swap gate without considering the decay in the system,
and we can get the infidelity caused by the coupling to higher mode is 0.038% for the circle
shape antenna, and 0.041% for the polygon shape antenna. The small infidelity caused
by coupling to higher-order transverse modes also means the infidelity is dominated by
the decay of the qubit and phonon in our current experimental conditions.
Because of the finite accuracy of the simulation, we can’t make a conclusion towards

which shape of the antenna is better. So both of the shapes are worthy to be characterized
in the real experiment.
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Chapter 4

Fabrication method and
measurement setup

In last chapter, we introduce the design of each part of the system. In this chapter,
we will first introduce the fabrication of the electrical resonator and acoustic resonator.
Then we show the bonding of the two chips and the effect can be caused by the mismatch
in the bonding procedure. At the end, we show the multiplexing setup and dilution fridge
setup for the experiment.

4.1. Fabrication of electrical resonator

We use a conventional optical lithography technique to fabricate the electrical resonator
[29, 30]. The resonator is fabricated on a sapphire wafer. The procedure is shown in Fig
4.1. After the cleaning of the wafer, the bilayer of the optical resist is spun on the wafer
and baked. We use MA6 by Karl Suss to expose the optical resist with UV light, and
then we evaporate aluminum in a Plassys shadow evaporator. In the end, we wash away
the resist and dice the wafer into individual chips.

Figure 4.1.: Cross section of each part of the procedure for the fabrication of the electrical
resonator.
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4. Fabrication method and measurement setup

Figure 4.2.: Cross section of each part of the procedure for fabrication of the acoustic
resonator.

4.2. Fabrication of acoustic resonator

To fabricate the acoustic resonator, we use a sapphire wafer with a layer of c-axis oriented
AlN with a width of 1µm grown on one side [18]. First we pattern disks of photoresist
on the wafer. Then the wafer is attached to a heated chuck and put inversely above a
heated beaker of solvent. After 2-3 hours, the resist will absorb the solvent and turn into
a hemisphere because of the surface tension. After that, we bake the wafer to remove
the residual solvent and harden the resist. Then we use an anisotropic etching process
(ICP-RIE) in an Oxford ICP etcher to etch the wafer and finally form a curved surface
on the AlN layer, which works analogously to a mirror in an optical cavity [31].

4.3. Bonding of the chips

After fabrication of the electrical resonator chip and acoustic resonator chip, we need
to bond them together. We pattern special align marks for aligning two chips on the
horizontal direction, such that the electric field generated by the antenna can match the
position of the acoustic mode. For the vertical direction, we make several spacers and
set them on the surface of the acoustic resonator chip to guarantee the distance between
two chips.

a b

Figure 4.3.: (a) How the mismatch along x axis affect the fidelity of swap gate. (b) How
the vertical distance affect the fidelity of swap gate.
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Figs 4.3a & 4.3b show how the fidelity of the swap changes with the mismatch along
the x-axis (horizontal direction) and the z distance between two chips (vertical direction).
The decrease of the fidelity is mainly caused by the decreasing coupling strength to the
phonon’s 00 mode which causes longer operation time and more decay of the qubit. From
the figure, we can tell that if the mismatch in the horizontal direction is smaller than
5µm, the effect of the mismatch can be ignored. As for vertical direction, it will be
better if we can have a closer distance between two chips.

4.4. Multiplexing setup

a b

Figure 4.4.: (a) Schematic of multiplexing setup (b) Assembled cavity box

We design a multiplexing setup to test several bonding chips within one experiment.
There are five cavities in one cavity box, and we can put one chip into each cavity. There
is a copper wire assembled in the cavity box as the measurement device pin. We use
indium wire to fix the chips in the cavity and seal the cavity.
From the simulation result, the electric field generated by the antenna doesn’t change

a lot in this multiplex setup compared with the normal single cavity box. The coupling
between the pin and the electrical resonator is also on the same scale and can be tuned by
changing the relative position of the chip and the pin. As long as the electric resonator
is designed carefully, and they are sufficiently frequency separated, we can assume the
cross-talk between resonators can be neglected.

4.5. Dilution fridge setup

In the real experiment, we assemble the cavity and thermally connect it to the base
temperature flange of a dilution refrigerator. At 1.2K, aluminum turns into a supercon-
ductor and has low energy loss [32]. Because the setup of the dilution fridge is designed
for superconducting qubit experiments, it can be cooled down to 10mK. A vector network
analyzer (VNA) is used to measure the spectrum. As shown in Fig 4.5, Port 1 of the
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4. Fabrication method and measurement setup

Figure 4.5.: Schematic of the cryogenic measurement setup. There are more stages in the
fridge. But for simplicity, they are not drawn.

VNA is connected to the input port of the fridge, Port 2 of the VNA is connected to
the output of the fridge. Several attenuators on different stages of the fridge are used to
decrease the noise of the input channel [33]. After attenuation the input channel connects
to the cavity. At the output channel, the output signal first passes filters and an isolator,
to avoid signal reflection back into the cavity and suppress the noise traveling to the
sample. There is a high electron mobility transistor (HEMT) on the 4K stage to amplify
the output signal with low noise. Outside the fridge, the output signal is amplified again.
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Chapter 5

Experimental results

5.1. Measurement of bare electrical resonators

Number of the chip 1 2 3 4 5
Length of the resonator pad(mm) 12 9 12 9 11
Length of the antenna lead (mm) 4 5 2 4 2

Antenna shape circle polygon circle polygon circle
Simulated bare electrical resonator frequency(GHz) 5.869 6.228 6.625 6.861 7.050

Table 5.1.: Parameter of designed chips

In this project, we measure the bare electrical resonators in the multiplexing setup as
a first step. For the next step, we would measure chips with acoustic resonators. But
it’s still work in progress and outside the scope of the thesis. The parameters of each
chip are shown in Table.5.1. The chips are measured in a dilution fridge at 7mK. We
calibrated the phase response in VNA to compensate for the length effect of the cable.
Besides, we use an external amplifier on the output signal to improve the signal to noise
ratio.

Figure 5.1.: Frequency response of S21 transmission. The red curve shows amplitude
response. The blue curve shows phase response.
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Fig 5.1 shows the frequency response of S21 transmission spectrum. We can see five
peaks in both amplitude and phase spectrum. Due to the calibrated phase response, the
phase spectrum doesn’t show oscillation. The amplitude spectrum looks noisy because
of the frequency response of the cables and amplifier in the setup. Therefore, we only fit
normalized data close to each peak.
Because there is no acoustic resonator in the system, we can just write our fitting

formula from Eq. (2.29), and assume the gea inside is 0. The fitting equation becomes

S21(ω) = Aeiψ(1 + eiφ
−κc + κi + 2i(ω − ω0)

κc + κi + 2i(ω − ω0)
), (5.1)

Figure 5.2.: Subfigures are the plots of the complex valued S21 response for each peak.
The green curves display experimental data. The red curves are fits to the
data. The red curves and green curves are overlap with each other, which
shows fitting has high precision.

where A and ψ are the normalization amplitude and phase. κc is the coupling rate
between the measurement pin and the electrical resonator. κi is the internal loss of
the resonator. ω0 is the resonance frequency of the electrical resonator. The complex
phase factor of φ needs to be added for impedance mismatch [34, 35]. We used the least
square method for the complex function to fit the data [28]. The result is shown in Fig
5.2 and Table.5.2. We can see from Fig 5.2, the fitted curve matches the experiment
curve very well. From Table5.2, the R-squared value of each fitting is very close to 1,
which also proves overall fitting has high precision. However, because κc is much bigger
than κi (three orders of magnitudes), the relative fitting precision for κi is relatively low.
Also for this reason we find a negative κi from the fit to the 4th peak. κc ranges from
7MHz to 60MHz, which is reasonable given the experience from previous simulation and
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5.1. Measurement of bare electrical resonators

experiment construction. One source of the fitting errors is the wiggly background of the
spectrum. This is because there are so many electrical elements in the setup. And these
elements have their frequency response.
Comparing the resonance frequencies obtained from the fit to the simulation results,

we find they differ by a few hundred MHz. The measured frequency is higher than the
simulated one. The reason for this might be imperfections in the fabrication process.
Concerning the fabrication process, when dicing the resonator chips, shards of the wafer
may have cut through the antenna lead due to insufficient protection of the surface. This
reduces the total length of the resonator and in turn, increases its resonance frequency.
From the simulation, we also see the effect that if the chips are located at different places
of the cavity, frequencies of the electrical resonators could also have a shift up to roughly
100MHz.

Chip number 1 2 3 4 5
Resonator frequency(2π×GHz) 5.944 6.755 6.858 6.935 7.210
Simulation frequency(2π×GHz) 5.869 6.228 6.625 6.861 7.050
Coupling strength κc(2π×MHz) 7.582(4) 9.380(4) 9.5288(7) 23.58(3) 62.38(5)

Internal loss κi(2π×kHz) 31.8(2.1) 4.0(3.0) 10.3(6.0) -12(16) 68(23)
1-R2 9.8× 10−5 1.3× 10−4 3.1× 10−4 2.5× 10−4 2.5× 10−4

Table 5.2.: Fitting results

For the next step, we want to measure chips with HBAR chips to fit the values of the
coupling strength between the electrical resonator and the acoustic resonator, and also the
decay rate of the acoustic resonator. These two values determine how many operations
could be performed in each sequence of the experiment, and also the performance of the
acoustic resonator based quantum circuit, which we will discuss in the next chapter.
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Chapter 6

Application of superconducting
qubit and acoustic resonator

coupling

In the previous part of the thesis, we introduce the hybrid quantum system of coupling
qubits and acoustic resonators, and how to characterize the coupling strength and decay
rate of the acoustic resonators. In this chapter, we will show one potential application of
this hybrid quantum system. First, we investigate the acoustic resonator based quantum
circuit in section 6.1.1 and 6.1.2. Then we compare this circuit with the traditional
superconducting quantum circuit in section 6.1.3, and finally, we show a calculation of
proof-of-principle experiment which we hope to implement on our system in section 6.2.

6.1. Acoustic resonator based quantum circuit

6.1.1. Introduction of acoustic resonator based quantum circuit

We can couple a superconducting qubit with a bulk acoustic wave resonator, and this
technique can serve as a new tool for quantum computation. Phonon modes in acoustic
resonators can have much longer coherence times than superconducting qubits, and one
acoustic resonator can have many modes that can couple to a qubit. Therefore, we can
use them as quantum memories to store quantum information. Here, we are going to
introduce an acoustic resonator based quantum circuit (ARQC) [36, 37].
The main idea is to use a superconducting qubit as processor and phonon modes as

memories for the quantum processor. Fig 6.1 shows a simple example of how a simple
quantum circuit can be executed on this kind of hardware. Each phonon mode works as a
quantum memory. A quantum operation is performed on the superconducting qubit and
combined with swapping operations between the qubit and phonon modes. For a single
qubit gate, take the example of the Hadamard gate for the first qubit. In the ARQC, we
swap qubit and phonon mode 1. Then we do the Hardmard gate on the qubit and swap
it back to mode 1. For a two qubit gate, take the example of a CNOT gate between
qubit 1 and qubit 2. We can swap mode 1 with qubit and do a CNOT gate between the
qubit and mode 2. In the end, we return the quantum state in the qubit to mode 1.
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Figure 6.1.: An example of how the acoustic resonator based quantum circuit works.
Left: A simple example circuit consists of a Hadamard gate and a CNOT
gate. Right: By inserting swap gates between phonon modes and the qubit,
we can use the qubit to execute the gates and the phonon modes as storage
units for the quantum states.

6.1.2. Universal quantum gate in acoustic resonator based circuit

If we want to show an ARQC equivalent to a conventional quantum circuit, we need
to prove this new circuit can operate universal quantum gates as a conventional circuit
does. In the theory of quantum computing, as long as we can achieve arbitrary single
quantum gates and the CNOT gate, we can implement any unitary quantum operation
[4].
Right now, let’s see what we have to achieve these two targets. The Hamiltonian of

our system is

Ĥ = }ωq(t)â+â+
1

2
}αâ+â+ââ+

n∑
k=1

}ωk b̂+k b̂k+
n∑
k=1

gk(b̂k+b̂
+
k )(â+â+)+}Ω cos(ωq(t))(â+â+).

(6.1)
In this Hamiltonian, â(â+) and b̂k(b̂

+
k ) represent the annihilation (creation) operator

for the qubit and the kth phonon mode. The first two terms are the energy of the
superconducting qubit. α is the anharmonicity of the transmon qubit. The third term is
the energy of the phonon mode. The second to last term is the coupling term between
the qubit and phonon modes, where gk is the coupling strength to the kth mode. The
last term represents an external drive on the qubit. Based on this Hamiltonian, we can
achieve any single qubit gate on the superconducting qubit, as well as the iswap gate
between the qubit and any phonon mode. The iswap gate is executed by evolving the
system under the interaction term for a time of tswap = π/2gk

i:

Uiswap = e−iHinttiswap =


1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

 . (6.2)

iThis is the matrix if we only consider |0〉 and |1〉 state in phonon modes, if we consider more states,
the matrix is shown in Appendix C
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6.1. Acoustic resonator based quantum circuit

Figure 6.2.: Illustration of how to do single quantum gate on phonon mode. This equiv-
alent only works when qubit is initialized to the ground state.

First, we will show how to achieve arbitrary single qubit gates on arbitrary phonon
modes. The most intuitive way is using a swap gate to transfer the state from phonon
mode to qubit, do the gate operation on the qubit and swap the state to the phonon
mode. Unfortunately, we can’t do a pure swap gate, we only have iswap gate between
qubit and phonon mode.
As Figure.6.2 shows, if we want to do a gate represented by the unitary U on a phonon

mode, we can use the iswap gate and a U ′-gate on the qubit. There exists a one to one
map of from the U -gate to the U ′-gate.

U ′ =

(
U11 −iU12

−iU21 −U22

)
(6.3)

When we do any single qubit gate, we should make sure the qubit is initialized to the
ground state. Otherwise, the phonon mode can be excited to the Fock |2〉 state and that
is what we need to avoid.
After showing how to execute single qubit gates on a phonon mode, let’s see how

to implement the two qubit CNOT gate between phonon modes. The CNOT gate can
be decomposed into a controlled phase gate (CZ gate) and single qubit gates [38]. For
implementing the controlled phase gate, we need to use the qubit |f〉 state [37]. First, the
qubit is initialized to its ground state, and the |g〉 − |e〉-transition is tuned on resonance
with phonon mode 1 for a time of π/2g1, which executes an iswap gate between the qubit
and mode 1. Next, the |e〉−|f〉-transition of the qubit is tuned on resonance with phonon
mode 2 for a time of π/g2, or two iswap gates. Phonon mode 2 acquires a π geometric
phase if the qubit is in |e〉 and phonon mode 2 is in |1〉. In the end, the |g〉−|e〉-transition
is tuned back to the energy of phonon mode 1, performing another iswap gate between
the qubit and mode 1.

|00g〉 iswap1−−−−→ |00g〉 2∗iswap2−−−−−→ |00g〉 iswap1−−−−→ |00g〉

|10g〉 iswap1−−−−→ i |00e〉 2∗iswap2−−−−−→ i |00e〉 iswap1−−−−→ − |10g〉

|01g〉 iswap1−−−−→ |01g〉 2∗iswap2−−−−−→ |01g〉 iswap1−−−−→ |01g〉

|11g〉 iswap1−−−−→ i |01e〉 2∗iswap2−−−−−→ −i |01e〉 iswap1−−−−→ |11g〉

(6.4)

Eq. (6.4) shows how the state changes with each step of the operation. In the end, only
the initial state |10〉 will accumulate a π phase at the end of the operation while all the
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6. Application of superconducting qubit and acoustic resonator coupling

other initial states are unaffected, executing a CZ gate.
Summarizing, we showed that the ARQC can implement arbitrary single qubit gates

and two qubit CNOT gates on phonon modes. Therefore, this kind of circuit can in
principle work as a general quantum circuit.

6.1.3. Comparison with traditional superconducting quantum circuits

There are some advantages for the ARQC. First, because every resonator can have tens
or even hundreds of modes that couple to the qubit, it is inherently scalable. As long
as we can quickly tune the qubit energy over a large range, we can use a large number
of modes. Second, we can do two qubit gate between arbitrary two phonon modes. In
most superconducting circuits, transmon qubits only couple to neighboring qubits. Third,
phonon modes can have much longer coherence times compared with the transmon qubit,
so they are very nice candidates for a quantum memory [39].
However, there are also several drawbacks of this kind of circuit. First, gates get

more complicated resulting in lower fidelity. This is mainly dominated by the relatively
low coupling strength between qubit and phonon mode. Second, there is some intrinsic
limitation for scalability. If we want to couple too many modes, it means the energy
difference between nearby mode needs to be relatively small, causing infidelity of gate
operations due to parasitic couplings between the qubit and unwanted phonon modes.
Third, because we only have one qubit, gates can only be performed in series, which
means lower speed.

6.2. Entanglement between two phonon modes

In the last section, we showed how the ARQC functions in principle. In this section, we
will show a simple proof-of-principle experiment of this kind of circuit, which generates
entanglement between phonon modes and implements a tomographic measurement of
two phonon modes.
The circuit for entanglement generation is shown in Fig 6.3. The qubit is initialized in

the ground state and two modes are both initialized to the |0〉 state. First, we perform a
π pulse on the qubit to excite it to |e〉 state. Next, we implement a square root of iswap
gate between qubit and phonon mode 1 to transfer half of the excitation from qubit to
mode 1. Finally, we implement an iswap gate to transfer the second half of the excitation
from qubit to mode 2. At this step, the state should be |g01〉+ eiφ |g10〉. The phase φ is
time-dependent because the two phonon modes have different frequencies.
After generation of the entanglement, we need to measure the state of the two modes.

This works via swapping the state to be measured from the phonon mode to the qubit,
possibly performing single qubit rotations and measuring the qubit. To probe the state
of mode 1, we first iswap the phonon state to the qubit. If we want to measure in z basis,
we then directly measure the qubit state. If we want to measure in x basis, we do a π

2
pulse along the y-axis to qubit before the measurement. If we want to measure in y basis,
we do a π

2 pulse along x to qubit before the measurement. The i phase caused by iswap
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6.2. Entanglement between two phonon modes

Figure 6.3.: Circuit for two modes entanglement generation. The circuit in the yellow
block generates the entanglement. In the red block, the first mode is mea-
sured in x,y, or z-basis. The dashed block represents either a π

2 pulse along
the x-axis (measurement in y basis) or along the y-axis (measurement in x
basis) or no pulse (measurement in z basis). In the blue block, we remove
any residual excitation from the qubit. Finally, the green block measures the
second mode.

gates needs to be corrected by tuning the phase of these π
2 pulses. After measurement of

phonon mode 1, we need another iswap gate which works as cooling down of the qubit.
It is necessary because when we do an iswap gate afterward, if the qubit is beginning
in an excited state, the phonon mode could transfer to the |2〉 state, which we need to
avoid. After cooling down the qubit, we can do the measurement of mode 2, which is the
same as the measurement of mode 1.
We performed numerical simulations of the circuit in qutip [40]. For simplicity, we

only consider two phonon modes, which we manipulate in the circuit. In each phonon
mode, we only consider superpositions of |0〉 and |1〉. The simulation is carried out in a
rotating frame with ωrf = (ω1 +ω2)/2. For single qubit operations, the frequency of the
qubit is tuned to the rotating frame’s frequency. The parameters of the simulation are
shown in Table.6.1. These parameters are based on Ref. [18] and further simulation.

phonon T1 64µs
phonon T2 40µs
qubit T1 7µs
qubit T2 14µs

phonon frequency separation (ω1 − ω2)/2π 13MHz
bare coupling constant gk/2π 620 kHz
Single qubit gate speed Ω/2π 50MHz

Table 6.1.

In the simulation, we plot the evolution of each step of the circuit, and we find some
interesting phenomena that worth discussing. Fig 6.4 shows the state evolution during
the
√
iswap gate between the qubit and the mode 1. At the end of the gate, we can find
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6. Application of superconducting qubit and acoustic resonator coupling

Figure 6.4.: The state evolution dur-
ing the

√
iswap gate be-

tween the qubit and mode
1. Blue, orange, and green
curves represent the pop-
ulation in excited states
in the qubit, mode1, and
mode2 separately.

Figure 6.5.: The state evolution dur-
ing the first iswap gate be-
tween the qubit and mode
1. Blue, orange, and green
curves represent the pop-
ulation in excited states
in the qubit, mode1, and
mode2 separately.

that the qubit transferred half of the energy to the mode 1. However, the qubit and the
mode 1 do not end at an excited state population of exactly 0.5. This is because there is
already decay in the qubit. We can also see tiny oscillation of the population in phonon
mode 2. Fig 6.5 shows the state evolution during the first iswap gate between the qubit
and the mode 2. The qubit transfers the second half of its excitation to the phonon mode
2. We can see an unwanted phenomenon in the evolution, which is the oscillation caused
by the detuned coupling between the qubit and the phonon mode 1.
Fig 6.6 shows the evolution of the detuned coupling. If the state is initialized along

the z-axis of the Bloch sphere, the angle between effective coupling and state will be
θ = arctan

( g
∆

)
≈ g

∆ , the approximation is because ∆ � g. Here, g represents coupling
strength and ∆ represents detuning frequency. The error caused by the detuned coupling
is proportional to 1− cos(2θ) ≈ 2g2

∆2 . If, however, the initial state points along the x-axis,
then the error caused by the detuned coupling is proportional to sin(2θ) ≈ 2g

∆ . Thus,
if the state is initialized along the z-axis, such as |0〉 and |1〉, the error scale caused by
the detuned coupling is of second order in g

∆ . If the state is initialized to x-y plane,
such as |0〉+ eiφ |1〉, the error scale of first order in g

∆ . This explains why the oscillation
caused by the detuned coupling is bigger when the qubit and the phonon mode are on
the equator of the Bloch sphere than when they are along the z-axis of the Bloch sphere.
This is an important infidelity we need to take into account and try to avoid when we
design the circuit in the future.
After the generation of entanglement between the two phonon modes, we need to

perform tomography of these two modes. Here, we also need the help of the qubit.
Because we only use |0〉 and |1〉 of the phonon modes, the tomography procedure is
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6.2. Entanglement between two phonon modes

Figure 6.6.: Illustration of detuning coupling between qubit and phonon mode. Assuming
we are in the rotating frame of a phonon mode detuned from the qubit. The
light yellow arrow represents the coupling between qubit and phonon mode
and the peach color arrow represents the detuning between the two. The
sum of detuning and coupling is the effective coupling represented by the
red arrow. The blue cone represents the evolution of the phonon mode that
precesses around the effective coupling. The light green bar represents the
error caused by this detuning coupling. The left diagram shows the state
evolution, which initialized along z-axis. The right shows the same evolution
but initialized along the x-axis.
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6. Application of superconducting qubit and acoustic resonator coupling

Figure 6.7.: Density matrix of the simulated measurement result. The color of each block
shows the phase of the matrix term according to the color bar on the right.

the same as for a regular two qubit tomography. For two qubit tomography, we need a
minimum of nine measurements of different operators of the form σ1i⊗σ2j (i, j = x, y, z)
to fully characterize the density matrix [41]. Because the two phonon modes’ frequencies
and single qubit operation frequency are different with each other, we need to carefully
calibrate the phase of driving π

2 pulse when we carry out the measurement in x and
y-basis. Our target state is 1√

2
(|01〉 − |10〉).

Fig 6.7 shows the density matrix based on the simulated measurement result. The
simulated fidelity of the target state compared to the ideal outcome is 88.4%. In this
simulation, we have taken into account the effects of qubit decay, phonon decay, phonon
dephase, and detuned coupling between two phonon modes and the qubit. There are also
some other effects not taken into account. In the simulation, we didn’t take into account
qubit dephasing channels so we just assumed T2 = 2T1 for the qubit. We also didn’t take
into account the readout infidelity, pulse inaccuracy, and initialization infidelity. For
simplicity, we only consider two phonon modes in our simulation, so we also didn’t take
account coupling with other modes. For those reasons, the experimental fidelity will be
a little lower than the simulated value.
From Fig 6.5 we know there is unwanted oscillation caused by detuned coupling be-

tween qubit and phonon modes. This effect will also cause the fidelity to oscillate when
changing the energy difference between two phonon modes. We want to see how much
infidelity is caused by the detuned coupling. As Fig 6.8 shows, the trend is such that
if the energy difference between the two modes is higher, the simulated fidelity is also
higher. However, we can also see the oscillation of the fidelity. This is because this
energy difference determines the unwanted oscillation speed in Fig 6.5, If the unwanted
oscillation ends at a different point, it can cause a different infidelity. Therefore, we
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6.2. Entanglement between two phonon modes

Figure 6.8.: How the fidelity changes with the energy difference between two acoustic
modes

can also see the oscillation of the fidelity in Fig 6.8. In our current setup, the energy
difference between the two modes is 13MHz. According to the simulation result in Fig
6.8, the effect of the detuned coupling is almost saturated. We also simulate the case
if we don’t consider the effect of detuned coupling, and get the fidelity of 91.6%, which
indicate the infidelity caused by the decay of the system is about 8.4%. Additionally,
decay and dephasing of the phonons are much slower than the decay of the qubit. We
can make the conclusion that the infidelity in our simulation is dominated by the decay
of the qubit.
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Chapter 7

Conclusion and Outlook

In this thesis, we have introduced how to characterize the properties of the coupling
process between qubits and acoustic resonators. We started by performing input-output
theory calculations for our systems and understood the relevant parameters and regimes.
Then, based on simulation results, we designed the parameters of the characterization
experiment. We fabricated chips and a multiplexed cavity box that holds resonators.
After measuring the bare electrical resonator and analyzing the data, we find that if κc is
much bigger than κi, the relative error for the fitting result of κi is bigger. So, if we want
to measure a bare electrical resonator in the future, I suggest we design the resonator to
have a smaller κc by changing the position of the resonator on the chip. However, if we
bonded the acoustic chip and want to measure the properties of the phonon, κc bigger
than 5MHz is still suggested.
In chapter six we talked about a proof-of-principle experiment of the acoustic resonator

based quantum circuit, which is the generation of entanglement between phonon modes.
We have also shown a method to perform two-qubit gates between two phonon modes,
which in itself constitutes a valuable capability in quantum architectures.
The hybrid quantum system of superconducting qubits and acoustic phonon modes

also shows great potential in microwave photon to optical photon transfer. We can
transfer a qubit state from qubit to phonon and also couple the laser with the photon
as in traditional optomechanics. In this way, we encode the quantum information of the
qubit in an optical photon. The process is in principle also reversible. As such, we can
realize the remote coupling of superconducting qubits.
Our system could also be used in quantum sensing. A cat state could be generated

in our system and it is sensitive to the phonon frequency. If there is force exerted on
the crystal, the phonon frequency could change and be detected. So our system is also a
candidate for a force sensor.
For all these proposed applications of the acoustic resonator superconducting qubit

hybrids, we will want higher coupling speed and longer coherence times. Multi-layers
of piezoelectrical material will provide larger coupling. A thinner acoustic resonator
also has a smaller effective mode volume, thereby also increasing the coupling factor.
Additionally, this would increase the free spectral range of the acoustic resonator, which
improves gate fidelities at the cost of a lower number of accessible modes. Etching the
curved surface on the side without the piezoelectric material of the acoustic resonator
might reduce the decay rate of the phonons. In that way, the piezoelectric layer works as
a flat mirror. The strain field will be perpendicular to the interface of AlN and sapphire.
The energy reflected out of the phonon mode might be decreased when passing through
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the interface. This might reduce the decay rate of phonons.
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Appendix A

Voltage reflection coefficient

At microwave frequencies, the input signal has transmission and reflection, which is
different from DC signals. Assume the incident signal is generated from a source at
position zs < 0, and the incident wave is V +

0 e−iβz [23]. Suppose the reflected wave has
the form V −0 eiβz. The characteristic impedance of the line is Z0. The line is terminated
by a load of ZL. The ratio of the voltage to current on the load must be ZL.
The total voltage of the line is the sum of the incident and reflected waves:

V (z) = V +
0 e−iβz + V −0 eiβz. (A.1)

The total current on the line is the subtraction of the incident and reflected waves:

I(z) =
V +

0

Z0
e−iβz − V −0

Z0
eiβz. (A.2)

At the load where z = 0, combining the Eqs. (A.1) (A.2), the relation of total voltage
and total current is :

ZL =
V (z)

I(z)
=
V +

0 + V −0
V +

0 + V −0
Z0. (A.3)

Then we can get:

V −0 = ΓV +
0 ,Γ =

ZL − Z0

ZL + Z0
. (A.4)

Γ is the complex amplitude of reflected voltage normalized to the amplitude of incident
voltage, which is defined as a voltage reflection coefficient.

Figure A.1.: A transmission line terminated by a load
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Appendix B

Scattering matrix of hanger model

Fig B.1 is the simplified circuit of the hanger model. If we look from port 1, the total
load impedance is the parallel connection of Ztotal and Z

hanger
0 :

Zport1load =
ZtotalZ

hanger
0

Ztotal + Zhanger0

. (B.1)

Use the voltage reflection coefficient, we can get the reflection voltage of port 1 is

V −1 =
Zport1load − Z

hanger
0

Zport1load + Zhanger0

V +
1 . (B.2)

Voltage on Ztotal is V, which is equal to

V = V +
1 + V −1 = V +

2 + V −2 . (B.3)

If we see from port 2, there is no incident wave in port 2. Therefore the output of port
2 V −2 is

V −2 = V +
1 + V −1 =

Ztotal

Ztotal +
Zhanger
0

2

V +
1 . (B.4)

Then we can get the scattering matrix term S21 for hanger model:

S21 =
V −2
V +

1

|V +
2 =0 =

Ztotal

Ztotal +
Zhanger
0

2

. (B.5)

Figure B.1.: Circuit diagram of hanger model
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Appendix C

Matrix representation of iswap gate

If we consider the Hilbert space of the phonon modes up to Fock |2〉 state,

Ĥ = }gk(âb̂+ + â+b̂) = }gk



0 0 0 0 0 0
0 0 0 1 0 0

0 0 0 0
√

2 0
0 1 0 0 0 0

0 0
√

2 0 0 0
0 0 0 0 0 0



|g, 0〉
|g, 1〉
|g, 2〉
|e, 0〉
|e, 1〉
|e, 2〉

, (C.1)

where â+ (â), b̂+ (b̂) represents creation (annihilation) operator of the qubit and phonon
respectively. The iswap gate is executed by evolving the system under the interaction
term for a time of tswap = π/2gk. The unitary matrix for this operation is

Uiswap =



1 0 0 0 0 0
0 0 0 i 0 0
0 0 −0.606 0 0.796i 0
0 i 0 0 0 0
0 0 0.796i 0 −0.606 0
0 0 0 0 0 1



|g, 0〉
|g, 1〉
|g, 2〉
|e, 0〉
|e, 1〉
|e, 2〉

. (C.2)

We can see from Eq. (C.2), in the iswap operation, state |e, 1〉 can transfer population to
state |g, 2〉, which is out of our computation basis. Therefore before very iswap operation
in ARQC, we need to guarantee at most one excitation in the qubit and the phonon
modes. This is also the reason we cool down the qubit before the iswap operation.
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