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Abstract

In the context of circuit Quantum Acoustodynamics there are a numerous of piezoelectric
material candidates that could serve as the medium for coupling between the electromag-
netic mode of a superconducting circuit and the bulk mechanical mode in a crystal. One
of them is Lithium Niobate, for which the high–valued coupling matrix elements make it a
potential improvement to the usually–used Aluminum Nitride. However, the measurement
of a Lithium Niobate on Sapphire sample showed poor performance, especially in terms of
phonon lifetimes. In this work we estimate whether this performance was justified through
BeamProp, a python–based simulation software for mechanical mode study and through
COMSOL for the coupling rates.
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Chapter 1

Introduction

Quantum technologies represent a rapidly growing field that promises to revolutionize
computing, communication, and sensing[1]. These technologies are based on the principles
of quantum mechanics, which describe the behavior of matter and energy at the smallest
scales. Unlike classical physics, quantum mechanics allows for particles to exist in mul-
tiple states simultaneously, leading to new possibilities for data storage, encryption, and
processing. As a result, researchers and engineers are exploring new ways to harness quan-
tum properties to create faster, more powerful computers, ultra–secure communication
networks, and more sensitive sensors. With the potential to impact nearly every industry,
quantum technologies are quickly becoming a major focus of research and development
around the world.

There are several different platforms that researchers and engineers are exploring in
quantum technologies, each with its own unique advantages and challenges. One of the
most promising platforms is superconducting qubits, which use tiny circuits made of super-
conducting materials to store and manipulate quantum information[2]. Superconducting
qubits are highly tunable, allowing for greater control and easier scalability, but they re-
quire extremely low temperatures and precise control over their environment to operate
effectively. Another platform is trapped ions, which use charged particles held in place
by electromagnetic fields to create quantum bits or, for short, qubits[3]. Trapped ions are
highly stable and have long coherence times, making them ideal for some applications,
but they can be more challenging to scale up and require complex equipment to manipu-
late. Other platforms being explored include photonics[4], topological qubits[5], and spin
qubits[6], each with its own set of advantages and challenges. Despite the challenges, re-
searchers and engineers are making significant progress in developing these platforms, and
many believe that a combination of these technologies will ultimately be needed to realize
the full potential of quantum technologies.

Hybrid systems are where mechanical resonators could play a role. Mechanical motion
couples to many things and so they can couple to a plethora of systems and be the interme-
diate through which they interact[7]. For example quantum opto– and electromechanical
systems interface mechanical motion with the electromagnetic modes of optical resonators
and microwave circuits. As a result, mechanical resonators can be used as quantum trans-
ducers by converting an excitation in the microwave range to a telecom photon. This has
the potential of providing a solution to the scalability of superconducting quantum pro-
cessors by means of creating quantum networks, a connection between distant processing
units, established through optical photons propagating through fibers.

The interaction between acoustics and microwave photons in superconducting circuits,
known as Circuit Quantum Acoustodynamics (cQAD)[8][9][10], is a rapidly emerging field
on its own. In recent years it has attracted significant attention due to its potential appli-
cations in quantum information processing and sensing. Basically, via piezoelectric inter-
actions, mechanical quantum states can be generated through the superconducting qubit.
Mechanical resonators have exceptionally long lifetimes even in the GHz regime, with re-
ports in the order of 1 s[11]. Since additionally in this range the acoustic wavelength is
much smaller than the electromagnetic one, leading to a small footprint and low cross–talk
between them, they are ideal candidates for quantum memories. Furthermore, the qubits
can be used to create more special mechanical states, like cat or squeezed states, for which
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1. Introduction

schemes are being developed for sensing applications i, like for example for gravitational
waves.

The Hybrid Quantum Systems group ii focuses on High–overtone Bulk Acoustic Res-
onators (HBARs), where the phonons are formed within the bulk part of a material. An
example is shown in Figure 1.1. For better phonon confinement one side of the resonator is
shaped like a dome, leading to a plano–convex cavity geometry. The part high–overtone of
the term comes from the mechanical standing wave being a high order longitudinal mode,
its wavelength is much smaller than the length of the resonator. In order to drive the
mechanical wave and to couple a superconducting circuit, a part of the dome is made from
a piezoelectric material. The electric field from the circuit causes a harmonic displacement
and thus drive of the phonon. In Section 2.2 we will see that the thickness of the piezoelec-
tric material should be half of the phonon wavelength to maximize the coupling between
the two parts.

Figure 1.1: Cross section of an HBAR device made out of sapphire. The dome is not to scale with
the rest of the bulk. The curved lines under the dome region represent the wavefronts of phonons.
Image from [12].

There are alternatives to bulk acoustic resonators like surface acoustic wave devices[13]
or micro– and nano–mechanical resonators[14][15]. In these cases however, imperfections
at material boundaries yield excess dissipation. In bulk devices surface interactions are
reduced by orders of magnitude and thus higher quality factors can be achieved[16].

1.1. Outline

This thesis consists of four more chapters. Chapter 2 gives a background about cQAD.
Chapter 3 introduces BeamProp, which is one of the simulation tools the group is using,
and then reports on additional work done in BeamProp and in COMSOL. The results
of those simulations are presented in chapter 4. Finally chapter 5 contains information
regarding the experimental setup used in cQAD along with the results of specific devices
that were measured during this project.

ihttps://mqsens.eu
iihttps://hyqu.ethz.ch/
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Chapter 2

Theoretical Background

This chapter contains two sections. The first is about the quantization of mechanical
modes and is contained for two reasons: usually graduate–level quantum courses deal only
with the quantization of electromagnetic modes, and furthermore it is a prerequisite for
the second section. The latter has to do with the piezoelectric coupling derivation, which is
one of the fundamental quantities in cQAD as in order to be in the strong–coupling regime
we need it to exceed the loss rates of the mechanical and the electromagnetic modes.

2.1. Mechanical modes

Let us first cover some more fundamental concepts, mainly based on chapters 4, 5 and
7 of [17], in order to properly introduce mechanical modes. We consider two points within
a solid, P and Q, at initial positions r and r+∆r respectively, in the limit where they are
infinitesimally close. Under deformation these points move to positions r′ and r′ +∆r′, as
shown in Figure 2.1. If we want to see how their displacements correlate to their initial
relative position then the Taylor expansion of u(r +∆r) about u(r) gives:

ui(r +∆r) = ui(r) +
3∑

j=1

∂ui
∂xj

∆rj + higher order terms. (2.1)

By dropping the higher order terms we get:

Figure 2.1: Positions of two points within a solid before and after deformation. Image from [17].

∆ui =
3∑

j=1

∂ui
∂xj

∆rj (2.2)

and so through the set of partial derivatives, ∂ui/∂xj, which are functions of position r within
the body, we can calculate the strain-induced relative displacement of any two points by
integrating these derivatives in the appropriate way. These derivatives can be assembled
into a tensor, D = ∇u, which can be broken down into a symmetric and an anti–symmetric
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2. Theoretical Background

part:

D = S +Ω with S =
1

2
(∇u+ (∇u)T ) and Ω =

1

2
(∇u− (∇u)T ). (2.3)

Two examples are shown in Figure 2.2. Displacement u(x, y, z) = [0.3x, 0, 0] leads to

Figure 2.2: Original shapes are drawn with solid lines and deformed solids with dashed. (a)
Longitudinal strain, u(x, y, z) = [0.3x, 0, 0]. (b) Shear strain, u(x, y, z) = [0.3z, 0, 0.3x].

a longitudinal strain where only the element S11 of S is non–zero, while for u(x, y, z) =
[0.3z, 0, 0.3x] the non–zero elements of the symmetric strain tensor are S13 and S31.

For a solid of density ρ, under stress T and body forces f(r) the description of the
dynamics comes from Newton’s second law as:

∇T (r) + f(r) = ρ
∂2u

∂t2
. (2.4)

Under small displacements most materials have a linear stress–strain relation, described
by the stiffness tensor, c, as:

Tij = cijlmSlm. (2.5)

In that case, if we also ignore the body forces, then equation 2.4 gives:

cijlm
∂2ul

∂xj∂xm
= ρ

∂2ui
∂t2

. (2.6)

2.1.1. Christoffel equation

If we focus on equation 2.6, which looks like a wave equation, and consider a solution of
a plane–wave form:

u(r, t) = U0e
i(q·r−ωt)ϵ̂, (2.7)

with q the wavevector and ϵ̂ the polarization, then this leads to:

ρω2ϵi =

3∑
j,l,m=1

cijlmq̂j q̂mϵl, (2.8)

with q̂j = q · êj/|q|, the normalized wavevector components.
From now on we will use the Einstein summation notation, where repeating indices

indicate summation over that index. For example, in the above equation there are three
repeating indices (j, l and m) and using this notation it is written as:

ρω2ϵi = cijlmq̂j q̂mϵl. (2.9)

For future equations, unless stated otherwise, the Einstein notation is the default.
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2.1. Mechanical modes

The above can be transformed into a characteristic equation by defining the Christoffel
tensor with elements:

Dil =
1

ρ
cijlmq̂j q̂m (2.10)

From that we get the Christoffel equation:

Dilϵl = υ2ϵi. (2.11)

As a result, for each q̂ this second–rank tensor will have three eigenvalues, υµ and three
eigenvectors, ϵ̂µ(q̂). The latter correspond to three polarizations of plane waves and the
former to their phase velocities. One of these eigenvectors is going to be the one closest to
being parallel to q̂ and is the one we call quasi–longitudinal wave, while the other two are
the quasi–transverse.

For an elastic material one can solve equation 2.11 for all directions and define a surface
in q–space with all the points coming from the endpoints of vectors υ = υ(q)q̂. This is
the velocity surface. Another useful representation though is the inverse of the velocity
surface, for which the points come from the vectors 1/υ(q)q̂. This is what we call the
slowness surface and it has the following interesting properties:

• it has the same shape as a surface of constant ω in q–space

• the Poynting vector and thus the direction of energy propagation points along the
normal to the slowness surface.

2.1.2. Quantization

In an elastic material a solution of equation 2.6 that has the form:

u(r, t) = u0e
−iωth(r) + c.c. = u0(t)h(r) + c.c. (2.12)

where h(r) is a function that contains the spatial dependence and polarization of the
displacement, which is assumed to be normalized,

∫
|h(r)|2 dV = 1, is what we call a

normal mode. The units of the terms are [h(r)] = m−3/2 and [u0] = m5/2. The actual
displacement will be the real part of equation 2.12.

As in the case of electromagnetic modes in quantum optics, here as well the quantization
is derived through the form of the Hamiltonian of the system which is given by:

H = T + V (2.13)

=

∫
1

2
ρ
∂ui
∂t

∂u∗i
∂t

dV +

∫
1

2
cijlm

∂ui
∂xj

∂ul
∂xm

dV︸ ︷︷ ︸
applying divergence theorem

=
1

2
ρω2|iu0(t)− iu∗0(t)|2

∫
|h(r)|2 dV +

1

2

∫
njcijlmui

∂ul
∂xm

dS︸ ︷︷ ︸
assuming no energy leaves the system

− 1

2

∫
uicijlm

∂2ul
∂xj∂xm

dV

=
1

2
ρω2|iu0(t)− iu∗0(t)|2 + 0− 1

2
ρ

∫
ui
∂2ui
∂t2

dV

=
1

2
ρω2|iu0(t)− iu∗0(t)|2 + 0 +

1

2
ρω2

∫
u2i dV

=
1

2
ρω2|iu0(t)− iu∗0(t)|2 + 0 +

1

2
ρω2

∫
|ui|2 dV

=
1

2
ρω2|iu0(t)− iu∗0(t)|2 + 0 +

1

2
ρω2|u0(t) + u∗0(t)|2

∫
|h(r)|2 dV
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2. Theoretical Background

=
1

2
ρω2(|iu0(t)− iu∗0(t)|2 + |u0(t) + u∗0(t)|2)

= 2ρω2|u0(t)|2 (2.14)

with nj the j–th element of a unit vector that is normal to the surface around the mode’s
volume. We also used the fact that the displacement is a real number to write u2i = |ui|2.
If we define the conjugate variables:

q = u0(t) + c.c. p = −iωρu0(t) + c.c. (2.15)

then 2.13 gives:

H =
p2

2ρ
+

1

2
ρω2q2 (2.16)

which has the form of the mechanical resonator Hamiltonian and can be quantized. The
above operators can thus be written in terms of the ladder operators b̂ and b̂† as:

q̂ =

√
ℏ

2ρω
(b̂+ b̂†) p̂ = −i

√
ρℏω
2

(b̂− b̂†). (2.17)

The quantum displacement operator can be written as:

û(r, t) =

√
ℏ

2ρω
h(r)b̂(t) +H.c. (2.18)

and the quantum strain tensor:

Ŝ(r, t) =

√
ℏ

2ρω
∇h(r)b̂(t) +H.c. . (2.19)

The multimode extension of this derivation gives:

û(r, t) =
M∑

m=1

√
ℏ

2ρω
hm(r)b̂m(t) +H.c. (2.20)

Ŝ(r, t) =

M∑
m=1

√
ℏ

2ρω
∇hm(r)b̂m(t) +H.c. . (2.21)

2.2. Piezoelectric coupling

The above treatment has been applied for the quantization of electromagnetic fields, as
found in every Quantum Optics textbook like [18], where we find the electric field operator:

Ê(r, t) = −i

√
ℏω
2ϵ0

f(r)â(t) +H.c., (2.22)

which for the multimode case would respectively give:

Ê(r, t) =

N∑
n=1

(−i

√
ℏωn

2ϵ0
f
n
(r)â(t) +H.c.). (2.23)

In an experiment that includes an electromagnetic device and a mechanical device the
total energy of the system would be the sum of the two sub–parts for most materials. If

6



2.2. Piezoelectric coupling

however, like the case of cQAD, there is a piezoelectric material present that is no longer
the case. The piezoelectric relations in stress–charge form, meaning with strain and electric
field as independent variables give[19]:(

T

D

)
=

(
cE −eT

cE ϵS

)(
S

E

)
(2.24)

where ϵS is the permittivity at constant stress, cE the stiffness tensor at constant electric

field and e the piezoelectric coupling tensor.
The piezoelectric coupling is calculated through the internal energy density of the whole

system, U , with differential form:

dU = T · dS − E · dD. (2.25)

If, as in equation 2.24, we want to have the strain and electric field as the independent
variables, then a more convenient quantity is:

G := U − E ·D, (2.26)

which from 2.24 gives:

dG = T · dS −D · dE
= (cES − eTE) · dS − (eS + ϵSE) · dE.

(2.27)

In Voigt notation the above leads to:

U = G+ ED

=
1

2

6∑
i,j=1

cijSiSj − 2

3,6∑
α,j=1

eαjEαSj +
1

2

3∑
α,β=1

ϵαβEαEβ.
(2.28)

Apart from the independent parts there is also the interaction Hamiltonian:

Ĥint/ℏ =
1

ℏ

∫ 3,6∑
α,j=1

eαjÊaŜj dV ∼ gâ†â+H.c. (2.29)

and so in the end, from 2.21, 2.23 and 2.29 we get the coupling term between an electro-
magnetic mode at frequency ωn and a mechanical mode at ωm to be:

gnm =
1

2

√
ωn

ρϵ0ωm

∫
(f i

n)
∗eijk(∇hm)ij dV. (2.30)

The last term in the above integral is the strain of the mode of interest which, as shown
in Figure 1.1, has a certain spatial distribution in the x–y plain (depending on the order
of the excited mode) and is sinusoidal in z, with wavelength λ. During the integration the
sinusoidal part will be initially maximized if the length of the piezoelectric is λ/2. Different
piezoelectric materials have different phase velocities and so the targeted thickness of the
piezoelectric layer will vary.

In order to increase the coupling rate one could try and shape the electric field so that
it has high value inside the piezoelectric material volume and form that overlaps well with
the mechanical mode of interest or look into materials with high piezoelectric tensor values.
The case for Lithium Niobate has been for the latter.
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Chapter 3

Simulation Tools

In this chapter we introduce the tools that were developed/used in order to investigate
topics related to the lifetime and the coupling rates of our HBARs. More specifically the
questions we want to answer are:

1. Do reflections limit the lifetimes in LiNbO3 HBARs?

2. For which radius of curvature are lifetimes affected?

3. Does polarization conversion form a significant source of loss for our HBARs?

4. What coupling rates can we expect with LiNbO3 HBARs and how do those compare
to the couplings to unwanted modes?

For the first three of those questions we use BeamProp and for the last COMSOL. Initially
the BeamProp algorithm is described, which along with the 1D–displacement approxima-
tion were already implemented by the group before the start of this thesis.

3.1. BeamProp

3.1.1. BeamProp Algorithm

BeamProp is a software package used to simulate the propagation of acoustic modes
inside a bulk acoustic resonator. The basic concept is representing the beam as an angular
spectrum of plane waves propagating in a direction centered about the symmetry axis of the
HBAR (usually this is considered the z–axis)[20]. Since there are three slowness surfaces
there are three plane wave solutions for each propagation direction and the general solution
of this representation has the form:

u(x, y, z, t) = (
1

2π
)3
∫ ∞

−∞
dω

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

3∑
n=1

ϕn(kx, ky, ω)d̂
n(

kx
ω
,
ky
ω
)ei(ωt−kxx−kyy−knz z)

(3.1)
where n indexes the three slowness surfaces, d̂n(kxω ,

ky
ω ) is the polarization vector for the

plane wave propagating along (kx, ky, k
n
z ), with knz determined by the corresponding slow-

ness surfaces and ϕn(kx, ky, ω) the amplitude for each polarization.
The goal is to find the response to a harmonic input of the form u(x, y, z, t) = u(x, y, z)eiΩt.

For that, we perform the following steps, described in [16]:

1. We consider an initial displacement on the flat side of the HBAR, u0(x, y, z = 0)

2. and find the Fourier transform of that,

H(kx, ky,Ω) =
∫∞
−∞ dt

∫∞
−∞ dx

∫∞
−∞ dy u0(x, y, z = 0)ei(ωt−kxx−kyy−knz z).

3. From the knowledge of the slowness surfaces around the propagation direction, mean-
ing knz = qnzΩ = f(kx/Ω, ky/Ω) around n̂ = [0, 0, 1] and the corresponding polariza-
tion vectors, d̂n, the initial displacement can be decomposed into quasi–longitudinal
and quasi–transverse plane waves with amplitudes ϕn, where

9



3. Simulation Tools

Figure 3.1: Example of a 2D cut of the 3D geometry defined in BeamProp. The bulk material (light
pink) length is L, the dome has a circular shape with maximum height h and maximum piezoelectric
(dark pink) thickness t. The dotted lines indicate the region out of which we introduce losses.

ϕn=1(kx, ky,Ω) =

{H · d̂1[1− (d̂2 · d̂3)2] +H · d̂2[(d̂1 · d̂3)(d̂2 · d̂3)− d̂1 · d̂2] +H · d̂3[(d̂1 · d̂2)(d̂3 · d̂2)− d̂1 · d̂3]}
{1 + 2(d̂1 · d̂2)(d̂2 · d̂3)(d̂3 · d̂1)− (d̂1 · d̂2)2 − (d̂1 · d̂3)2 − (d̂2 · d̂3)2}

.

(3.2)

Similarly ϕ2 and ϕ3 are obtained by permutation of indices. Once these coefficients
are calculated, the field at z = L is found using equation 3.1.

4. For the propagation inside the dome we consider u(x, y, z = L) with a position–
dependent phase shift that corresponds to the beam propagating inside the curved
surface and back (dome) in real space. The reflected field is thus given as:ux′(x, y, z = L)

uy′(x, y, z = L)
uz′(x, y, z = L)

 =

ux(x, y, z = L)ei2kt1ht1(x,y)

uy(x, y, z = L)ei2kt2ht2(x,y)

uz(x, y, z = L)ei2klhl(x,y)

 . (3.3)

In this step we consider propagation towards the [0, 0, 1] direction. Let us assume that
the slow–transverse surface is the one that is mainly x–polarized in that direction,
hence kt1 is used for the calculation of ux′ and the phase velocity of interest is
υph,x,bulk. Looking into Figure 3.1, since we have propagation in two materials, in
order to account for the different phase velocities we define the effective length of the
dome as ht1(x, y) = h(x, y) − t(x, y) + υph,x,bulk/υph,x,piezot(x, y). Similarly we get
the remaining terms of the above equation.

In addition we introduce losses by multiplying the field outside the dome region,
indicated by the doted lines in Figure 3.1, with a number 0 ≤ β ≤ 1. This dissipation
region starts a few µm outside the dome, β = 1 at the dotted line and is decreasing
as a cos2 as we approach the edge, where β = 0. Then, steps 1–4 are repeated for
propagation to the other side of the crystal and in the end, starting from u0(x, y, z =
0) we get the displacement field after one propagation through the crystal u1(x, y, z =
0)

5. This process is repeated m times and we end up with the interferometric sum defined
as

usum =
∑
m

um(x, y, z = 0) (3.4)

for which the total intensity is given by

I =

∫ ∫
|usum|2 dx dy. (3.5)
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3.1. BeamProp

By doing this process for different values of frequency we can thus find the resonant frequen-
cies and the spectrum for the specific simulation geometry and parameters. This happens
because for certain frequencies the displacement after a roundtrip acquires a phase of a
multiple of 2π and so in 3.4 the individual terms are going to constructively interfere.

3.1.2. 1D–displacement approximation

Since we are interested in modes which are mainly z–polarized there are some approxi-
mations we can use to make the simulation less computationally expensive:

• we can ignore the transverse part of the displacement by setting ux = uy = 0.

• Since the polarization vectors of the two quasi–transverse slowness surfaces are mainly
in the x–y plane, the mode is mainly quasi–longitudinal and so we can only consider
this slowness surface.

• Finally, as described in [20] we can further simplify the simulation by performing a
Taylor expansion around the [0, 0, 1] direction of the slowness surface.

3.1.3. Reflections

Within the approximations described in section 3.1.2, one addition is to account for the
acoustic impedance mismatch between bulk and piezoelectric materials and check how that
affects the fundamental mode’s linewidth and its profile.

Any propagating wave in material 1 meeting the interface with material 2 will have a
part of that gets reflected and the remaining transmitted. In the case of a dome, the
transmitted part will face the same interface but from the piezoelectric material side and
will either be transmitted into the bulk directly or perform a number of reflections before
doing so. The first three terms of this propagation are shown in Figure 3.2. The coefficients
of reflection and transmission, under normal incidence, according to [19] are:

R12 =
Z1 − Z2

Z2 + Z1
and T12 =

2Z1

Z2 + Z1
. (3.6)

Usually in the HBAR devices only the upper part of maximum thickness t is the piezoelec-
tric, while the remaining is bulk.

During step 4 of the BeamProp algorithm and based on equation 3.3 the displacement
after propagating back and forth through the dome will thus be:

uz′(x, y) = uz(x, y) ∗ [e−j2h1(x,y)k0R12 + e−jh1(x,y)k0T12e
−j2h2(x,y)k0T21e

−jh1(x,y)k0

+ e−jh1(x,y)k0T12e
−j2h2(x,y)k0R21e

−j2h2(x,y)k0T21e
−jh1(x,y)k0 + ...]

= uz(x, y)e
−j2h1(x,y)k0 [R12 + T12e

−j2h2(x,y)k0 [1 + e−j2h2(x,y)k0R21 + (e−j2h2(x,y)k0R21)
2 + ...]T21]

= uz(x, y)e
−j2h1(x,y)k0 [R12 + T12e

−j2h2(x,y)k0T21

∞∑
k=0

(e−j2h2(x,y)k0R21)
k]

= uz(x, y)e
−j2h1(x,y)k0 [R12 +

T12e
−j2h2(x,y)k0T21

1− e−j2h2(x,y)k0R21
],

(3.7)

with h1(x, y) and h2(x, y) the height distributions for the bulk and piezoelectric parts of
the dome accordingly.

BeamProp3D implementation

In the previous subsubsection only displacements in the z–direction were assumed. How-
ever even the polarization vectors of the quasi–longitudinal slowness surface are not only
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3. Simulation Tools

(a) (b)

(c)

Figure 3.2: Three of the possible cases for sound wave propagation at the interface of two materials
in the dome of an HBAR. (a) Reflected at interface. In addition, we show which heights h1(x) and
h2(x) correspond to. (b) Transmitted from bulk to piezoelectric and from piezoelectric to bulk. (c)
Transmitted from bulk to piezoelectric, reflected at interface once, and then transmitted to bulk.

z–polarized, even though that is the dominant direction. Including ux and uy would:

(a) allow us to identify also transverse modes

(b) let us study losses due to polarization conversion.

Figure 3.3: Contour plots of the quasi–transverse slowness surfaces for sapphire and CaF2. The
arrows on the plots represent the x– and y–components of the polarization vectors.

This new tool gives the option of introducing an initial displacement that is not just
z–polarized. As a result, if we choose an initial Gaussian intensity profile in all three
directions, meaning ux,init = uy,init = uz,init then what we expect is to be able to find
quasi–transverse modes along with the quasi–longitudinal ones. If we look at equation 3.5,
we can decompose it into

I =

∫ ∫
|usum|2 dx dy =

∫ ∫
|
√
u2x + u2y + u2z|2 dx dy

=

∫ ∫
u2x dx dy +

∫ ∫
u2y dx dy +

∫ ∫
u2z dx dy = I(ux) + I(uy) + I(uz).

(3.8)
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3.1. BeamProp

The quasi–transverse modes will be shear waves and so will become apparent by plotting
the intensity spectrum of I(ux) + I(uy), while the quasi–longitudinal modes will cause
peaks in I(uz).

In Figure 3.4 we see, for the same geometry, in terms of substrate length, dome shape
and dimensions and piezoelectric thickness, what these simulated spectra look like for
the case of sapphire (the one actually used in the devices we measured) and CaF2 as
the bulk material. In both cases the frequency spectrum is more than one –longitudinal
mode– FSR, which is clear from having two collections of peaks in I(uz) separated by
a low intensity region. On the right plot we also see four mode families in the plot of
I(ux) + I(uy), indicating the shear modes. The FSR difference of these modes, compared
to the longitudinal ones, is expected since for CaF2 the phase velocities in the [0, 0, 1]
direction are [ut1ph, u

t2
ph, u

l
ph] = [3.2655, 3.2655, 7.2044](km/s) and FSR = uph/2L. The

exact same behaviour is expected for sapphire, for which

[ut1ph, u
t2
ph, u

l
ph] = [6.0567, 6.0567, 11.1972](km/s), (3.9)

according to the values in Appendix B. However this is not the case. There seems to be

Figure 3.4: Spectra from 3D BeamProp simulation for geometry of a sample with the actual
sapphire bulk material and with CaF2. As hero we refer to a particular device in the group, which
has a great performance in terms of strong coupling.

a quasi–constant transverse intensity level. There are two indications that there should
be transverse modes: one is that experimentally we see modes repeating at this expected
FSR, which is also reported in another work[21], and also in COMSOL we can see modes
polarized in the x–y plane.

Unfortunately this issue has not been solved by the end of this thesis. The origin however
seems to have been identified. Going back to Figure 3.3, we observe that the slowest surface
of sapphire has a different form from the other surfaces. Indeed this surfaces does not have
a parabolic shape with the highest value on–top, but rather a dip at the center. What
that would mean, from solid mechanics, is that energy would be focused in that direction.
This effect is called phonon focusing in literature.

It is not clear if that is the reason behind this transverse intensity or whether (quite
likely) there is some mistake in the code or the values leading to this behaviour. In order
however to isolate the behaviour of the two quasi–transverse surfaces, the approximated
(1D) version of BeamProp was used. Of course usually this means only considering uz and
the values of the quasi–longitudinal slowness surface, but one can just import the values
of any other surface and treat the simulation as if the one used is the quasi–longitudinal
one. When running the approximated version only considering the fast–transverse surface,
then the spectrum looks as expected, a series of collections of peaks after each FSR,
indicating the usual fundamental and higher–order modes. However, when running the
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3. Simulation Tools

same simulation using the slow–transverse values then there were no resonant peaks, as
seen in Figure 3.5.

(a) (b)

(c) (d)

Figure 3.5: One the left are the slowness surfaces used to create the intensity spectra on the
right, using BeamProp1D. (a) Fast–transverse slowness surface of sapphire. (b) Spectrum using
fast–transverse slowness surface of sapphire. (c) Slow–transverse slowness surface of sapphire. (d)
Spectrum using slow–transverse slowness surface of sapphire.

It remains an open question is why in the 3D version we do not see both the mode
spectrum of the fast-transverse and the slow-transverse slowness surfaces, but the effect of
the slowest surface "takes over". As stated in the BeamProp algorithm section, with more
information found in Appendix A, for a particular [qx, qy] pair the polarization vectors
of the three surfaces are not orthogonal, because they do not correspond to the same
direction. We have a grid of points for each of which three non–orthogonal vectors are
assigned. If for each point we look at the dot product of these vectors it is less than 10−3.
So one might expect that if a mode of the fast–transverse surface is excited it will not be
affected as much by the slow–transverse. On the other hand both surfaces have mainly
x– and mainly y–polarized eigenvectors. As a result any ux and uy excitation is going to
involve both and in a sense "entangle" them.

3.1.4. Resonant Mode Linewidth

We want to study how the linewidth of a resonant mode evolves with the number of
roundtrips performed. Let us consider a cavity of length L, a resonant frequency f0 =
mυph/2L with m ∈ N and a plane wave with wavenumber kz = 2πf0/υph. The intensity
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3.2. Coupling Rates – COMSOL

after N roundtrips, similarly to the equation 3.5 will be:

I(f0) = |
N∑

n=0

un|2 = |
N∑

n=0

u0e
ikzn2L|2 = |

N∑
n=0

u0 e
i2πmn︸ ︷︷ ︸
1n

|2 = (N + 1)2u20 (3.10)

Since the metric for losses is the Full–Width at Half–Maximum (FWHM), let us see how
the frequency f = f0 + δ for which I(f) = I(f0)/2 is related to N . We have:

I(f) = |
N∑

n=0

u0e
i2πmnei2π2Lnδ/υph |2

= u20|
N∑

n=0

ei2π2Lnδ/υph |2, x := 2π2Lδ/υph

= u20|
N∑

n=0

eixn|2

= u20|
eix(N+1) − 1

eix − 1
|2

≈ u20|
eix(N+1) − 1

ix
|2, x = 2πmδ/f0 ≪ 1 since δ ∼ kHz

=
u20
x2

|eix(N+1) − 1|2.

(3.11)

In order to get a sense of how δ scales with N we also assume (N + 1)x ≪ 1 so that
we expand the remaining exponential, even though this approximation is not valid. By
keeping the first four terms we get:

1

2
u20(N + 1)2 =

u20
x2

|ix(N + 1)− 1

2
[x(N + 1)]2 − i

6
[x(N + 1)]3|2

1 = 2|i− 1

2
[x(N + 1)]− i

6
[x(N + 1)]2|2

1 = 2[(1− 1

6
(N + 1)2x2)2 +

1

4
(N + 1)2x2]

x2 =
−3± i

√
63

2(N + 1)2

x2 ∝ 1

(N + 1)2

δ ∝ 1

N + 1
.

(3.12)

From the above, we may expect the linewidths we find from BeamProp to be inversely
related to N , up to the point where the phase difference accrued between two waves of
different frequency is no longer limited by the propagated length but other factors, i.e.
losses.

3.2. Coupling Rates – COMSOL

There are three methods which have been used thus far to estimate the electromechanical
coupling rates between a microwave resonator and an HBAR. One is to use the electric field
values obtained from finite element simulations performed in the Ansys software package
and the phononic mode profiles from BeamProp. However due to the BeamProp3D issues
described above this would only allow us to look into longitudinal modes, since we do not get
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3. Simulation Tools

transverse modes, and hence their profiles, so we cannot use it in combination with Ansys.
The other two are both in COMSOL Multiphysics and are based on work done previously
in the group and described in [22]. In this work they integrated in the same COMSOL
simulation the so called ℏBAR, meaning the substrate with the superconducting qubit
and on top of it the substrate with the piezoelectric material that contains the mechanical
modes. This gives the capability of performing a single simulation to find the behaviour
of the system, meaning predicting the frequencies, coupling rates and so on. One option
is to perform a coupled simulation using both the

• Electromagnetic Waves, Frequency Domain (emw) and the

• Structural Mechanics

physics interfaces and the other to do these simulations separately and use equation 2.30
or some other formula in the post–processing step to get the result.

For our case the latter option for calculating the coupling rates was used, the reason
being that it is computationally much less expensive and sufficient for our study. A great
advantage of using this approach is that within a single file the volume integration can
be done with a more realistic spatial distribution of the electric field. This would be even
more useful if the modes of interest had more complex profiles.

An important aspect of these simulations is how to implement the correct material’s
crystal orientation in the case of Lithium Niobate in COMSOL. For this we can use the
method discribed in i by which the steps are:

1. in the Definitions subnode under the Component define a Rotated Coordinate
System. The new system is generated from the "global" one by performing three
rotations by the Z, then the X and then the Z axis again. These rotations are
sufficient for the new system to have any direction. In order for the Y axis to be
rotated to the z–direction we only need to perform a 90◦ rotation about X, so the
angles for rotation are [0, 90◦, 0].

2. For the mechanical properties of the material we can either create a Piezoelectric
Material or an additional Linear Elastic Material subnode of Solid Mechanics
in which we simply choose the new, rotated coordinate system and the material
properties will be adjusted.

3. In case we were working with the Electrostatics physics interface of COMSOL then
in the previous step we would set the Piezoelectric Material and this would be
sufficient. However we are using the emw interface and due to the lack of a direct
Multiphysics–Coupled interface we need to also rotate the coordinate system at the
subnode of the modified relative susceptibility, again as defined in [22]. Note however
that this needs to be done at the level of the Wave Equation subnode and not by an
effective medium.

4. Finally, another distinction from the original work in [22] is that in the post–processing
step, when working with the Results of the simulations we need to pay attention in
using the material properties as defined in the global coordinate system. For example,
for the (1, 1) element of the coupling matrix in the rotated coordinate system, instead
of solid.eES11 which we would normally use, we need to use solid.eESgX1, which
couples an E-field in the x direction of the global coordinate system to a longitudinal
Sxx strain field. .

5. To verify that these steps actually lead to the desired changes we go to Results
→Datasets →Cut Point 3D where we define a random point within the piezo-
electric volume. After that we go to Derived values →Point Evaluation\Point
Matrix Evaluation and evaluate some material property.

ihttps://www.comsol.com/blogs/piezoelectric-materials-applying-the-standards/
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Chapter 4

Simulation Results

As described in the previous chapter, in cQAD a fundamental condition for performing
useful operations for quantum information processing, and more, is that the coupling rate
g exceeds the system losses, i.e. the mechanical dissipation rate κm and the qubit loss rate
γq. This work does not contain a study on the qubit, but on the other two metrics in two
sections.

The first section is dedicated to the mechanical dissipation rate κm and mainly on work
done using BeamProp and consists of two parts. First, within the 1D approximation de-
scribed in the previous chapter, we investigate if diffraction losses are the limiting factor
of our samples and if this is modelled properly only when considering reflections. Further-
more, we look into the effect of radius of curvature on diffraction losses to find if shaping
the dome of our samples in a different manner would lead to better lifetimes and the limit
at which they decrease. Then the second part is a study using BeamProp3D, where propa-
gation back and forth inside the dome leads to redistribution of plane–wave decomposition
and now diffraction losses come from all slowness surfaces.

The second section is based on work done previously in the group and used to simulate
the coupling rate of the devices in case of Lithium Niobate. More specifically we estimate
the coupling rate of an upcoming sample. In order to verify the method used we also
calculate the coupling rate for a sample that has been measured in the lab. Finally, we
look into increasing the coupling rate by taking advantage of the piezoelectric properties
of Lithium Niobate as in B.6 and coupling to shear modes instead of longitudinal.

4.1. Phonon Lifetime

4.1.1. BeamProp1D – Reflections

The loss mechanism that we include in BeamProp is decay through diffraction. Choosing
the shape of the HBAR device as a plano–convex cavity, similarly to the case of electromag-
netic cavities, happens in order to contain the mode. As the beam propagates, it expands
and diverges. In a plano–plano cavity this diffraction would cause energy to get lost as ra-
diation into the bulk, but having a dome–shape provides stability. So the implementation
of this energy loss is done with the calculations of uz′(x, y, z = 0) and uz′(x, y, z = L),
by multiplying the displacement values of the points that "live" outside the under–dome
region with a number, β, smaller than one as seen in Figure 4.1. The further away from
that region the more is that point "penalized".

The interface of the bulk and piezoelectric materials acts as a partially reflective flat sur-
face and so beams that are not propagating exactly normal to that interface will be driven
away from the under–dome region. As seen in equations 3.6 the reflection (transmission)
coefficient becomes larger (smaller) with higher acoustic impedance mismatch. This is the
case when combining Sapphire with Lithium Niobate compared to Aluminum Nitride and
led to the idea behind accounting for reflections.

When running the simulation we define the specific number of roundtrips for which the
displacement is going to propagate in the device. As a result, as seen in equation 3.12,
by increasing the number of roundtrips the FWHM should keep decreasing. If, however,
diffraction losses are sufficient, then the additional terms added to the total displacement
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4. Simulation Results

Figure 4.1: Cross section of the upper surface of the HBAR, flat part and dome, along with the
profile of β, the number that multiplies the displacement to introduce attenuation. Decay starts
from 20µm outside the edge of the dome.

Label Bulk length
(µm)

Dome max height
(nm)

Piezoelectric
material

Piezo max thick-
ness (nm)

Dome RoC
(mm)

Hero 435 1878 AlN 1156 35

Old LN 665 1360 LiNbO3 690 45.6

New LN 1 230 1440 LiNbO3 667 7.41

New LN 2 230 1440 LiNbO3 667 3.3

Table 4.1.: Information regarding geometric and materials for four samples. The first two have been
measured, while the last two have been fabricated, but not yet bonded to qubits and measured.
For the Hero sample lifetimes and coupling rates can be found in [23], while for Old LN in Table
5.1.

(equation 3.4) will become insignificant and the FWHM will converge to a higher number
than in the lossless case. If diffraction losses are the main decay factor then we expect that
this number will approach the one of the actual devices.

The sufficient number of roundtrips depends on the specific device characteristics, like the
sound velocity in the bulk material or its length. From the second to last row of equation
3.12 and with the definition of variable x := 2π2Lδ/υph in mind, if we also consider the
length of the HBAR as a variable then δ ∝ 1/(N + 1)L. This means that the shorter the
HBAR, the number of roundtrips needs to be higher for sufficient linewidth decrease.

The results of this study are shown in Figure 4.2 where we see the linewidth convergence
for the four samples described in table 4.1 with both implementations, with and without
accounting for reflections. Samples Hero and Old LN are the two devices that have actually
been measured, with the former having lower phonon decay rate of ∼ 2 kHz and being the
device that papers [23][24][25][26] are based on. We see that no matter which approach was
used, all samples seem to not be diffraction–limited via BeamProp1D as their linewidth
converges to values much lower than the experimental.

Even though the samples are not diffraction–limited according to our study, there might
also be a way to improve their ideal performance. For this reason we look at the effect
of radius of curvature (RoC) on the phonon lifetime. More specifically we calculate the
FWHM of samples that have the same geometric and material characteristics as the Hero
device other than the RoC. It is sufficient to restrict the number of roundtrips, for computa-
tional reasons, to 25.000 because significant improvements (lower FWHM) or deterioration
(higher FWHM) would become apparent even from this stage. This number was chosen
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4.1. Phonon Lifetime

Figure 4.2: Convergence plot the fundamental mode of the four samples in table 4.1. In all cases
the mode frequency is close to 6GHz.

because for the Hero sample the calculated FWHM is about 500Hz, close to the exper-
imental case. A verification however that the samples’ FWHM evolves as expected was
done for two samples near the opposite sides of the RoC spectrum with both methods
and their results are shown in Figure 4.3. Looking at the log–log plots, linewidth initially
has the 1/N dependence derived in the previous chapter, but this changes above 140.000
roundtrips.

Figure 4.3: Evolution of FWHM for the fundamental mode for two different radii of curvature.
The remaining parameters for both simulations are the ones for the Hero sample in Table 4.1.

The results of the study relating linewidth to radius of curvature are shown in Figure
4.4(a). We see that in the range from about 2mm and up to 500mm RoC there are not
significant changes to the FWHM of the simulated samples. We also observe that stability
will fail for about 1mm when we consider reflections and for 0.5mm with the original,
"normal", code. A minimum requirement for a working cavity is that it satisfies the cavity
stability criterion [12][27]. This leads to an absolute lower limit on the radii of curvature
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of the dome for a particular choice of materials and chip thickness and approaching this
lower limit will lead to a steep increase in cavity losses. As a result the specific radii that
led to instability here are not universal.

We also wanted to study the effect of accounting for reflections to the width of the
fundamental mode. This is important for the design of the superconducting qubits, as we
want the shape of their electric field to match the phononic mode. As seen in Figure 4.4(b)
this implementation leads to reduction in mode width. This is again not a universal result
however. There were other cases where the reflection code led to wider mode profile, which
makes it more difficult to interpret this behaviour.

(a) (b)

Figure 4.4: Study of how RoC affects the losses of the fundamental modes and their profiles for
devices with geometry similar to that of Hero. (a) Effect of radius of curvature on mode FWHM.
(b) Effect of radius of curvature on mode profile.

As a final note here let us mention that there was an attempt to verify BeamProp1D
through COMSOL. For that, the same geometry was created in both programs: 50 µm
sapphire bulk, circular dome of varying RoC and thickness 1156 nm, whole dome consisting
of AlN. In order for the comparison to make sense we used the Prescribed Displacement
option in COMSOL to only consider uz. In COMSOL, once the user finds the eigenmodes
there is a Q-factor calculation in the post–processing part. The idea was thus to make
a series of simulations, going to smaller RoC and find for which one each method fails,
similarly to what was done in Figure 4.4(a). The issue that we came across though was
that in COMSOL we expect Q to converge at some point as the meshing becomes more
detailed. This however was not achieved within our RAM limitations, meaning the more
detailed the mesh the larger the Q, without converging. So the above study has not been
verified via COMSOL.

4.1.2. BeamProp3D

Even though the issue described in section 3.1.3 has not been solved, the same conver-
gence study of the four samples of table 4.1 was done with BeamProp3D and the results
are shown in Figure 4.5. For the Hero and Old LN samples the simulations show again
that they are not diffraction–limited. However, the upcoming New LN 1 and New LN 2
are. Since for these we have already surpassed the RoC for which the cavity becomes lossy,
the smaller the RoC the more the losses, and so New LN 2 converges faster than New LN
1. It will thus be very interesting to see what the experimental lifetimes will be once those
samples are actually measured. Furthermore, additional investigation needs to be done to
explain this, similarly to the 1D case and the 1D case including reflections, like a study of
linewidth with radius of curvature. The reason why this has not been done is again the
unsolved issue for the case of sapphire.
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The issues of BeamProp3D make us question the simulation results. One possibility
to benchmark these simulations is through COMSOL, which has been prevented due to
hardware limitations thus far, since solving for displacements in all directions would in-
crease the simulations degrees of freedom compared to when we were using the Prescribed
Displacement. As a result we would definitely not be able to reach a Q convergence. An
approach to overcome this would be to perform simulations for smaller bulk sizes and/or
using a more powerful PC.

Figure 4.5: Convergence plot the fundamental mode of the four samples in table 4.1.

4.2. Coupling Rate

With all the specifics described in section 3.2 in mind, the coupling rates for the upcoming
New LN 1 sample are shown in Figure 4.6. In the post–processing step we look into the
flat side of the HBAR to find the mode profiles, which correspond to the Hermite–Gaussian
(HGij) modes shown in Figure 4.7. In general through the Structural Mechanics eigen–
mode solution one can find many higher order modes, but the higher the order (meaning
higher values for i, j) the lower the coupling rate, compared to the fundamental mode.
This is due to the fact that we are integrating in a volume where we will have positive and
negative regions of displacement. Figure 4.6 therefore only includes longitudinal modes
up to order 3, meaning with indices HGij such that i + j ≤ 3, and the two fundamental
(HG-00) transverse modes that are x– and y–polarized.

An important note is that these values are acquired for a bulk length of 40 µm to make the
simulation less computationally expensive. In order to predict the values for the upcoming
sample, gsim, since g ∝ 1/

√
V [22], where V is the volume of the mechanical mode, we scale

the values obtained from COMSOL, gCOMSOL, by the difference in simulated and actual
mode volume as:

gsim
gCOMSOL

≈
1/
√
Vactual

1/
√
VCOMSOL

=

√
VCOMSOL√
Vactual

≈
√

LCOMSOL

Lactual
= 0.417. (4.1)

Note that this scaling method ignores the change of mode width with crystal length, which
is given as w ∝ L1/4. For the Old LN sample the simulated and experimental coupling
rates are:

|gsim|/2π ≈ 170 kHz and |gexp|/2π ≈ 159 kHz. (4.2)
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From Figure 4.6 we observe the following:

• From the longitudinal modes, the only modes that are at the same order of magnitude
with HG–00 are the HG–02 and HG–20. These are the first higher–order modes that
have displacement at the center of the mode profile (see Fig. 4.7).

• The first shear mode shown is at 5.0637GHz and it has the profile of a fundamental
mode (HG–00) if we look at ux and HG–10 if we look at uz. The coupling for this
is much smaller than for the fundamental longitudinal mode, but this one couples
through the x–component of the electric field, not the z–component and it comes
from the value of 2.37C/m2 of the coupling matrix in Appendix B. Figure 4.8 shows
the amplitude of the electric field components on the x–z plane inside the dome.

• The other transverse mode shown at 5.0779GHz is the fundamental mode with y–
polarization. The coupling for this is lower than for the HG-02 and HG-20, but
higher than the higher order longitudinal modes. It comes from the z–component
of the electric field, but has major contributions from both S3 and S4 (Szz and Syz

in Voigt notation respectively), so utilizing also the 3.83C/m2 component of the
coupling matrix in Appendix B.

Since for sapphire, as seen in equation 3.9, the transverse phase velocity is about half of
the longitudinal one, the corresponding wavelength is going to be about half as well, if we
are looking at modes that are close in frequency. The piezoelectric thickness is designed
to be approximately half the wavelength of the mode we want to couple to, in order to
maximize the coupling rate. The above is shown in Figures 4.9 and 4.10. Figure 4.9 shows
the profiles of the S3 (for mode HG–00) and the S4 (for mode HG-00-y at 5.0779GHz)
strain vector component on the x–z plane at the center of the piezoelectric region. Figure
4.10 shows the displacements uz (for mode HG–00) and uy (for mode HG-00-y) across the
symmetry axis, z, of our geometry. Both show that the fundamental longitudinal mode
has approximately half a wavelength of displacement (or strain) inside the piezoelectric
region, while the shear modes fit roughly a full wavelength inside this region.

So then a question that naturally arises is whether the largest component of the piezo-
electric’s coupling matrix can be used as an advantage instead of a drawback. For this to
happen we need to couple the strongest to the component S4 of the strain vector in Voigt
notation, instead of the S3 we use now. For this we did a simulation with a device that
has the same geometric characteristics as the above (bulk length, dome RoC, materials),
but half the piezoelectric thickness/dome height, so as to maximize the coupling to the
shear modes instead of the longitudinal modes.. The results for that are shown in Figure
4.11. We see that in this configuration we can achieve higher coupling rates, from 270 kHz
that we had before to about 400 kHz. The drawback is that the coupling to the unwanted/
higher–order modes will also be higher.

We note that the estimations heavily depend on the material properties used for the sim-
ulations. But in reality we do not have the exact values of properties like the piezoelectric
tensor or the refractive index of our sample. This issue is mentioned for example in [21],
for the value of a component of the coupling matrix of Aluminum Nitride. Furthermore,
we do not know how these values change in milliKelvin temperatures. But even though
the absolute values might diverge, the relative coupling rates should hold.
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4.2. Coupling Rate

Figure 4.6: Coupling rates for the upcoming New LN 1 sample, with piezoelectric thickness 667 nm.

Figure 4.7: Hermite-Gaussian mode profiles. Image from [28].

Figure 4.8: Electric field components on the x–z plane inside the dome. The colourbar is common
for all components, its lowest (highest) value is the minimum (maximum) E–field value of the
plotted data. The region shown above has length ≈ 31 µm and height 667 nm.
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4. Simulation Results

(a)

(b)

Figure 4.9: (a) Profile of the fundamental S3 mode on the x–z plane inside the dome region, the
first mode in Figure 4.6. (b) Profile of S4 mode on the x–z plane inside the dome region, the
last mode in Figure 4.6. The color–scale is symmetric, with white corresponding to zero, red to
positive and blue to negative. The particular piezoelectric thickness of 667 nm is thus optimized for
coupling strongly to longitudinal modes. The region shown above has length ≈ 31 µm and height
667 nm.
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4.2. Coupling Rate

(a)

(b)

Figure 4.10: Displacement components of the same modes from Figure 4.9. Both plots show the
displacements for the fundamental modes across a line that starts from the flat surface of the bulk
until the top of the dome for x = y = 0. The dashed line indicates where the dome, and thus the
piezoelectric material starts. The part left of the dashed line is the displacement along the z–axis
of the fundamental modes in sapphire and the part right from the dashed line in Lithium Niobate.
(a) Longitudinal fundamental mode, the first mode in Figure 4.6. (b) Shear fundamental mode,
the last mode in Figure 4.6.
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4. Simulation Results

Figure 4.11: Coupling rates for a device with the characteristics of the upcoming New LN 1 sample,
but with half the piezoelectric thickness, 333.5 nm.
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4.3. Conclusions

4.3. Conclusions

In this chapter we saw that:

• with BeamProp1D the samples that have been measured along with the upcoming
ones are not limited by diffraction losses.

• With BeamProp3D, which includes diffraction originating from polarization conver-
sion, the measured samples have again not been limited, but the upcoming ones will
be if their experimental phonon linewidths approach 2 kHz.

• The New LN 1 sample is expected to have coupling rate to the fundamental longi-
tudinal mode of about 270 kHz.

• If the same substrate is fabricated such that it has a piezoelectric thickness of
333.5 nm then it will couple to the fundamental shear mode with rate of about
400 kHz.
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Chapter 5

Experimental results

This chapter contains three sections. The first is dedicated to the description of the
experimental setup with an emphasis on the way the measurements are performed. In the
second section we find some characteristics of the Lithium Niobate devices that have been
measured in the lab and their results are presented in the third section.

5.1. Setup and measurement sequence

The experiment consists of a typical Circuit Quantum Electrodynamics setup[2] with
the addition of the flip–chip bonded substrate with the piezoelectric dome for the phonon
modes. The two substrates, shown in Figure 5.1(b) are placed in a microwave cavity,
which is placed in a dilution refrigerator at a few milliKelvin. Excitation and readout
pulses are sent through the input line to one of the connectors of the microwave cavity.
The collected signal from the other connector passes through the output line and is used
to get information about the system. This corresponds to a microwave cavity transmission
measurement.

Once the cooldown is done there are a few steps that need to be done before the HBAR
characterization:

• initially there is a frequency scan of the readout signal in order to identify the fre-
quency of the cavity, which usually is around 8GHz. In this case we are far detuned
from the qubit transition, which remains in the ground state. The readout pulse
is optimized, in terms of amplitude and duration, and set for the remainder of the
experiment.

• Then we scan the frequency of another pulse to find the qubit’s frequency while
monitoring the transmission of the readout pulse. This is known as two–tone spec-
troscopy[29]. While the qubit is not excited the readout signal is at a constant level.
When the qubit gets excited then the spectrum is going to have a dip at that fre-
quency. This is because the frequency of the cavity will be shifted due to dispersive
interaction with the qubit’s state[2]. If the excitation pulse is long then the qubit’s
state will be constantly making rotations around the Bloch sphere and so on average
it will be on an equal mixture of ground and excited state. In that case the dip will
be at half the maximum level.

The qubit’s eigenfrequency can be shifted by applying a Stark shift. This is a crucial part
that allows to have Jaynes–Cummings (resonant) interactions with the phononic modes and
then isolate the qubit at its "rest" frequency for the rest of the experiment. Otherwise
there would be constant Rabi oscillations between the two parts.

Once the qubit is identified the following properties are characterized:

• Rabi π–pulse length and power: an excitation pulse is sent to the qubit, followed by
the readout pulse. Typically one would vary the duration of the excitation pulse,
which would lead to an oscillating readout signal with the form of a cosine since for
zero duration (no pulse) the qubit remains at the ground state and the readout is
maximized. The first signal minimum corresponds to a π–pulse. Another approach
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5. Experimental results

(a) (b)

Figure 5.1: Part of the experimental setup, the microwave cavity along with the samples inside.
This microwave cavity is then mounted inside a dilution refrigerator, at the bottom plate. (a)
Photograph of the open microwave cavity with three ℏBAR chips glued on the sides. One of the
connectors is where the input line ends and the other where the output starts. Photograph from
the group’s archive. (b) Close–up of the two flip–chip bonded substrates, one for the qubit and
one for the HBAR. Image from [23].

is to send a pulse of fixed duration and sweep over the input power for what is called
the power Rabi, in which case one finds the power that corresponds to a π–pulse.

• T1: this measurement consists of a π–pulse, sweeping over the waiting time and then
a readout pulse. Fitting an exponential decay gives the lifetime of the qubit.

• T2 and T ∗
2 : to find the pure spin relaxation time, T2, meaning the decoherence in

the transverse plane of the Bloch sphere excluding the static dephasing from the
environment, one performs a Hahn echo experiment[30] with π/2–pulse, wait time t,
π–pulse, another wait time t and finally another π/2–pulse followed by readout. For
the total decoherence, T ∗

2 , one does a Ramsey experiment, which is the same as the
above but without the echo pulse.

The same characterizations can also be done for phonons. First we need to find the
frequencies of these modes. This can be done by exciting the qubit and then implementing
a Stark–shift to change its frequency, leave it at the new frequency for a certain amount
of time and perform readout. A plot of that is shown in Figure 5.2, with the colorbar
indicating the readout signal power. If no phonon modes are near the qubit frequency, the
signal should have the same behaviour as in the characterization steps of the qubit. This
is why for most of the spectrum the signal starts from a lower value, qubit being excited,
and as time passes and the qubit decays the signal increases. On the other hand, if there
is a phonon mode close–by, then there is going to be some resonant (Jaynes–Cummings)
interaction between the two systems and the signal is going to differ. More specifically there
will be a faster decay of the qubit as part of the excitation would be transferred to the
phonon. With the qubit on resonance with the phonon, a cross–cut along the time delay
axis shows decaying oscillations, which correspond to coherent exchanges of an excitation
between the qubit and the phonon.

Once the frequency of the mode is found, then the interaction time between the two
systems needs to be optimized. The goal is to find the duration for which we get the
transition |e, 0⟩ → |g, 1⟩, with the notation indicating |qubit, phonon in Fock basis⟩. The
introduced excitation performs Rabi oscillation and so for the transition we want the
duration of the SWAP gate to be τ = π/2g, with g the coupling strength. This factor of 2
comes from the definition of the coupling rate. We write the entangled qubit–phonon state
that contains a total of 1 excitation as cos(g · t) |e, 0⟩+ sin(g · t) |g, 1⟩ and since the signal
gives us the qubit state probability, it is proportional to | cos(g · t)|2, which oscillates with
a frequency of 2g.

At this point everything needed for the phonon mode characterization is available. The
example of the phonon T1 measurement is shown in Figure 5.3, where the vertical distance
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5.2. Devices

Figure 5.2: 2D phonon Rabi spectrum of device D04 from Table 5.1. The Stark–shift amplitude
in the x–axis corresponds directly to the frequency shift induced to the qubit. The frequency and
amplitude have a square–root relation and the spectrum we have here has a roughly 30.3MHz
range, from 5.7476GHz to 5.7779GHz. The colour bar indicates the power of the readout signal.

between the upper and lower horizontal lines indicates the detuning between the systems.
Depending on the sequence one can create more complex phonon states, like a cat state
for example[24].

Figure 5.3: Pulse sequence for measuring T1 for a phonon state.

Since the operations done on the phonons are through the qubit the only measurement
not done for the former are the echo pulses, because the in–between π–pulse requires two
more excitation swaps and thus is going to be a more lossy operation. All the other
characterization steps can also be done for the phonon modes in the context of cQAD.

5.2. Devices

All the Lithium Niobate devices that have been measured in the group so far come from
the same wafer, a substrate of 665 µm sapphire on top of which a piezoelectric layer of
900 nm is deposited. This thickness is not ideal for our frequency range and during the
fabrication process it was reduced to about 600 nm. In Figure 5.4 we see microscope images
and plots from Atomic Force Microscopy (AFM) data for three samples. Two of them have
already been measured, dome D85 before this thesis started and D04 during this thesis.
Dome D11 is from a wafer of another supplier and is one of the upcoming samples to be
measured.
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5. Experimental results

(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Images from microscope and height maps from AFM data for domes D85, D04 of table
5.1 and for one of the upcoming samples D11. (a) Microscope image of D85. (b) AFM data of D85.
(c) Microscope image of D04. (d) AFM data of D04. (e) Microscope image of D11. (f) AFM data
of D11.
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5.3. Results

From the microscope images we can see the defects that the measured samples had, which
come from pinholes in the original Lithium Niobate layer supplied by the manufacturer.
The specific ones were chosen because the defects are not in the region of the dome, where
the fundamental mode would be. Still however, they could affect the performance, which is
summarized in table 5.1. Note that the sharp "holes" in Figures 5.4 (b) and (d) are AFM
artifacts, but they do not affect the measured RMS roughness by much. The new samples
were made from wafers made by a different supplier. In subfigure (e) the microscope image
for D11 does not show any signs of such defects anywhere near the dome, which is certainly
promising.

5.3. Results

So far there have been two rounds of measurements of a Lithium Niobate ℏBAR, one in
March 2022 and one in December 2022. In both cases there were two samples measured,
so four in total. Additionally, all of them were from the same wafer which is a Sapphire
substrate with Lithium Niobate on top. The dimensions of all samples are roughly the
same, summarized at the second row of table 4.1. The only difference is that the first
two and the final two samples were bonded to qubits of different fabrication rounds. The
results for one of the samples measured in December are presented here. For the qubit
the HBAR is bonded to, the readout signal for the T1, T2 and T2

* along with the fitted
functions are shown in Figure 5.5.

Figure 5.5: Qubit characterization measurements for the qubit bonded to the HBAR with dome
D04. From left to right we see the time evolution of the readout signal power for T1–, T2– and
T2

*–measurements along with the fitted functions and the extracted values.

We see that the loss rate of the qubit is γq = 2π · T1 = 2π · 48 kHz. What is strange
is that T ∗

2 < T2. This is probably due to imperfect measurement implementation, like a
non–ideal π/2–pulse or echo pulse.

Using the 2D Rabi sweep shown in Figure 5.2, we find the frequencies of the fundamental
HG–00 modes as the frequencies of the most dominant chevron patterns. A zoom–in of
one of those is shown on Figure 5.6(a) from which we find the frequency at which the
fundamental mode is. From Figure 5.6(b) we can see that the swap time between the two
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(a) (b)

(c)

Figure 5.6: Phonon characterization measurements. (a) Close–up of a 2D phonon Rabi scan
around a Chevron pattern caused by a phononic mode. This does not come from the sweep shown
in Figure 5.2, as the different range in Stark–shift amplitude indicates, but it is from the same
sample at a different time. (b) Time evolution of output signal during Rabi oscillation between
the two systems, decaying due to the losses of the individual parts. (c) Phonon mode T1 (left) and
T2 (right) measurements along with the fitted functions and the extracted values.

34



5.3. Results

systems is about Tswap = 1.57us. From this we estimate the coupling rate as:

g

2π
=

1

4 ∗ Tswap
= 159 kHz. (5.1)

Then the phonon T1 was measured as described in the previous section with the results
shown in Figure 5.6(c) on the left and for T2 the phonon Ramsey results on the right. The
lifetime is much smaller than what we expect from our BeamProp simulations and we can
assume that the high loss rate comes from sources other than diffraction. In addition there
seems to be an additional off–resonant oscillation in the signal. We also observe that T2 is
larger than 2 · T1 which is the theoretical upper limit.

For dome D95 due to the even worse qubit performance we did not proceed with the full
phonon characterization.

Cooldown March 2022 Cooldown December 2022
Device D24 D85 D04 D95

qubit T1(µs) 1.7 0.96 3.3 1
qubit T2 (µs) 1.2 2.33 5.1 2.2
qubit T2

* (µs) 1.06 1.47 6.5 1.4
phonon T1 (µs) 3.98 10.52 3.78 -
phonon T2 (µs) 2.6 18.36 10.04 -
g/2π (kHz) 180 200 159 -

Table 5.1.: Measured values for qubits and phonon of Lithium Niobate ℏBARs. All these devices
are from the same 665 µm Lithium Niobate on Sapphire substrate. The measurements were done
in the cooldowns written on the first row.

In terms of coupling rates the results were approximately as expected, considering equa-
tion 4.2. Regarding phonon characterization, as stated in section 4.3 the lifetimes do
not agree with the simulations. However, since all the measured samples come from the
same substrate it is possible that losses are substrate–specific. Once more measurements
with Lithium Niobate samples are done we will have more information to help us draw
conclusions.
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Chapter 6

Discussion and Outlook

The work of this thesis has been on (i) mostly BeamProp in two directions: expanding
the 1D case to include reflections, implementing the 3D case, (ii) COMSOL simulations
for the upcoming sample and (iii) performing measurements of LiNbO3 HBARs coupled
to qubits.

In terms of phonon dissipation it seems that (at least for the measured samples) diffrac-
tion losses are not the main decay mechanism of our devices. Some other factors that may
be the root for decay are phonon–phonon, phonon–defect and surface scattering. We be-
lieve that the reason was in the end the specific sample, the wafer used for the fabrication
of these HBARs. This could originate from the holes on the dome, even though for the
samples used those were not in the dome region where the mechanical mode would "live".
There could still be material impurities present in the bulk that lead to dissipation.

The measurements of the new Lithium Niobate devices will help us come to further con-
clusions. Microscope images, AFM and profilometer measurements of the surface rough-
ness show that these new devices have very good surfaces. The following cases and the
information they would provide are:

• if both new samples have very high losses then we can exclude the role of the large
pinhole defects and would still need to find the decaying factor.

• If both samples have good and very similar lifetimes, below the limit set by Beam-
Prop3D then the implementation of this part has been wrong.

• If New LN 1 outperforms New LN 2 then it is quite likely that the smaller RoC of
the latter and hence the smaller area under the dome led to that. So in this scenario,
fabricating a sample from the same wafer but with higher RoC would correct for
polarization–conversion–related diffraction losses.

After that, what would also be interesting and extremely important for operating in the
strong coupling regime is to investigate whether the piezoelectric material plays a role in
the low qubit lifetimes our samples have had for a while. This performance is ascribed to
dielectric losses. It could be that due to Lithium Niobate’s coupling matrix elements there
is an increased coupling to phonons propagating in x– and y–direction.

If the lifetimes of the upcoming samples are better, then there are still two situations
in which Lithium Niobate can be used instead of Aluminum Nitride. One is driving shear
phononic modes with higher coupling rates. If we look at the last three columns of AlN’s
piezoelectric tensor it has elements with much lower value, so g would be low as well.
Finally, another case would be using a different material cut to drive longitudinal modes
in z using one of the transverse (Ex for example) electric field components in cases where
using Ez might not be an option.

37





Appendix A

BeamProp3D implementation

In the description of the BeamProp algorithm there was no mention of how information
regarding the slowness surfaces is acquired. The whole simulation software is written in
Python and the Christoffel module is usedi. The way this module is used is that you input
the stiffness tensor and density of the material of interest and it creates an object. One
can use this object by, for example, setting a direction within the material and retrieving
the eigenvalues and eigenvectors of the Christoffell equation in this direction.

So if one sets the direction as n̂ = (nx, ny, nz) and gets the phase–velocity eigenvalues
νt1 , νt2 and νl, then the coordinates of the slowness surfaces in that direction are:

[qx,t1 , qy,t1 , qz,t1 ] = [nx/νt1 , ny/νt1 , nz/νt1 ]

[qx,t2 , qy,t2 , qz,t2 ] = [nx/νt2 , ny/νt2 , nz/νt2 ]

[qx,l, qy,l, qz,l] = [nx/νl, ny/νl, nz/νl],

(A.1)

with q the slowness vectors and the indices referring to the components of those vectors
and which of the surfaces they describe.

Figure A.1: Slowness surfaces of Sapphire about the [0, 0, 1] direction along with information
regarding the 3D BeamProp implementation. On the left, the lines indicate that in BeamProp
we want the qz for given qx and qy. On the right we see the results from the Christoffell module,
which finds the eigenvalues for a given direction.

Figure A.1 helps to visualize the issue. In BeamProp we have two coordinates of the
slowness surfaces for every frequency, which are [qx, qy] = [kx/ω, ky/ω] and are looking for
the third. The available tool does not give this capability.

The solution that was applied is to set a grid of many different directions, get the
eigenvalues for each one and thus have a collection of coordinates for each slowness surface.
Then these coordinates are used to create an interpolator object with input = [qx, qy] and

ihttps://github.com/JanJaeken/christoffel
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A. BeamProp3D implementation

output = [qz]. This object can then be used by the known values of [qx, qy] in BeamProp
in order to obtain the three qiz values for the three slowness surfaces.

After different interpolation options the one that is used in the end is the Nearest-
NDInterpolator from scipy ii.The main advantage in that case is that interpolators can
also be used for the polarization vectors instead of being calculated on the spot. So now
output = [qz, dx, dy, dz] for each surface, leading to a total of twelve interpolators.

Another benefit is that in other interpolation methods, two (for linear interpolation)
or more points are being used. The polarization vectors however can have very sudden
changes, which is something that holds specifically for the quasi–transverse slowness sur-
faces in Sapphire. This can be seen in more detail in Figure 3.3. On the slowest surface
for sapphire for example (top left subplot) we see that in the region qx ≈ 0 and qy > 0
the polarization vectors have a sudden change from pointing to the right (as the [1, 0]
vector) to pointing to the left (as the [−1, 0] vector). The average of points at the boarder
of that sudden polarization change would give dx = 0 which would be wrong. Similarly
there are regions where the polarization vectors turn from mainly x–polarized to mainly
y–polarized.

iihttps://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.NearestNDInterpolator.html#
scipy.interpolate.NearestNDInterpolator
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Appendix B

Material Parameters

The form of the tensors that describe the behaviour of materials depends on their struc-
ture[19]. The stiffness tensor, cijkl, as a 4th–rank tensor which would normally have 81
independent components. Due to the symmetries of the strain and stress tensors they get
reduced to 36. Then through further thermodynamic considerations their number reduces
to 21. From that point, the symmetry of the crystalline structure also affects the number
of independent elements.

B.1. Sapphire–Al2O3

Sapphire has trigonal crystal symmetry, which leads to the following form of its stiffness
tensor in Voigt notation [17]:

cαβ =



c11 c12 c13 c14 0 0
c12 c11 c13 −c14 0 0
c13 c13 c33 0 0 0
c14 −c14 0 c44 0 0
0 0 0 0 c44 c14
0 0 0 0 c14

c11−c12
2

 . (B.1)

From the Handbook of Constants[31] we get the values c11 = 496GPa, c12 = 159GPa,
c13 = 114GPa, c14 = −23GPa, c33 = 499GPa and c44 = 146GPa.

B.2. Aluminum Nitride–AlN

AlN has hexagonal symmetry with stiffness tensor:

cαβ =



c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c11−c12

2

 (B.2)

where c11 = 376GPa, c12 = 129GPa, c13 = 98GPa and c33 = 353GPa [32]. As a
piezoelectric material it has matrix of piezoelectric constants:

d =

 0 0 0 0 d15 0
0 0 0 d15 0 0
d31 d31 d33 0 0 0

 (B.3)

with d31 = −2.8 pm/V, d33 = 5.6 pm/V and d15 = 3.6 pm/V as in [33] (values for bulk
AlN) and [34]. These two tensors are combined to get the piezoelectric coupling tensor
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B. Material Parameters

e = d · c:

e =

 0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

 (B.4)

with e31 = −0.86C/m2, e33 = 1.43C/m2 and e15 = 0.41C/m2. For the orientation of the
material and the electric field in the ℏBARs case the most important of these numbers is
e33, which couples a z–oriented E–field to S3 strain.

B.3. Lithium Niobate–LiNbO3

Lithium Niobate also has trigonal symmetry and so its stiffness tensor is given by equa-
tion B.1 with c11 = 202GPa, c12 = 55GPa, c13 = 72GPa, c14 = 8.5GPa, c33 = 244GPa
and c44 = 60.2GPa [31]. The piezoelectric coupling tensor has the form:

e =

 0 0 0 0 e15 −e22
−e22 e22 0 e15 0 0
e31 e31 e33 0 0 0

 (B.5)

with e15 = 3.83C/m2, e22 = 2.37C/m2, e31 = 0.23C/m2 and e33 = 1.3C/m2 [35]. Per-
forming a rotation about the X-axis by 90◦, so that the Y–axis is in the initially Z–direction,
rotates the tensor such that:

eY-cut =

 0 0 0 0 2.37 3.83
−0.23 −1.3 −0.23 0 0 0
−2.37 0 2.37 3.83 0 0

 . (B.6)
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