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Abstract

A major challenge in realizing distributed quantum networks is linking su-
perconducting circuits to optical fibers. Quantum transducers bridging
microwave and optical frequencies are an essential building block in this ef-
fort. Their operation requires an efficient nonlinear interaction to mediate
frequency conversion of single quanta with near unity efficiency. A popu-
lar choice is to use a parametrically enhanced optomechanical interaction
between optical and acoustic resonator modes for this. Also coupling these
acoustic modes to superconducting circuits via a resonant piezoelectric in-
teraction enables full transduction between the microwave and optical plat-
forms. This work investigates several aspects of a transducer design with
a high-overtone bulk acoustic resonator (HBAR). The peculiarity of this
design is that the frequency spacing between acoustic eigenmodes of the
HBAR is smaller than the transducer bandwidth. This requires operation
in the multimode regime. In the first part of the thesis, we simulate the
time dynamics of the microwave to optical transduction protocol in differ-
ent device geometries. We find that achieving unity transduction efficiency
requires uniform acoustic mode spacing, as well as symmetry between the
electromechanical and optomechanical coupling strength distributions. The
second part of the thesis experimentally tests the electromechanical interac-
tion of transducers in the weak coupling regime. By recording the radiation
of a qubit excitation into the acoustic modes, we derive values for coupling
strengths and bounds on phonon coherence times.
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1. Introduction
Circuit quantum electrodynamics (cQED) is one of the leading fields for quantum in-
formation processing [1]. The Josephson junction in transmon qubits grants easy access
to a quantum nonlinearity and allows for high fidelity creation of quantum states in su-
perconducting circuits [2]. Since cQED systems are operated in the microwave regime,
they need to be cooled to millikelvin temperatures in order to inhibit decoherence from
blackbody radiation of the environment. This makes transportation of quantum infor-
mation over longer distances on this platform a challenging task [3]. A more suitable
platform for the transport of fragile quantum states are optical fibres, where creation
of entanglement over distances of 100 km has been shown [4]. Quantum transducers
between these platforms are thus essential building blocks for distributed quantum net-
works [5, 6]. Specifically, microwave to optical transducers can be used to create long
range entanglement between two remote microwave superconducting processors [7, 8].
In addition, microwave to optical quantum transduction could provide a scalable tool to
create quantum states of light for applications in quantum metrology [9], or quantum
algorithms such as boson sampling [10].

In general, a quantum transducer can be modeled as a chain of bosonic quantum chan-
nels, with the end nodes coupled to the external platforms [11]. By establishing linear
beam-splitter type couplings between the channels, a single photon can be directly trans-
duced. There is also the possibility for a more complicated coupling scheme based on
squeezing and quantum teleportation [12], but here we will focus on the direct method.
Important figures of merit for a quantum transducer are the transduction efficiency,
the bandwidth, and the added noise [8], which can be combined in a single metric, the
quantum capacity [13]. The latter quantifies the amount of quantum information of a
transduced signal, which is only nonzero for one way transduction if at least 50 % trans-
duction efficiency is achieved. To prove experimentally that a quantum state has been
transduced, quantum features of light, such as sub-Poissonian statistics or negativity of
the Wigner-function have to be shown [14]. This still remains a challenge in the field.

When coupling microwaves to optical fields, more than four orders of magnitude in fre-
quency between the microwave (10 GHz) and optical (100 THz) regime must be bridged.
To establish linear coupling between channels at these very different frequencies, a non-
linear parametric interaction is usually employed. There are various physical platforms
which try to achieve this. In an electro-optic platform, which mediates a direct interac-
tion between microwaves and optical light, entanglement has been shown in the contin-
uous variable regime [15]. Another unique approach is to use transitions of Rb-atoms in
the optical regime combined with transitions between Rydberg states in the microwave
regime to mediate transduction [16]. More commonly however, mechanical oscillators
are employed as intermediaries between the microwave and optical regimes, as they come
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Figure 1.1.: Different types of optical, mechanical, and microwave resonators that have
been used in experimental demonstrations. Arrows indicate demonstrated
couplings between systems. [14]

in a variety of shapes and coupling possibilities. Figure 1.1 shows an overview of differ-
ent experimentally demonstrated couplings between microwave, mechanical and optical
resonators [14]. Approaching the hybrid system from the optical side, optomechanical
crystals are a well established way of achieving strong optomechanical interaction by con-
fining the acoustic and optical modes to the same volume [17]. Simultaneous coupling to
a superconducting qubit can be achieved by means of piezoelectric interaction, allowing
microwave to optical transduction [18]. These systems suffer severely from heating due
to laser light partaking in the optomechanical interaction. For this reason, efforts are put
into extending these crystals into two dimensions, making it easier for heat to dissipate
[19]. Drumhead resonators are another mechanical platform used for transduction. They
can couple to an optical Fabry-Pérot resonator through moving dielectric boundaries,
and simultaneously to a superconducting microwave resonator by modifying its capaci-
tance. Optical qubit readout has been demonstrated on this platform by transducing the
microwave pulse of dispersive qubit readout [20]. These drumhead resonators usually
have resonance frequencies in the MHz domain, which allows them to reach very high
quality factors [21]. The downside is that active cooling is necessary to suppress thermal
noise.

In the hybrid quantum systems (HyQu) group at ETH Zurich, we want to use a high-
overtone bulk acoustic resonator (HBAR) as a mechanical oscillator for the transduction
experiment. The electromechanical interaction between superconducting circuits and
HBARs has been extensively studied in the field of circuit quantum acoustodynamics
(cQAD), and the preparation of mechanical quantum states of motion has been shown
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Figure 1.2.: Schematic of our transducer design.

[22, 23]. Optomechanical interaction with HBARs can be achieved by Brillouin scattering
of mechanical waves with two modes of an optical Fabry-Pérot cavity [24, 25]. Figure 1.2
shows a schematic of our transducer design. The electric field of a superconducting
transmon qubit with a ring antenna couples to mechanical waves in the HBAR made of
quartz (α-SiO2) by means of piezoelectric interaction in a thin aluminum-nitride (AlN)
film on the bottom of the HBAR. We will refer to this device as the ℏBAR. The center
of the HBAR is aligned with the Gaussian modes of an optical Fabry-Pérot cavity. The
transmon’s antenna is shaped as a ring around the optical field. Using bulk acoustic
waves promotes long mechanical coherence times because the small energy participation
ratio at the surface suppresses surface loss. It has also been highlighted that heating of
the mechanical modes is very weak in these systems [25]. This is the case even when
pumping with high laser power, which can make up for the comparably small single
photon coupling. Together with a free space optical cavity with small linewidth, we hope
to be able to achieve optomechanical cooperativities on the order of 20. One downside
however is the macroscopic size of the device. As we will see in this work, this requires
the operation of the transducer with multiple mechanical modes of the HBAR, which
poses additional challenges on successfully achieving transduction of single quanta.

This work aims to contribute to achieving microwave to optical transduction of single
photons with an HBAR. Chapter 2 introduces the eigenmode structure of HBARs, the
mechanism of electro- and optomechanical coupling, as well as a theoretical framework
for the multimode nature of the transducer. We will then go on in Chapter 3 to perform
simulations on geometry optimization of the transducer. There, we will see how the
multimode structure influences the transduction efficiency in different geometries. To
better understand theoretically which parameter regimes are optimal for a multimode
transducer, we perform calculations and simulations on a toy model with two mechanical
modes in Chapter 4. Finally, in Chapter 5 we analyze measurements on electromechan-
ical interactions in the most recent transducer design.
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2. Theoretical framework for HBAR
transducers

Having introduced qualitatively the working principle of quantum transducers and the
components of the HBAR transducer, we will now turn to a mathematical description.
Section 2.1 summarizes the relevant aspects of acoustic waves and resonance conditions
in HBARs. In Section 2.2, we will look at the mechanisms of electromechanical and
optomechanical coupling, and see in Section 2.3 how these ingredients combine to a
multimode transducer.

2.1. Mechanical modes of the HBAR
2.1.1. Bulk acoustic waves in quartz
Elastic acoustic waves in solids are governed by Christoffels’ equations. For each nor-
malized wave vector, q⃗/∥q⃗∥ (q = ∥q⃗∥), of the acoustic wave, there exist three orthogonal
polarization vectors, ϵ⃗i (i = 1, 2, 3), which solve the equations. Each of them is associated
with distinct phase velocity vi. The phase velocities and polarization vectors depend on
the material’s density, ρ, and stiffness tensor, Cjk. The frequency of the wave is related
to the wave vector by linear dispersion, ω = viq. [26, 27]

For the transduction experiment, we use z-cut quartz (α-SiO2) as the HBAR material
as it is best suitable for the optomechanical interaction (see Subsection 2.2.2). Figure 2.1
shows the three phase velocities in quartz, along the qx/qz-plane (left) and qy/qz-plane
(right) of reciprocal space, which is called the velocity surface. The red branch corre-
sponds to quasi-longitudinally polarized waves, meaning their polarization vector has
the smallest angle to the wave vector, out of the three. The two black branches cor-
respond to quasi-transversely polarized waves. In the direction of qz, the waves are
exactly longitudinally (transversely) polarized with phase velocities vl = 6.34 km s−1

(vt = 4.68 km s−1). The velocity surfaces were calculated using the christoffel python
package [27] and material constants from [28].

The transduction experiment will make use of these longitudinally polarized acoustic
waves with wave vector in the z-direction. As we will see in Subsection 2.2.2, the optome-
chanical interaction is only efficient for acoustic waves around the Brillouin frequency
ΩB/2π = 12.64 GHz. This corresponds to an acoustic wavelength of λ = 2πvl

ΩB = 0.50 µm.
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Figure 2.1.: Velocity surface of quartz in the qx/qz-plane (left) and qy/qz-plane (right).
The red branch corresponds to quasi-longitudinally polarized waves and the
black branches to quasi-transversely polarized ones. In direction of qz the
waves are exactly longitudinally and transversely polarized. The velocity
surfaces were calculated using the christoffel python package [27] and ma-
terial constants from [28].

2.1.2. Resonant bulk acoustic waves
To make use of bulk acoustic waves in a transducer, they need to be confined in a
resonator. Figure 2.2 shows the schematic of an HBAR, which works like a Fabry-Pérot
cavity for acoustic waves traveling in the z-direction. The bottom of the quartz substrate
as well as a dome made of aluminum-nitride (AlN) act as acoustic mirrors. The AlN
piece allows coupling to the superconducting qubit through piezoelectric interaction (see
Subsection 2.2.1). Its profile p(x, y), called the piezo shape, is much smaller in height
(dp = 430 nm) than the thickness of the quartz chip (L = 1 mm). The transverse
extent of the dome is on the order of few 100 µm. The piezo shape provides a potential
landscape for the acoustic waves that determines the frequencies and displacement fields
of a discrete set of resonant acoustic eigenmodes.

Since the piezo shape sets a transverse extent of the mode volume much larger than
the acoustic wavelength, diffraction in the HBAR is low [30]. We therefore assume the
displacement fields of the eigenmodes to separate into a longitudinal and transverse part
as,

u⃗(x, y, z) = ϵ⃗ cos
(
lπz

L

)
uη(x, y), (2.1)

where ϵ is the polarization vector, uη is the transverse mode function, and harmonic
time dependence is assumed. We employed a longitudinal resonance condition, qL = πl
with the longitudinal mode number l, which lets us define the free spectral range (FSR)
between successive modes,

FSRj = vj
2L, (2.2)
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Figure 2.2.: Schematic an HBAR. The piezoelectric AlN dome creates a resonant condi-
tion for acoustic waves in the quartz substrate. Image from [29].

where j = l, t for longitudinal and transverse polarization. For the devices in this work,
we have FSRl = 3.17 MHz and FSRt = 2.34 MHz, meaning that the HBAR is operated
at mode numbers l ≳ 103.

For the case of longitudinal polarization, we continue to find the transverse mode
functions and their resonant frequencies using the acoustic Schrödinger equation (ASE),
which describes linear wave propagation in the paraxial approximation [31, 32]. The
equation’s name comes from the equivalence to a time independent Schrödinger equation,[

− 1
2µ

(
∂2

∂x2 + ∂2

∂y2

)
+ U(x, y)

]
uη(x, y) = ηuη(x, y), (2.3)

with equivalent mass µ = ω2

veff
⊥

, the potential U(x, y) = −p(x,y)
L − p2(x,y)

2L2 , and energy
eigenvalues η ≪ 1. The effective transverse velocity veff

⊥ = 7.78 km s−1 approximates
the curvature of the velocity surface in the qz-direction, and is not to be confused with
the velocity of transversely polarized waves vt. As the velocity surface for transverse
polarization does not have a well defined curvature in the qz-direction (see Figure 2.1),
the formalism is not applicable for this polarization.

As in quantum mechanics, the solutions to Equation 2.3 form a discrete set of bound
modes with corresponding eigenvalues. For specific piezo shapes, there exist analytical
solutions to this problem. Most prominently, the cylinder HBAR’s eigenmodes are de-
scribed by the Bessel functions of the first kind [30], and the spherical cap HBAR, which
produces approximately a harmonic potential, supports Hermite-/Laguerre-Gaussian
eigenmodes [33]. Throughout this work, we will simulate the transverse mode func-
tions and eigenvalues using DASE, an ASE eigenmode solver (Subsection 3.1.2). The
eigenfrequencies associated with the eigenvalues are given by,

ωk = ω
1 − η0
1 − ηk

, (2.4)

where ω is the frequency at which the ASE is evaluated, and the integer k enumerates
the transverse eigenmodes. The frequency splitting between successive transverse modes
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is much smaller than between longitudinal modes, such that the eigenmode spectrum of
the HBAR is composed of a series of longitudinal modes, each consisting of a family of
transverse modes. For piezo shapes with rotational symmetry, p(x, y) = p(r), where r is
the radial coordinate, the transverse mode number k can further be discriminated into
a radial mode number m and an angular mode number j (see Subsection 3.1.2). For
simplicity, we will use a single mode number n to label the mode’s frequency ωn and
displacement field u⃗n throughout this work, unless the specific type of mode number
needs to be emphasized.

In the discussion so far, we fully omitted the fact that the HBAR is made of two
materials, quartz and AlN, in which acoustic waves travel with different phase velocities.
This introduces reflections at the material boundary, which we assume negligible in this
model. When solving the ASE, the material boundary is taken into account by rescaling
the potential, as will be further elaborated on in Subsection 3.1.2. The thickness of
the AlN piece is such that it equals half an acoustic wavelength, dp = p(0, 0) = λ/2.
Choosing this piezo thickness maximizes the electromechanical coupling, as we will see
in Subsection 2.2.1.

2.1.3. Quantum-mechanical description
Analogously to the quantization of electro-magnetic fields [34], each mechanical eigen-
mode can be quantized as a quantum harmonic oscillator (HO) with Hamiltonian

Ĥn = ℏωnb̂†
nb̂n, (2.5)

where b̂n is the mode’s lowering operator. This gives rise to the notion of the phonon, a
particle of sound, which is defined as a single excitation of an eigenmode. Throughout
this work, we will often refer to the eigenmodes as phonon modes.

The displacement field operators is then,

ˆ⃗ul,k(r⃗) = u0ϵ⃗ cos (ql(z)z) fk(x, y)(b̂l,k + b̂†
l,k), (2.6)

in the Schrödinger picture, where u0 is a normalization constant, ql(z) is the wave vector
for mode l that changes at the material boundary, and fk are the normalized transverse
mode functions. As a means to normalize fields, f , on the transverse plane we will use
the L2(R2)-norm,

∥f∥2 = ⟨f, f⟩ =
∫
R2
f2(x, y) dxdy, (2.7)

which evaluates to unity for the normalized functions fk.
We will see in the following sections how the mechanical eigenmodes couple to the

other quantum degrees of freedom in the hybrid device.
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2.2. The hybrid quantum system
In the microwave to optical transducer, the eigenmodes of the HBAR mediate between
the two electromagnetic degrees of freedom. Interactions of this type occur if an applied
electric field induces mechanical stress, and if in turn mechanical strain changes the
electromagnetic environment. The interaction energy is then given by [35, 24],

Hint = −
∫
V

6∑
j=1

σj(r⃗)Sj(r⃗) dV, (2.8)

where V is the interaction volume, σ⃗(r⃗) is the electrically induced stress, and S⃗(r⃗) is the
mechanical strain field.

For longitudinally polarized acoustic waves, only the longitudinal strain S3 = Szz,
and the shear strain components S4 = Szx, S5 = Szy are nonzero. Since the acoustic
wavelength is much smaller than amplitude variations in the transverse direction, S3 ≫
S4, S5 and we can reduce Equation 2.8 to the dominant term,

Hint ≈ −
∫
V
σ3(r⃗)S3(r⃗) dV. (2.9)

In the following, we will compute this interaction Hamiltonian in a quantum description
and present the key aspects of both the electromechanical and optomechanical couplings.

2.2.1. Electromechanical interaction
Electromechanical interaction between the qubit electric field and the mechanical strain
field can be achieved in piezoelectric materials. Piezoelectric interactions occur in non-
centrosymmetric materials, and the key signature of this interaction is its linearity,
meaning the induced stress is proportional to the applied electric field, σj = ejiEi,
where e is the piezoelectric stress tensor [36]. For AlN we have,

e =

 0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

 , (2.10)

where e33 = 1.55 C m−2 [37]. This means that longitudinal stress σ3, and thus coupling
to longitudinally polarized phonons, is induced by the z-component of the qubit electric
field. Figure 2.3 shows a sketch of how we achieve piezoelectric interaction in our device.
The quartz chip hosting the phonon modes is flip-chip bonded to the chip hosting the
qubit such that the AlN film is located above the qubit antenna. We refer to the hybrid
device as the ℏBAR.

Quantizing the qubit electric field,

ˆ⃗
E(r⃗) = E⃗0(r⃗)(σ̂ + σ̂†), (2.11)
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Figure 2.3.: Sketch of an ℏBAR. The bottom chip made of sapphire hosts a transmon
qubit. The HBAR chip made of quartz is flip-chip bonded to the bottom
chip with spacer pillars as a separation. The bonding is such that the AlN
film is located above the qubit antenna for strong piezoelectric interaction.
Image from [29].

where E⃗0(r⃗) is the single photon qubit mode function, and σ̂ is the qubit lowering
operator, employing a rotating wave approximation (RWA) and equating Equation 2.9
to the Jaynes-Cummings-Hamiltonian,

ĤJC =
∑
n

ℏge,n(σ̂†b̂n + σ̂b̂†
n), (2.12)

we can find the electromechanical coupling strength ge,n between the qubit and a me-
chanical mode n. Including the normalization of the strain field which respects the AlN
quartz boundary, we arrive at the expression [38],

ge,n = e33v
p
l√

ℏωn (Cp
33dp + Cq

33L)

(
1 − cos

(
ωn
vp
l

dp

))∫
Ap
Ez(x, y)fn(x, y) dxdy, (2.13)

where vp
l = 10.9 km s−1 is the phase velocity of longitudinally polarized phonons in AlN,

Cp
33 and Cq

33 are the stiffness tensor components for AlN and quartz (values from [28]),
and Ez is the z-component of E⃗0. The center term in parenthesis results from integrating
the z-axis. It is maximized if the piezo thickness, dp, respects ωn

vp
l
dp = π, i.e. if dp = λp/2

with λp the acoustic wavelength in AlN. For ωn = ΩB, this is the case for dp = 430 nm,
which is the value aimed for in fabrication of transduction HBARs. The prefactors are
due to the integration and normalization of the strain field. The last term is the overlap
integral between the qubit electric field and the transverse strain profile. The electric
field is assumed to be constant over the piezo thickness.

The electromechanical coupling strengths are the key parameters of the piezoelectric
interaction, and we will perform measurements which aim at deriving values for these
quantities in Chapter 5. As a comparison, we will evaluate Equation 2.13 with simula-
tions of the electric field in Ansys (see Subsection 3.1.1) and the strain field in DASE
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(see Subsection 3.1.2), and find poor agreement. For the simulations in Chapter 3, we
will therefore evaluate only the normalized overlaps,

ge,n =
∫
Ap

Eq(x, y)fn(x, y) dxdy, (2.14)

and assume an overall scaling factor based on measurements to get the values for ge,n.
Eq is the normalized qubit electric field using the norm defined in Equation 2.7.

For the transduction experiment it is necessary to turn on and off the piezoelectric
interaction. This is achieved by rapidly tuning the qubit frequency in or out of resonance
with the mechanical modes, by applying an off-resonant drive with frequency ωd and
strength ξd to the qubit. The drive induces a frequency shift, the so called Stark shift,
δStark = αξ2

d
2∆d(∆d+α) , where ∆d = ωq−ωd is the drive detuning and α < 0 is the transmon’s

anharmonicity [39].

Figure 2.4.: Sketch of the modes participating in the optomechanical interaction. The
red and blue waves represent adjacent longitudinal modes of the optical
cavity. The cyan wave is a mechanical eigenmode of the substrate. Image
from [29].

2.2.2. Optomechanical interaction
In contrast to the electromechanical interaction, the optomechanical interaction is non-
linear involving two modes of an optical Fabry-Pérot cavity as well as the mechanical
mode. Figure 2.4 shows a sketch of the system where the two optical modes are dis-
played as red/blue standing waves and the mechanical mode as a cyan standing wave.
The interaction between these modes is a Brillouin optomechanical process, where the
beatnote of the two optical modes can excite mechanical oscillation through the time
modulated electrostrictive force that electric fields exert on dielectrics. In turn, mechani-
cal oscillations modulate the refractive index of the material, effectively forming a Bragg
grating, at which optical waves can scatter.

The Brillouin interaction requires the frequency as well as the wavelength of the op-
tical beatnote to match the mechanical oscillation, which we call the phase matching
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condition,

ωn = ω2 − ω1, (2.15)
qn = k2 + k1, (2.16)

where ω1 (k1) and ω2 (k2) are the frequency (wavevector) of adjacent optical modes of
the resonator. When using optical modes at ∼ 1550 nm and quartz as the dielectric,
the phase matching condition is fulfilled at ωn = 12.65 GHz = ΩB, which we call the
Brillouin frequency. It is desirable to have this frequency as low as possible, to still be
able to properly operate the superconducting circuitry. This is the reason for choosing
quartz as the HBAR material, where ΩB is relatively low compared to other popular
dielectrics like sapphire and silicon.

Fabry-Pérot resonators usually have a uniform spectrum with a well defined FSR,
which would make it hard to select two unique optical modes to participate in the
interaction. Fortunately, this problem is naturally solved by placing the HBAR inside
the cavity. This introduces optical reflections at the material boundaries which make
the spectrum nonuniform and allows to choose two optical mode with a separation of
ΩB.

Comparison of Equation 2.9 to the three particle interaction Hamiltonian,

Ĥ3 = −
∑
n

ℏg0,n
(
â†

2â1b̂n + â2â
†
1b̂

†
n

)
, (2.17)

yields the single photon optomechanical coupling strength g0,n, where â1 and â2 are the
lowering operators of the two optical modes. We included multiple mechanical modes
into the Hamiltonian as the linewidth of the optical modes is usually large enough to
support multiple transverse modes of the HBAR. Assuming linearly polarized electric
fields, we can express the coupling strength as

g0,n ∝
∫
Vq
E1(r⃗)E2(r⃗)Sn(r⃗) dV ∝

∫
Ap

E2
o(x, y)fn(x, y) dxdy = go,n, (2.18)

where Vq is the HBAR volume, and E1, E2, Sn are the electric or strain fields of the
optical and mechanical modes. Writing the first proportionality, we omitted normaliza-
tion factors, permittivities and photoelastic constants. In the second proportionality,
z-integration was performed, we normalized the laser electric fields using Equation 2.7,
and we assumed equal shapes, Eo, for both optical modes. We will refer to this second
integral as the normalized overlap go,n.

Note that the overlap integral contains two electric field modes, which is due to the
fact that the electrostrictively induced stress does not linearly depend on the applied
electric field in contrast to piezo electrically induced stress. In optomechanical experi-
ments of this kind, values of g0,n ∼ 2π ·10 Hz were achieved [24, 25]. For the transduction
experiment, coherent swapping from the mechanics to the optics is desired, which re-
quires much larger coupling rates and a beam splitter type interaction. This can be
achieved by strongly pumping the lower frequency optical mode with a laser, resulting
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in the Hamiltonian,
Ĥpump = −

√
n̄1
∑
n

ℏg0,n
(
â†b̂n + âb̂†

n

)
, (2.19)

where n̄1 is the average intracavity photon number of mode 1, and we omit the subscript
on mode 2 from now on. We can now define the cavity enhanced optomechanical coupling
as go,n = g0,n

√
n̄1, which lets us effectively tune the optomechanical interaction strength,

based on the applied pump power.
For the simulations (Chapter 3), we will calculate the overlap in Equation 2.18 and

have the scaling factor subject to optimization.

2.3. Multimode transduction
The goal of the transduction experiment is to coherently transfer single microwave pho-
tons from a transmon qubit to the optical regime, with mechanical modes in the HBAR
as an intermediary. We saw in the last section how we achieve tunable linear coupling
between the modes of the HBAR and the electromagnetic degrees of freedom. Let us
now turn our attention to the implications on the geometry of the device.

Linear coupling is achieved by spatial overlap between the electric and strain fields.
To optimize coupling, the modes of the HBAR should thus have large overlap with both
the qubit electric field, which is localized near the qubit antenna, and the laser field,
which has a Gaussian shape. Meanwhile, the laser field must not overlap with the qubit
antenna, since reflections off the qubit metal drastically limit the optical quality factor.
This sets requirements on the transverse extend of the mechanical modes, because the
qubit ring antenna has to have a certain diameter in order to not clip the laser beam.

As it will turn out in simulations (see Section 3.3), the transverse eigenmodes of the
HBAR, which we labeled with k, have frequency splittings which are smaller than the
bandwidth of the transducer, set by the coupling rates and the optical linewidth κo.
There are now two possibilities to design the transducer. In a design aiming for trans-
duction with a single mechanical mode, the bandwidth needs to be smaller than the
mode spacing, which can be achieved by intentionally reducing the electromechanical
coupling. This would result in an overall decrease in the figures of merit characterizing
the performance of the transducer. The bandwidth would be lower by design, the effi-
ciency would decrease, due to a decrease in electromechanical cooperativity, and noise
would be added from thermal population of unused mechanical modes within the op-
tical linewidth. Instead, we aim for a multimode transducer, which we describe in the
following.

2.3.1. Electric and optical bright states
The interaction of the transmon qubit with the transverse eigenmodes of the HBAR, and
the subsequent interaction with the optical cavity are describe by the electromechanical
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(EM) and optomechanical (OM) Hamiltonians. They can be written as,

ĤEM/ℏ = ωqσ̂
†σ̂ +

∑
k

(
ωk b̂

†
k b̂k + ge,k

(
b̂kσ̂

† + b̂†
kσ̂
))

(2.20)

= ωqσ̂
†σ̂ +

∑
k

ωk b̂
†
k b̂k + ge,tot

(
b̂eσ̂

† + b̂†
eσ̂
)
, (2.21)

ĤOM/ℏ = ∆12â
†â+

∑
k

(
ωk b̂

†
k b̂k + go,k

(
b̂kâ

† + b̂†
kâ
))

(2.22)

= ∆12â
†â+

∑
k

ωk b̂
†
k b̂k + go,tot

(
b̂oâ

† + b̂†
oâ
)
, (2.23)

where ωq is the qubit resonance frequency, ∆12 is the detuning between the two opti-
cal modes, and gj,tot =

√∑
k g

2
j,k is the total EM (OM) coupling with j = e (o). In

Equation 2.20 and 2.22, we wrote down the interaction derived in the previous section
together with the bare evolution, and in Equation 2.21 and 2.23 we introduced the low-
ering operator b̂e (b̂o) for the electric (optical) bright state. These operators act on the
vacuum, |0⟩, as follows,

|Bj⟩ = b̂†
j |0⟩ = 1

gj,tot

(∑
k

gj,k |1k⟩
)
, (2.24)

where |1k⟩ is the single phonon state of mode k with all other modes in the vacuum.
This means that EM (OM) coupling only occurs for a certain superposition of mechanical
states called the bright states.

It turns out that the electric and optical bright states are approximately orthogonal,

⟨Be|Bo⟩ ∝
∑
k,k′

ge,kgo,k′ ⟨1k|1k′⟩ (2.25)

=
∑
k

∫
Ap

Eq(x, y)fk(x, y) dxdy
∫
Ap
fk(x′, y′)E2

o(x′, y′) dx′dy′ (2.26)

=
∑
k

⟨Eq, fk⟩⟨fk,E2
o⟩ ≈ ⟨Ez, E2

o⟩ (2.27)

=
∫
R2

Eq(x, y)E2
o(x, y) dxdy = 0. (2.28)

In Equation 2.27 we used that the functions fk are solutions to the ASE, a Schrödinger
equation, and thus form an orthogonal basis on the Hilbert space L2(R2) with the inner
product ⟨·, ·⟩ defined in Equation 2.7. This is only approximately true though, as the
potentials in Equation 2.3 only have a finite depth, and thus only feature a finite number
of bound modes, of which only six will be considered in the simulations (see Section 3.3).
The overlap integral in Equation 2.28 is zero, because the qubit and laser electric fields
must not overlap, as we established.

While at first this seems like it would make transduction impossible, we have to
keep in mind that the electric bright state is not an eigenstate of the HBAR. This
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Figure 2.5.: Pulse sequence for transduction of a single photon. tsw is the EM swap time,
and tOM is the pulse duration of the pump laser.

means that it evolves in time such that the resulting mechanical state is no longer
orthogonal to the optical bright state. This rephasing of mechanical states is the key
aspect that distinguishes a multimode transducer from a single mode transducer. We
will investigate in Section 3.3 how the geometry of HBARs influences the rephasing
properties of mechanical states and thus the transduction efficiency.

2.3.2. The transduction sequence
Figure 2.5 shows the sequence of pulses for transducing a single photon from the mi-
crowave to the optical domain. The qubit is driven to its excited state and then Stark
shifted into resonance with a family of transverse eigenmodes of the HBAR. It coher-
ently transfers its excitation to the electric bright state, which simultaneously starts to
rephase into a state closer to the optical bright state. The optical pump is applied to
drive the OM interaction, which swaps population from the optical bright state to the
optical cavity. Two single photon detectors (SPDs) then record the leakage of the photon
out of the cavity in an HBT interferometer [40].

Out of the multiple figures of merit for quantum transducers, we will only be interested
in the transduction efficiency ηt throughout this work, as it can be substantially lowered
by being in the multimode regime. It quantifies the average number of transduced
optical photons per microwave photon. While experimentally, state preparation and
measurement (SPAM) errors play a big role and limiting this efficiency [18, 20], we
will only be focusing on factors introducing loss during the transduction sequence itself.
These factors include imperfect rephasing of the electric into the optical bright state,
qubit relaxation at rate γ, and phonon relaxation of mode n at rate Γn. Qubit dephasing
γϕ, will not be considered in the simulations, although we will see that it can play an
important role in the experiment (Chapter 5). Furthermore we will assume, that the
optical cavity only has external losses at rate κo, such that all photons leaking the cavity
can be detected. Throughout this work, we will consider a simple Markovian noise model,
such that all decoherences occur as an exponential decay. The transduction efficiency is
calculated as,

ηt(t) = κo

∫ t

0
⟨a†a⟩(t′) dt′, (2.29)

where t is the optomechanical interaction time.

18



A useful figure of merit to characterize mechanical states is their fidelity with respect
to the electric and optical bright states. It is defined as [41],

Fj(ρ) =
(

Tr
√√

ρ|Bj⟩⟨Bj |
√
ρ

)2
, (2.30)

where j = e, o, and ρ is the density matrix of the mechanical state. If ρ is a pure state,
the fidelity is equal to the population of ρ in the respective bright state.
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3. Simulations on geometry optimization of
HBAR transducers

With a theoretical framework at hand, we will now optimize aspects of the transducer
geometry in terms of transduction efficiency. The components of the device are a Gaus-
sian optical mode surrounded by a ring qubit antenna, both coupling to a rotationally
symmetric HBAR, much like in Figure 1.2. Since the Gaussian shape of the optical mode
is set by the optical cavity, which has been carefully designed by the team already, we
will focus on optimizing the piezo profile as well as the qubit ring antenna. The piezo
profile has two geometry parameters, a cutoff radius rcut, as well as a shape. The shapes
we will look at are the cylinder, the spherical cap dome, as well as the p-norm dome,
which is a middle ground between the two. The qubit antenna has an inner, rin, and
an outer radius, rout. The first of which is not subject to optimization as the optical
mode waist, wo = 60 µm, sets a minimum value for the inner antenna radius. It has
been determined to be rin = 200 µm through measurements of the optical quality factor
for different antenna positions by the transduction team.

The device with a cylinder piezo shape has previously been optimized to rout = 253 µm
and rcut = 266 µm. This optimization used a very simplified assumption about the
qubit electric field, which we will improve on in Section 3.2. Through electromechanical
measurements of devices of this design (see Chapter 5) we were also able to get more
realistic values of the electromechanical coupling. These improvements let us redo the
optimization of the cylinder HBAR, and additionally optimize other piezo shapes in
Section 3.3. The simulation methods used for this are presented in Section 3.1.

3.1. Simulation methods
3.1.1. Ansys HFSS
In order to evaluate the electromechanical coupling rates (Equation 2.13), we use Ansys
HFSS to simulate the qubit electric field. Ansys HFSS is a 3D electromagnetic simu-
lation software for designing and simulating high-frequency electronic products [42]. It
uses the finite element method (FEM) to solve Maxwells’ equations on a nontrivial ge-
ometry. Many iterations of simulation and experiments by the transduction team went
into designing the coupled system of qubit and readout resonator (see Subsection 5.2.1)
with this software. Here, we use it to simulate the electric field of the qubit eigenmode
for different antenna geometries.

Figure 3.1 shows the 3D model of the transduction ℏBAR in the geometry of previous
optimization inside a tunnel cavity (gray). The qubit chip (blue) hosts the transmon
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Figure 3.1.: Model of the ℏBAR for transduction in Ansys HFSS. Red: Microwave in-
put/output pin. Gray: Tunnel cavity. Blue: Qubit chip with readout res-
onator and qubit with ring antenna on top. Cyan: HBAR with AlN film
(red) on its bottom.

qubit with the ring antenna, as well as a stripline readout resonator. The top chip is
the HBAR (cyan), which host the AlN film (red) on its bottom side above the qubit
antenna. The metal components are modeled as 2D perfect conductors, and the chips
and the AlN are modeled as dielectrics. In the software, the qubit is simulated as a
harmonic resonator with geometric capacitance, and lumped element inductance LJ and
capacitance CJ at the Josephson junction. The nonlinear parameters of the coupled
qubit-resonator system can be evaluated with the EPR-method [43], from the linear
HFSS simulation solutions. The resolution of the electric field solutions, depends on the
initial mesh settings. Setting a finer mesh requires significantly more simulation time,
which is why we will use different mesh settings for different applications in this work.

To evaluate Equation 2.13, we will export the z-component of the simulated electric
field, Esim

z , above the qubit antenna inside the AlN film. To normalize the field to one
photon, we extract the energy ϵmode of the qubit mode from the simulation and rescale
the electric field to,

Ez = 1
2

√
ℏω
ϵmode

Esim
z , (3.1)

where ω is the frequency at which the resonant EM-interaction is simulated, which is
usually the Brillouin frequency ΩB.
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3.1.2. DASE
DASE is an acronym for Dimensionally reduced Acoustic Scrödinger Equation. The
dimensional reduction of Equation 2.3 uses the rotational symmetry of the piezo profile
p(r), which lets us do a separation Ansatz uη(r) = ur(r)uϕ(ϕ). Since the ASE only
depends on the radial coordinate in this case, we get the trivial solutions ujϕ(ϕ) = eiϕj

for the angular coordinate, where the integer j can be identified with the phonon angular
momentum. The radial part is now governed by a dimensionally reduced ASE whose
solutions, um,jr (r), can be labeled with a radial mode number m and the angular mode
number j. It turns out that only the modes with j = 0 respect rotational symmetry.
The electromechanical coupling is thus dominated by these modes since the qubit electric
field is designed to also respect this symmetry. We will therefore only consider these
symmetric modes throughout this work, which we notate as fm(r) and normalize using
Equation 2.7.

DASE is implemented as a python library for numerical diagonalization of the dimen-
sionally reduced Hamiltonian. The parameters of the simulation are the frequency, ω,
the wave velocities, vl and veff

⊥ , of longitudinally polarized phonons in quartz, as well
as the HBAR thickness, L, and the piezo profile, p(r). It is important to consider the
AlN quartz material boundary in the simulation due to the different speeds of sound in
the piezo film, vp

l , and the quartz substrate, vl. We do so by rescaling the piezo shape,
pscale(x, y) = vl

vp
l
p(x, y), such that the rescaled profile (assumed to be made of quartz)

provides the same boundary conditions as the physical one. The software returns the
normalized mode functions fm(r) as well as their eigenvalues ηm, from which we calculate
the mode frequencies using Equation 2.4.

The advantage of DASE over other methods to find the HBAR eigenmodes, based on
beam propagating for example, is its speed. DASE is very fast because it only has to
compute numerical diagonalizations of matrices. Its disadvantage is that loss rates of
the eigenmodes cannot reliably be determined. For more information on the DASE we
refer to reference [31].

In Section 4.4 we will simulate the eigenmodes of piezo shapes in a double-well ge-
ometry, i.e. without rotational symmetry. The ASE has to be solved in two dimensions
now which we do with a modified version of DASE, 2D-DASE.

3.1.3. Simulation of the transduction efficiency
We simulate the transduction sequence, by solving the time dynamics of the EM and
OM Hamiltonians ((see Equation 2.20 and 2.22) using QuTiP’s master equation solver
mesolve. As initial state, |ψ0⟩ = |1q⟩⊗m|0m⟩⊗|0o⟩, we have the qubit being in the excited
state and all other oscillators in the ground state, neglecting thermal population. All
oscillators are modeled as two level system, because the total population of the system
can never exceed one excitation if heating due to the thermal environment is neglected.
We assume Markovian relaxation of all oscillators at rates γ = 1/(10 µs) for the qubit,
Γm = 1/(50 µs) for all mechanical modes, and κo = 2π ·1 MHz for the optical cavity. The
transduction team aims to achieve values of this order for the transduction experiment.

22



The parameters of the Hamiltonians are the resonance frequencies of all oscillators,
ωq, ωm and ∆12, as well as the electromechanical and optomechanical coupling rates
ge,m and go,m. For a given geometry, Nmech = 6 mechanical mode functions fm(r) and
frequencies ωm are simulated using DASE. The EM (OM) couplings are then obtained by
calculating the EM (OM) forcing overlaps ge,n (go,n) using Equation 2.14 (Equation 2.18)
and scaling them by the total coupling ge,tot (go,tot). In Section 5.6 we will estimate
ge,tot = 2π · 75 kHz, and go,tot will be subject to optimization as we can control it with
the pump laser power. To calculate the forcing overlaps, we simulate the qubit electric
field, Eq, in Section 3.2, and use a Gaussian shape with optical mode waist wo = 60 µm
for the laser field Eo. This value was extracted from knife edge measurements of the
physical optical cavity. We will refer to these fields as the electric and optical forcing
fields. The qubit frequency ωq and optical mode pair detuning ∆12 are put on resonance
with the most strongly coupled mechanical modes.

The simulation is performed in two steps. At first, the EM Hamiltonian is simulated
giving rise to vacuum Rabi oscillations between the qubit and the mechanical modes.
We define the first minimum in qubit population as the swap time, tsw, and use the
mechanical state at this time as the initial state for the second step, the OM interaction.
The simulation of the OM interaction yields the optical cavity population as a function
of time, from which we finally calculate the transduction efficiency with Equation 2.29.
As the figure of merit for geometry optimization (see Section 3.3), we evaluate the
transduction efficiency at the time tOM = 25 µs. It is possible to include a wait time
of free evolution, twait, between the two steps, which allows the mechanical state to
increase its fidelity with respect to the optical bright state. We will investigate if it
is advantageous to include a wait time in the context of the two mode toy model in
Chapter 4. For the simulations in Section 3.3, we will have twait = 0.

3.2. Parametrization of the electric forcing field
In the previous state of optimization of the cylinder HBAR, the electric forcing field
was assumed as a simple door function, which is constant above the qubit antenna and
zero elsewhere. A more realistic estimate of the qubit electric field can be provided with
Ansys simulations of the system. The left panel of Figure 3.2 compares the simple door
forcing function with two versions of electric fields from Ansys simulations with coarse
and fine mesh settings for the previously optimized geometry. The one-dimensional
representations of the electric field were obtained by averaging over the angle coordinate
as described in Subsection 3.2.1. The two versions of fields slightly deviate, and the
fine mesh seems to produce sharper features. Throughout this section, we will use the
L2(R)-norm,

∥E∥2 = ⟨E,E⟩ =
∫
I
E2(x) dx, (3.2)
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Figure 3.2.: Left: Simple assumption (door), and simulated electric fields (fine and coarse
mesh) for the qubit antenna geometry resulting from previous optimization.
Right: Resulting electromechanical forcing overlaps (see Equation 3.4).

to normalize the one-dimensional representations of electric field simulations E on an
interval I, and measure the distance d between normalized fields E1 and E2 as,

d2 = ∥E1 − E2∥2 =
∫
I

(E1(x) − E1(x))2 dx. (3.3)

Assuming that the simulation with fine mesh, is closest to the true electric field, we
can calculate its distances dcoarse = 0.135 to the simulation with coarse meshing, and
dsimple = 0.424 to the simple door forcing.

The right panel of Figure 3.2 shows the overlaps (see Equation 2.13) of the three forcing
fields with the eigenmodes of the cylinder HBAR in the previous state of optimization.
We can observe that all fields mostly follow the same trend up to mode numbers of six,
where significant deviations between the simulated and simple fields arise. In the first six
modes, there are notable differences in overlaps except for mode number two. Although
the deviations between simple and simulated fields may look insignificant here, they
might still cause the optimal geometry to be different from the previous optimization.

Having to simulate the electric forcing fields in Ansys for every geometry of the op-
timization process is not feasable, since the simulation takes ∼ 10 min with the coarse,
and ∼ 4 h with the fine mesh settings. Instead, the goal of this section is to simulate
training and test data sets with the coarse mesh settings that let us train and benchmark
a model to predict the electric forcing field for arbitrary antenna geometries. With this
model, we will then be able to rerun the geometry optimizations with a better estimate
of the electric forcing field.
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3.2.1. Collecting and preprocessing data
To create training and test data sets, we perform Ansys simulations of the qubit-
resonator system (see Figure 3.1) and vary the inner and outer antenna radii, while
keeping the rest of the design identical. For each geometry, we extract the Ez compo-
nent right below the piezo cylinder, instead of inside it. The reason for this, is that
especially with the coarse mesh settings, the electric field inside the piezo becomes quite
noisy in the simulation. Physically, the z-component of electric fields right before and
after the boundary between dielectrics, should only differ in magnitude, which is not
important here, since we will normalize the fields anyway.

For the training set, we simulate 110 geometries in total, varying the inner radius
from 100 µm to 200 µm, and the antenna thickness T = rout − rin from 10 µm to 100 µm,
both in steps of 10 µm. The test set includes 99 geometries with the same inner radii,
and thicknesses from 19 µm to 91 µm in steps of 9 µm. Before training the model, we
preprocess the electric field data in two steps.

Averaging over the angle coordinate

The transduction device is designed around mechanical modes with rotational symmetry.
The electromechanical overlaps (see Equation 2.14) for these modes compute to,

ge,m =
∫
Ap

Eq(r, ϕ)fm(r)r drdϕ = 2π
∫ rcut

0
Ēq(r)fm(r)r dr, (3.4)

where Ēq(r) is the qubit electric field, averaged over the angle coordinate. Asymmetric
components in the electric field, e.g. due to the antenna lead, can thus only couple to
asymmetric mechanical modes. These modes could be relevant especially if rcut ≫ rout
such that the AlN film covers large parts of the antenna lead. The relevance of asymmetry
in such geometries could be worth exploring in the future.

Performing the average over the angle coordinate is implemented in the following way.
First, we define a array of radii on the interval I = (rin − 90 µm, rout + 90 µm) with 700
elements. Then, for each radius of the array, we compute the average electric field of
all points, whose radial coordinate is closest to that radius. The radii in the grid are
spaced, so that each average is computed over the same number of data points. The
resulting data are one-dimensional arrays of electric fields, which we normalize using
Equation 3.2, E , defined on an interval I for each geometry.

Averaging over variations of the inner radius

Looking at geometries with the same thickness and varying inner radii, we notice that
the normalized electric fields look very similar. The left panel of Figure 3.3 shows the
electric field data of geometries with T = 50 µm, where the intervals I have been shifted
to have the inner radius values be zero. The mean field is plotted as the red dashed line.
To quantify the error of taking the mean, we compute the average distance of the data
to the mean. Doing so for all geometries, we get d̄train

inner = 0.034 ± 0.016 for the training
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Figure 3.3.: Left: electric field data for geometry variations with antenna thickness T =
50 µm (colored solid lines), and their mean (red dashed line). Right: full
training data set, resulting from both preprocessing steps.

set, and d̄test
inner = 0.033 ± 0.016 for the test set, where the errors specify the standard

deviations. These distances are much smaller than the distance between coarse and fine
mesh solutions, which justifies taking the mean here.

The right panel of Figure 3.3 shows the full training data set after the preprocessing
steps, consisting of ten electric field arrays ET defined on intervals IT for different qubit
antenna thicknesses T . The same applies for the training set, which includes nine antenna
thicknesses.

3.2.2. Training a model for electric field prediction
With the training data, we now want to train a model that lets us quickly predict an
electric field array for any antenna thickness T ∈ (10 µm, 100 µm). The procedure we use
is based on interpolation. One way to interpolate between the training data is pointwise,
for each point on the interval IT . This procedure would capture every detail of the data,
potentially also non-systematic ones. Instead we will reduce the dimensionality of the
data from 700 values to p+1 values by choosing p+1 basis functions to project the data
onto. Interpolation can then be performed between the coefficients ciT of the projection,
where i = 0, ..., p. We hope to only capture the systematic evolution of the electric field
with antenna thickness this way.

As basis functions, we use the Hermite-Gauss-function,

ψi(x) = exp
(

−x2

2

)
Hi(x), (3.5)

where Hi are the Hermite-polynomials, because they naturally drop off to zero for x →
±∞, much like our data. These function form a basis on L2(R), and for them to be

26



a valid basis for our data we need to rescale or intervals IT accordingly. We choose to
rescale the intervals to

Irescale
p,s = (−s · xmax

p , s · xmax
p ), (3.6)

where we introduced a scaling parameter s, and xmax
p is the x-value, where the basis

function of the highest degree used in the fit, ψp, has its last maximum before dropping
off to zero due to the Gaussian envelope. The projection thus results in a function,

hp,sT =
p∑
i=0

⟨ET , ψi⟩p,s ψi =
p∑
i=0

ci,p,sT ψi, (3.7)

where the inner product is evaluated on the interval Irescale
p,s (see Equation 3.2). Inter-

polating the coefficients ci,p,sT on the antenna thicknesses of the training set, using linear
or cubic spline interpolation, yields the continuous coefficients ci,p,s(T ), which we use to
define the predictor functions,

hp,spred(T ) =
p∑
i=0

ci,p,s(T )ψi. (3.8)

It is now time to evaluate the performance of the predictors by using the test set. As
a measure, we use the average distance between the test data and the predictor on all
thicknesses, Ti, of the test set,

d̄p,s = 1
9

9∑
i=1

∥∥∥ETi − hp,spred(Ti)
∥∥∥ , (3.9)

where the distance is evaluated on the interval ITi . The projections were performed with
the LinearRegression module from the python library sklearn.

Figure 3.4 shows the performance of the model on a grid of s and p for both linear
and cubic spline interpolation. Both plots show the same qualitative behavior, with the
better performance to be found with cubic interpolation. For all values of s, the average
distance decreases, when increasing p, eventually reaching a plateau. The plateau is
approximately at the same average distance for all values of s < 1. One interpretation
of this plateau, is that all systematic behavior of the training data has been captured
at this point, and increasing the number of basis functions cannot further improve the
models performance. Going to a very large number of basis functions, one would expect
the performance of the model to decrease again, as non systematic features of the data
start getting captured. Apparently, this is not the case yet for the values of p tested
here.

The best perfomance of the model is found for p = 64 and s = 0.85. The average
distance between test set and prediction is d̄min = 0.0093 ± 0.0032, where the error
is the standard deviation. This outperforms significantly the distances from choosing
coarse meshing and averaging over variations of the inner radius. Figure 3.5 shows the
simulated and predicted electric fields, as well as their distance, for the best and worst
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and lowest (right) distance between simulation data and prediction for p =
64, s = 0.85, and cubic interpolation.
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performing thickness from the test set. Even for the worst performance, the deviations
between prediction and simulation can barely be spotted.

It is clear, that not the model itself but mostly the coarse meshing, and to some extend
the preprocessing step of averaging fields of geometries with the same antenna thickness,
limit the accuracy of predicting the electric field. This indicates that it could have been
worth to decrease the number of simulated geometries, improve the meshing on those
simulations, and perform a two-dimensional interpolation of the coefficients on antenna
thickness and inner radius instead of averaging.
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3.3. Optimization of HBAR geometries
With the improved prediction of the electric forcing field, let us now run the simulations
on geometry optimization of the cylinder, spherical cap dome, and p-norm dome piezo
shapes.

3.3.1. Cylinder
The cylinder has previously been optimized to rout = 253 µm, rcut = 266 µm, and go,tot =
167 kHz, yielding a transduction efficiency of ηt = 0.662. Here, we rerun the optimization
with some differences. The main differences are the improved electric field, and estimate
of the electromechanical coupling ge,tot = 2π · 75 kHz, whereas the previous optimization
used ge,tot = 2π · 250 kHz. Another minor difference is that previously, eight mechanical
modes were simulated using DASE, but only the six with the strongest coupling were
included in simulating the transduction sequence. This also led to slight inaccuracies.
Here, we will use the first six mechanical modes for all calculation steps.
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Figure 3.6.: Optimization of the cylinder HBAR geometry. Details in the text.

Geometry optimization procedure

Figure 3.6 shows the process of geometry optimization. We start with go,tot = 167 kHz
and simulate the transduction efficiency on a wide grid of geometries, including all of
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the training range of the electric field (upper left plot). We then proceed to find the
optimal optomechanical coupling by simulating the optimized geometry, marked with a
black cross, for different OM couplings (lower left plot). It is not obvious, why increasing
the coupling too much, lowers the transduction efficiency, and we will comment on this
in Section 4.2. With the optimal OM coupling, we repeat the two steps on a finer grid
(right plots). The new optimal result for the cylinder is rout = 213 µm, rcut = 240 µm,
and go,tot = 164.2 kHz, yielding a transduction efficiency of ηt = 0.599. This result is
similar to the previous one, with the main difference that a thinner antenna is favored.
This could be the case, because the realistic forcing field is slightly broader than the
antenna in contrast to the previous assumption of the forcing field.

The optimized geometry

The left column of Figure 3.7 plots the amplitudes of the mechanical mode functions
together with the potential created by the piezo profile (upper plot). The mechanical
modes are approximately described by the zeroth order Bessel function of the first kind.
The forcing fields (center plot), have a Gaussian shape for the optics, or the shape
resulting from Section 3.2 for the electric field. The bottom plot shows the EM and
OM overlaps, where positive values are plotted in red, and negative ones in blue. We
can observe that for the optimal geometry, the EM and OM overlaps draw a similar
envelope, i.e. they are similar in magnitude for each mode. This favors rephasing of the
electric bright state into the optical bright state.

Time dynamics in the optimized geometry

The time dynamics of the system are shown in the right column of Figure 3.7. The
phonon populations (upper plot) increase to their maximum at the EM swap time,
tsw = 4.41 µs, and then start to decline due to the optomechancial interaction and
decoherence. Interestingly, not all phonon modes are strictly declining, but e.g. modes
0 and 1 are increasing in population at first. This is due to the multimode nature of the
transducer, which causes different modes to have different phases with respect to the
optical mode, and thus different time dynamics. We observe that modes one to three
transfer most of the population, because of their large EM overlaps and because their
mode detunings are smaller than ge,tot.

The qubit excited state population pe, the optical cavity population po, the transduc-
tion efficiency, and the population lost due to decoherence are shown in the center plot.
We employed two y-scales for better visibility. The arrows in the legend indicate, which
quantity is plotted on which scale. The qubit swaps almost all of its population to the
mechanical modes during the EM interaction time. The optical mode population starts
to increase as soon as the OM interaction is turned on, indicating that the mechanical
state has already evolved away from the electric bright state to the optical bright state.
The transduction efficiency is the integral of the optical population. It is evaluated at
tOM = 25 µs for the geometry optimization. At this time it has mostly saturated. The
population lost due to decoherence is 3.5×10−3 at tOM, indicating that the transduction
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Figure 3.7.: Mode functions, forcing fields, and mode overlaps (left column), and time
dynamics of populations and fidelities (right column) for the optimal geom-
etry. Details in the text.

efficieny is not limited by decoherence in this simulation.
The mechanical bright state fidelities during the interactions are shown in the lower

plot as solid lines. The electric bright state fidelity, Fe, peaks already before tsw, because
the mechanical state evolves significantly already during the EM interaction. When
starting the OM interaction, the optical bright state fidelity, Fo, starts to increase to its
maximum right away. Each peak in Fo coincides with a peak in the optical population
because coupling is enabled. Interestingly, Fo never exceeds ∼ 0.12. This is because
population is transferred to the optical cavity, limiting Fo. To get a feeling for how the
pure mechanical phase evolution behaves, we plot Fe and Fo as a function of time in the
absence of optomechanical interaction as dotted lines. Here, a maximum of Fo ∼ 0.35
is reached. The fidelity is limited by the nonuniform frequency spacing of mechanical
modes, which prevents their phases to align at the same time. This imperfection is likely
limiting the transduction efficiency in the end.
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Figure 3.8.: Optimization of the spherical cap HBAR geometry. Details in the text.

3.3.2. Spherical cap dome
The spherical cap dome approximately produces a harmonic potential for the acoustic
modes. It can be parametrized with either its cutoff radius rcut or its radius of curvature
Rc, which are related by r2

cut = (2Rc − dp)dp, where dp = 430 nm is the piezo thickness
at the center of the dome.

Figure 3.8 and Figure 3.9 show the same plots as for the cylinder. Let us comment
on similarities and differences. The geometry optimization is qualitatively very simi-
lar. There is an optimal geometry and optimal OM coupling, with decreasing efficiency
around that point. Looking at the resulting optimal geometry though, we assert that
a much larger structure with rout = 273 µm and rcut = 1.80 mm is optimal. The op-
timal OM coupling, go,tot = 2π · 163.3 kHz, is similar to the cylinder and the resulting
transduction efficiency ηt = 0.538 is slightly lower.

We can understand the requirement for such large structures by looking at the mechan-
ical mode functions. For the spherical cap dome, they are approximately the Laguerre-
Gauss modes, which are confined much closer to the center of the dome than for the
cylinder. This also makes it impossible to match the envelopes of the EM and OM
overlaps, which is a disadvantage for rephasing into the optical bright state. This dis-
advantage is partially made up for, by the equal frequency spacing of the mechancical
modes of the spherical cap dome, causing the phases of the modes to align at the same
time.

33



0.0 0.5 1.0 1.5

r (mm)

Fo
rc

in
g

OM
EM

−50 −25 0 25 50 75 100

ωm − ω2 (kHz)

0.50

0.25

0.00

0.25

0.50

g
j,
m 0 1 2 3 4 5

j = e

j = o

0 tsw 10 20 tOM 40

t (µs)

0.0

0.2

0.4

Po
pu

la
tio

n m = 0
m = 1
m = 2
m = 3
m = 4
m = 5

0 tsw 10 20 tOM 40

t (µs)

0.00

0.25

0.50

0.75

1.00

Po
pu

la
tio

n ← pe
→ po
← ηt(t)
→ Loss

0 tsw 10 20 tOM 40

t (µs)

0.0

0.2

0.4

0.6

Fi
de

lit
y

Fo bare
Fe bare
Fo
Fe

0.00

0.25

0.50

0.75

1.00

Po
pu

la
tio

n
×

10
−

2

0.0 0.5 1.0 1.5

r (mm)

St
ra

in
m = 0
m = 1
m = 2
m = 3
m = 4
m = 5
Potential

Figure 3.9.: Mode functions, forcing fields, and mode overlaps (left column), and time
dynamics of populations and fidelities (right column) for the optimal geom-
etry. Details in the text.

Looking at the time dynamics, mechanical mode 2 now clearly transfers most of the
population due to its large EM overlap. Because the mode spacing for the spherical
cap is smaller than the spacing between modes one to three for the cylinder, the overall
rephasing dynamics are slowed down. One symptom of this is that Fe peaks at tsw,
instead of before tsw like in the cylinder. Another symptom is that the optical popula-
tion and bright state fidelity only start to increase ∼ 3 µs after tsw. Overall, the time
dynamics are smoother and with less oscillations, which can be attributed to the equal
frequency spacing. The bare evolution of Fo peaks below 0.3, which confirms that the
rephasing dynamics of the spherical cap dome are slightly disadvantageous compared
to the cylinder. Decoherence is again not limiting the transduction efficiency, as the
decayed population is below 5 × 10−3 at tOM.

3.3.3. p-norm dome
The p-norm dome’s profile is defined as p(r) = dp − Rc + (Rp − rp)1/p for r < rcut =
(Rpc − (dp − Rc)p)1/p, where for p = 2 it is a sperical cap dome, and for p → ∞, the
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Figure 3.10.: Optimization of the p-norm dome HBAR geometry. Details in the text.

cylinder is recovered. Choosing an intermediate value of p, is a compromise between the
cylinder and the spherical cap.

Figure 3.10 and 3.11 show the simulation results for p = 6. We see that indeed
most of the aspects of the simululation are a comprimise between the cylinder and the
spherical cap dome. The optimal structure has an intermediate size of rcut = 420 µm
and rout = 221 µm. The optimal OM coupling is similar to both other shapes with
go,tot = 2π · 160.7 kHz, and the achieved transduction efficiency is similar to the cylinder
with ηt = 0.594.

The mechanical mode functions are not as closely confined to the center of the potential
as in the spherical case, but they also do not extend all the way to the cutoff radius.
On one hand, the resulting EM and OM overlaps have envelopes which are more similar
to each other than for the spherical cap, but less than for the cylinder. On the other
hand, the frequencies of the modes are more regularly spaced than in the cylinder, but
not equally spaced as in the spherical cap.

Three mechanical modes significantly participate in transduction, as we can see from
the phonon populations. The rephasing speed seems to be similar to the cylinder, as
po and Fo start to incrase right at the beginning of the OM interaction. In the bare
evolution, the p-norm dome is able to produce the highest value of Fo ∼ 0.4, which
however does not increase the final transduction efficiency over the cylinder because this
high value is only maintained for a short time.
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Figure 3.11.: Mode functions, forcing fields, and mode overlaps (left column), and time
dynamics of populations and fidelities (right column) for the optimal ge-
ometry. Details in the text.
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3.3.4. Discussion of the results
With the simulations in this section, we investigated how the multimode structure of
HBARs in different geometries influences the transduction efficiency. For the chosen
parameters, the efficiency was not limited by decoherence, but by the ability of the elec-
tric bright state to evolve into the optical bright state. In all investigated piezo shapes,
the peak optical bright state fidelity was below Fo ∼ 0.4 for bare mechanical evolu-
tion. Rephasing was either limited by nonuniform frequency spacing for the cylinder,
differing overlap envelopes for the sphere, or a combination of the two for the p-norm
dome. Perfect rephasing would require equal frequency spacing and equal envelopes of
overlaps. This does not seem to be possible for the rotationally symmetric transducers
investigated here.

From these simulations we can conclude, that neither piezo shape significantly out-
performs the others, when it comes to transduction efficiency as the figure of merit. We
should thus focus our attention to practical issues associated with the different shapes.
In Chapter 5, we will measure the electromechanical interaction for the cylinder HBAR
in the previously optimized geometry. In neither measurements, Rabi oscillations could
be observed, which we concluded, is due to lacking phonon coherence times. This could
in general be a problem for the cylinder HBAR, since the large mode amplitude at the
edges of the mode volume could cause high diffraction loss, and loss to potentially rough
cylinder walls. The group is very experienced in fabricating high quality spherical cap
HBARs [23, 44], which is why the transduction team decided to move towards these
structures as a results from the measurements. The disadvantage here is that large cut-
off radii are necessary for the optimal geometry, introducing lots of piezoelectric material
into the system, which could in turn limit qubit coherence. A solution to this, could
be the double sided HBAR [45], which distributes the potential on both sides of the
HBAR chip, limiting the piezoelectric material to the area of the qubit antenna. The
p-norm dome could also provide an alternative, as its mode functions drop off way before
the potential edges, promising high phonon coherence, while simultaneously limiting the
amount of piezoelectric material needed. These alternatives come with the caveat, that
they are more challenging to fabricate than the cylinder and spherical cap HBARs.
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4. Microwave to optical transduction with
two mechanical modes

In the last chapter, we saw that the time dynamics of multimode transduction are quite
complicated. The goal of this chapter will be to develop a deeper understanding of the
physics behind multimode transduction in a minimal toy model with two mechanical
modes and perfect rephasing. Specifically, we will investigate how the EM and OM
coupling rates, as well as the optical linewidth influence the transduction speed in the
absence of qubit and mechanical loss.

In Section 4.1, we will try to extract as much information as possible from analytical
calculations. Section 4.2 will then go on to simulate the transduction sequence in different
parameter regimes. The results from the toy model will be discussed in Section 4.3.
Finally, Section 4.4 introduces an HBAR geometry without rotational symmetry that
approximately resembles the two mode toy model.

4.1. Analytical formulation
Let us write down the full transduction Hamiltonian for two mechanical modes in the
rotating frame of the qubit frequency ωq and the optical mode detuning ∆12,

Ĥt = −δb̂†
1b̂1 + δb̂†

2b̂2 + ge,1σ̂
†b̂1 + ge,2σ̂

†b̂2 + go,1â
†b̂1 + go,2â

†b̂2 + H.c., (4.1)

where 2δ is the detuning between the mechanical modes, b̂i is the lowering operator for
mechanical mode i, gj,i is the coupling rate for j = e, o and i = 1, 2, and H.c. is the
hermitian conjugate of the coupling terms. We will assume all couplings to be equal
in magnitude and have all couplings positive with the exception of ge,2 being negative.
This gives the the electric and optical bright states (see Equation 2.24),

|Be⟩ = b̂†
e |0⟩ = 1√

2

(
b̂†

1 − b̂†
2

)
|0⟩ = 1√

2
(|1⟩1 |0⟩2 − |0⟩1 |1⟩2) , (4.2)

|Bo⟩ = b̂†
o |0⟩ = 1√

2

(
b̂†

1 + b̂†
2

)
|0⟩ = 1√

2
(|1⟩1 |0⟩2 + |0⟩1 |1⟩2) , (4.3)

which satisfy the orthogonality of Equation 2.25. We can now rewrite Equation 4.1 in
terms of the operators b̂e and b̂o,

Ĥt = ge,totσ̂+b̂e − δb̂eb̂
†
o + go,totâ

†b̂o + H.c. (4.4)

Notice that the energies of the mechanical modes disappeared and was replaced by a
linear coupling at rate −δ between the bright modes. Figure 4.1 shows a sketch of the
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Figure 4.1.: Coupling scheme of the two mode toy model. Left: In the basis of mechanical
eigenmodes. Right: In the basis of bright modes.

coupling scheme in the two mechanical bases. We will use the bright mode basis for
further calculations.

Let us separate again the EM and OM interaction. Including only states with 1
excitation in total we can write the EM or OM Hamiltonian in matrix form,

ĤXM =

0 g 0
g 0 −δ
0 −δ 0

 , (4.5)

where we use the basis {|e⟩ , |Be⟩ , |Bo⟩} ({|1⟩o , |Bo⟩ , |Be⟩}), and g = ge,tot (g = go,tot)
for the EM (OM) Hamiltonian. |e⟩ is the qubit excited state, and |1⟩o is the single
photon optical cavity state. Diagonalization of this matrix form Hamiltonian yields the
eigenvalues −Ω, 0,+Ω to the eigenstates |−⟩ , |d⟩ , |+⟩, where Ω =

√
g2 + δ2,

|−⟩ = 1√
2

 cosα
−1

− sinα

 , |d⟩ =

sinα
0

cosα

 , |+⟩ = 1√
2

 cosα
1

− sinα

 , (4.6)

and we introduced the mixing angle, tanα = δ/g. The state |d⟩ is called the dark state
as it has a vanishing eigenvalue and therefore does not evolve under the Hamiltonian.

4.1.1. Electromechanical interaction
Let us now compute the time evolution of the electromechanical interaction with initial
state |ψ0⟩ = |e⟩,

|ψ(t)⟩ = e−iĤXMt/ℏ |e⟩ = sinα |d⟩ + cosα√
2

(
eiΩt |−⟩ + e−iΩt |+⟩

)
(4.7)

=
(
sin2 α+ cos2 α cos Ωt

)
|e⟩ − i cosα sin Ωt |Be⟩ (4.8)

+ cosα sinα (1 − cos Ωt) |Bo⟩ . (4.9)

While at first this seems a bit cluttered, let us ask the question if there is a time, tsw,
where the qubit swaps all of its population to the mechanics. The coefficient of the state
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Figure 4.2.: Populations of qubit, and electric and optical bright states as a function
of time (see Equation 4.7), evaluated at three ratios of g/δ. This ratio is
responsible for the mechanical state resulting from the interaction at tsw.

|e⟩ in |ψ(t)⟩ drops to zero if

cos Ωtsw = − tan2 α = −δ2

g2 , (4.10)

which means that the swap time only exists if g ≥ δ, i.e. if the EM coupling is faster
than the bare phase evolution of the mechanical state. The resulting mechanical state
at this time is

|ψ(tsw)⟩ = cos φ0
2 |Be⟩ + sin φ0

2 |Bo⟩ = 1√
2

(
|1⟩1 |0⟩2 − e−iφ0 |0⟩1 |1⟩2

)
, (4.11)

tan φ0
2 =

δ
(
1 + δ2

g2

)
Ω
√

1 − δ4
g4

, (4.12)

which is a superposition of the electric and optical bright states whose weight depends on
the ratio g/δ. Figure 4.2 shows the time evolution of the populations of the qubit excited
state, pe, and the electric (optical) bright state, pbe (pbo), for g/δ = 1 (left), g/δ =

√
2

(center), and g/δ = 100 (right). For g/δ = 1, the electromechanical swap time equals
the rephasing time, such that the optical bright state results from the electromechanical
interaction at tsw. In the other extreme case, g/δ → ∞, rephasing is negligible during
the EM interaction time, and the electric bright state is produced. It turns out that for
g/δ =

√
2, the electric and optical bright state become equally populated at tsw.

In this toy model, we can thus prepare an arbitrary mechanical state with the EM
interaction by choosing the parameters accordingly. In the following, we will simulate
the OM-interaction, as it is analytically not well tractable because it contains dissipation
of the optical mode. There, we will see the influence of starting in a specific mechanical
state.
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Figure 4.3.: Colormaps of the transduction time, tt, as a function of g and κo for δ = 2π.
The three plots correspond to different values of φ0, i.e. different initial
mechanical states.

4.2. Simulations on the optomechanical interaction
Having established how mechanical states result from the EM interaction, let us now
investigate how these states evolve under the OM interaction. This problem is slightly
more complicated, as now the question is no longer, how population can be transferred
between states, but how population can be transferred to a bath, which is the optical fiber
leading to the SPDs. As always, we model this decay to the bath, with the optical cavity
decay rate, κo. The dynamics of the interaction are fully governed by the parameters δ,
g = go,tot, and κo.

4.2.1. Exploration of the parameter space
We will now run a brute force simulation, similar to the geometry optimization in Chap-
ter 3, where we sweep the parameters g and κo for δ = 2π, to find the optimumal
values. As a figure of merit will use the transduction time, tt, it takes to achieve
ηt(tt) = 1−e−3 ≈ 95 %. Figure 4.3 shows maps of the transduction time as a function of
g and κo for the initial mechanical state being |Be⟩ (left), 1√

2(|Be⟩ + |Be⟩) (center), and
|Bo⟩ (right), corresponding to the values φ0 = 0, π/2, π. Transduction times exceeding
δtt/2π = 2.5 are colored with this maximum value.

In the case of φ0 = 0, we can clearly observe a staff-shaped region of efficient trans-
duction with an optimal value at g/δ = 1.66 and κo/δ = 3.98 (marked with a cross).
We perform a power law fit of the type g/δ = a(κo/δ)b (dashed line) on all points with
δtt/2π < 0.5. The result is a = 0.825 ± 0.004 and b = 0.489 ± 0.013 for κo ≳ δ, which
tells us the relation of g and κo that leads to efficient transduction. We will develop
a physical intuition for why transduction is inefficient outside this parameter regime in
Subsection 4.2.3, where we look at the time dynamics of the points marked with stars.

Starting the OM interaction with φ0 = π on the other hand, a much wider parameter
space results in efficient transduction. Towards lower values of g, the region of efficient
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transduction is bound in the same way as for φ0 = 0, but there seems to be no upper
bound on the values of g, where the transduction time would decrease again. The optimal
parameters are found on the edge of the simulation range for g/δ = 10 and κo/δ = 20.9.

When starting in the superposition state for φ0 = π/2, a compromise between the two
extreme cases has to be found, g/δ = 2.40 and κo/δ = 5.75. This compromise is rather
close to the case of φ0 = 0.

4.2.2. Transduction dynamics for optimal parameters
Figure 4.4 shows the time evolution of the transduction efficiency, ηt, the optical cavity
population, po, and electric (optical) bright state population, pbe (pbo) for the optimal
parameters found in Figure 4.3. For φ0 = 0, a transduction time of δtt/2π = 0.41 can
be achieved. As in Section 3.3, the optical cavity population only starts to increase as
soon as the electric bright state has partly rephased into the optical bright state. For
φ0 = π, The population is transferred much faster. Since initially pbe = 0, it is optimal
to choose the coupling as high as possible, to have |Be⟩ ≈ |d⟩, such that dynamics are
essentially those of a driven two level system. The transduction time is then only limited
by how fast the population can decay to the fiber, i.e. by κo. Here, a transduction time
of δtt/2π = 0.06 could be reached, but in principle this time can become arbitrarily low
when increasing g and κo. For φ0 = π/2, we can slightly increase the values of g and
κo compared to the first case, since less population needs to rephase into the optical
bright state, allowing for a smaller mixing angle. The transduction time achieved here
is δtt/2π = 0.22.
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Figure 4.4.: Time dynamics of the transduction efficiency, ηt, optical cavity population,
po, and electric (optical) bright state population, pbe (pbo) for different values
of φ0, in the case of optimal parameters found in Figure 4.3. The transduc-
tion time, tt is marked with the black dashed line.

In Section 3.3, we saw that in realistic devices, we prepare mechancial states which have
already evolved a decent amount from |Be⟩. In a transducer with a higher value of ge,tot,
states closer to |Be⟩ would be prepared in the EM interaction. For such a transducer,
starting in the optical bright state could be implemented by a wait time, twait, between
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the EM and OM interactions. Assuming that we can perfectly prepare the electric bright
state, we would need to wait δtwait/2π = 1/4 (δtwait/2π = 1/8) before turning on the
OM interaction, to start the latter with the optical bright state (equal superposition
state) in this toy model. The total time to transduce the electric bright state to the
optical fiber would therefore be δttotal

0 /2π = 0.41, δttotal
π/2 /2π = 0.22 + 0.125 = 0.345, and

δttotal
π /2π = 0.06 + 0.25 = 0.31, where we labeled the times with the values of φ0 at

the beginning of the OM interaction. The last value can probably be reduced further
by exploring a larger parameter space. Here, the transduction time can thus be slightly
reduced by waiting between the EM and OM interactions.

4.2.3. Transduction dynamics for suboptimal parameters
To build a physical intuition of why transduction is only efficient in a certain parameter
regime, we look at the time dynamics of four parameter pairs, where transduction is
inefficient for φ0 = 0. The points are chosen such that either g or κo is at its optimal
value, and the other one is at the edge of the simulated parameter space. Since three of
the four points are outside the efficient transduction region for any φ0, the explanations
apply generally for those points.

Figure 4.5 shows the time dynamics of the transduction sequence for the four points
marked with a star in Figure 4.3. The top row shows the two cases where g is optimal,
but κo is not. If κo is lower than optimal (left), population is coherently exchanged
between the mechanical states and the optics. The optical and electric bright state
population oscillate at the frequency Ω = 1.94δ, while the optical bright state population
oscillates with twice that frequency. Transduction is inefficient here, because only little
population leaks from the optical state, and a large portion of the optical population is
transferred back to the mechanics. Multiple oscillations are thus necessary to transduce
an appreciable amount of population. If kappa is too large on the other hand (right),
the optical population always stays close to zero, and the electric and optical bright
state exchange population at rate 2δ. The time dynamics are thus fully dictated by the
rephasing of mechanical states and no time scale related to the value of g is observed.
This is because κo ≫ g, such that any dynamics resulting from optomechanical coupling
of the optical bright state and the optical cavity quickly decays to steady state. To
understand why this results in inefficient transduction, let us treat the system as a two-
level transition with high decoherence (the optical cavity) driven by the optical bright
state with the slowly varying drive strength, ξ ∝ gpbo . The transduction efficiency is
then the integral of the average number of dissipated photons,〈dN

dt

〉
= κop

ss
o = κo

s

2(s+ 1) ≈ ξ2

κo
, (4.13)

where pss
o is the steady state value of the optical cavity population, s = 2ξ2

κ2
o

is the satu-
ration parameter for resonant interaction, and we approximated the expression to linear
order in ξ2/κ2

o [46]. This means that the transduction efficiency increases whenever the

43



0.0

0.5

1.0
Po

pu
la

tio
n

κo/δ = 0.11,
g/δ = 1.66

ηt

po
pbe
pbo

κo/δ = 90.00,
g/δ = 1.66

ηt

po
pbe
pbo

0 1 2
δt/2π

0.0

0.5

1.0

Po
pu

la
tio

n

κo/δ = 3.98,
g/δ = 0.11

ηt

po
pbe
pbo

0 1 2
δt/2π

κo/δ = 3.98,
g/δ = 9.00

ηt

po
pbe
pbo

Figure 4.5.: Time dynamics of the transduction efficiency, ηt, optical cavity population,
po, and electric (optical) bright state, pbe (pbo) for φ0 = 0, in the case of
suboptimal parameters, marked with a star in Figure 4.3.

population in the optical bright state is high, and that transduction is overall inefficient
because

〈
dN
dt

〉
∝ κ−1

o .
In the bottom row, the cases of optimal κo and suboptimal g are shown. If g is too

low (left), the optomechanical interaction is again in steady state. This is the same case
as in the top right plot. It is very interesting what happens if we increase g beyond its
optimal value. The mixing angle, α is very low in this case, so that the dark state, |d⟩,
has large overlap with the electric bright state, |Be⟩, which initially hosts all population.
Only the small portion of population that is not in the dark state initially, participates
in the time dynamics, giving rise to small oscillations in the population, which die out
as soon as this population is transduced. The remaining population in the dark state,
continues to sink very slowly due to inherited decay from the optical cavity. Starting the
OM interaction with φ0 = π, does not lead to these kinds of dynamics. This is because
initially all population is in the state |Bo⟩, which has zero overlap with the dark state.
Increasing g to arbitrarily high values therefore does not hurt the transduction time (see
Figure 4.3).
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4.3. Discussion of the results
While in Section 3.3, we investigated how the geometry of HBARs influences the rephas-
ing properties of the mechanical bright states. In this chapter we assumed perfect rephas-
ing and investigated the influence of the parameters ge,tot, go,tot and κo on the transduc-
tion time, neglecting decoherence of the qubit and the mechanics. Let us evaluate which
findings we can apply to the realistic transducers.

In the toy model, we found that in the EM interaction all population could be swapped
from the qubit to the mechanical states, resulting in a superposition of electric and
optical bright states depending on the mixing angle. In the simulation of all realistic
transducers, the EM swap resulted in almost zero qubit population, and a mechanical
state with only moderate electric bright state fidelity. Especially for the cylinder, the
mechanical state at tsw had low values of Fe and Fo. This behavior is only possible with
more than two mechanical modes.

We then went on to simulate the OM interaction and found that when starting in
the electric bright state, there is an optimal value of g for κo > δ, due to the formation
of eigenstates under the OM Hamiltonian. Including more mechanical modes in the
realistic device gives rise to similar eigenstates, which is why we observed an optimal
value of go,tot in the optimization process.

Furthermore, we found in this chapter that including a wait time between the EM and
OM interaction can be beneficial to the transduction time, because the OM interaction
time can be reduced indefinitely by increasing g when starting in the optical bright
state. Experimentally, the optomechanical coupling is tuned by the intracavity photon
number, which scales with the applied pump laser power and inversely scales with κo.
The experiment sets a limit on the maximum pump power, as the attenuation of the
pump laser light needs to be strong enough such that detection of pump photons by
the SPDs is rare compared to the detection of signal photons. We estimated that we
can achieve values of go,n ≈ 2π · 230 kHz (see Appendix A), assuming the strongest
value, g0,n = 2π · 7.75 Hz, observed in the previous OM experiment of the group [25].
This photon enhanced coupling rate of a single mode, n, is significantly higher than the
optimal total coupling rate of go,tot ≈ 2π ·160 kHz found in the simulations of Section 3.3.
It might therefore be advantageous to include a wait time in the transduction experiment,
to make use of these large coupling rates.

So far in this chapter, we developed an understanding of the physics of an idealized
multimode transducer. In the following section, we will try to find an HBAR geometry
that behaves similarly to this toy model.
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4.4. HBARs in double-well geometry
A realization of the two mode transduction example can be constructed from two indi-
vidual HBARs. As the first device we pick an ℏBAR of the type in reference [22], where
the qubit antenna electric field overlaps almost exclusively with the fundamental mode
of a spherical cap HBAR. For the second device, we pick an optomechanical system of
the type in reference [33], again with exclusive overlap of the laser to the fundamental
mode of the HBAR. We can think of the mechanical modes in the separate HBARs as
the electric and optical bright states. If the two HBARs have the same geometry, they
host indistinguishable phonons. Bringing the domes closer together enables tunneling
of the phonons between the localized states, at a rate J , which gives rise to symmetric
and antisymmetric hybridized eigenmodes, with frequency splitting δ = J . In this par-
ticular geometry, the rephasing dynamics we investigated in this chapter are equivalent
to tunneling of phonons between the localized electric and optical bright states.

In the following, we construct a physical realization of the double-well HBAR geome-
try. For this we use the potential,

U(x, y) = A(x2 − a2)2 +By2, (4.14)

which is a quartic potential in x-direction with steepness A and minima at ±a, and
a harmonic potential in y-direction with steepness B. We assume that the centers
of the qubit pad antenna and the laser are at a distance of 200 µm, and the optical
waist to be w0 = 60 µm as previously. The parameter B is set by requiring perfect
overlap between the optical forcing field and the fundamental mode of the harmonic
oscillator in the y-direction. This yields B = 8

µw4
0

= 5922 m−2, where µ is the effective
mass of the ASE (see Equation 2.3). The parameters of the potential in x-direction,
A and a, are optimized for total overlap of the laser field with the hybridized modes,
g2

o,tot = g2
o,1 +g2

o,2, with a brute force parameter sweep. This gave the values a = 106 µm,
A = 171 ×109m−4, and g2

o,tot = 0.998. As a last step, the radius of the qubit pad antenna,
rp, is optimized for total electromechanical overlap, g2

e,tot = g2
e,1 +g2

e,2. For simplicity, we
assume a simple door function as the electric forcing field. The optimal antenna radius is
rp = 48 µm yielding a total overlap of g2

e,tot = 0.810. The hybridized mechanical modes
were simulated with 2D-DASE (see Subsection 3.1.2) for this optimization. Figure 4.6
shows the piezo profile creating the potential of Equation 4.14 on the left, and a cut
through the x-axis on the right, which displays the forcing functions, mechanical mode
functions and the potential. We can see that the potential barrier between the two wells
is large enough to localize the individual parts of the hybridized modes in their respective
wells, which results in large forcing overlaps.

In principle, the latter design is very close to the toy model we investigated in this
chapter. The tradeoff for the large forcing overlaps in this design, is relatively weak
mode hybridization. The resulting frequency splitting between the hybridized mechan-
ical modes, 2δ = 2π · 104 Hz, is way too low to be useful in any experiment, because
the transduction time, tt = 0.41 · 2π/δ = 7.9 ms (see Figure 4.4), exceeds the expected
lifetime of phonons in HBARs by orders of magnitude. A way to speed up the process,
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Figure 4.6.: First design of a double-well HBAR. Left: Double well profile of AlN on
quartz (see Equation 4.14) that results from optimization of forcing over-
laps. Right: Potential, forcing functions, and displacement amplitudes of
the hybridized mechanical modes at y = 0.

is to choose a geometry with stronger mode hybridization. For the following design we
require tt < 50 µs, i.e. 2δ > 16.4 kHz, and see how we can vary the parameters of the
double-well to match this requirement. The mode detuning can be adjusted with the pa-
rameters A and a by lowering the potential barrier. We keep the forcing functions from
the last design and do a parameter sweep to maximize the overlaps to g2

e,tot = 47.46 %
and g2

o,tot = 61.43 %, under the transduction time constraint. The resulting potential
uses the parameters a = 76 µm and A = 17.3 ×109m−4. Figure 4.7 shows corresponding
piezo profile (left), and the first two mechanical modes together with the forcing fields.
We see that the reduced transduction time comes at a cost of worse EM and OM over-
laps. The double-well potential basically merged into a single elongated well, where the
former symmetric mode is now a single peak. Having less overlaps with the two modes
shown, means that overlap to higher order mechanical modes increases, and the device
is no longer an example of a two mode transducer. This is visualized in Figure 4.8 where
the EM (top) and OM (bottom) overlaps to the mechanical modes of the first (left) and
second (right) double-well HBAR are shown. The first design is indeed a good example
of a two mode transducer. In fact, the mode spacing between these two modes is so
small, that it the corresponding bars completely overlap in the plot. The second design
has significant overlap with four mechanical modes within the first 100 kHz and is no
longer a two mode transducer.
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The examples in this section showed an important tradeoff that has to be made in
HBAR transducers. In general the size of the transducer is set by the electric and optical
forcing functions, which must not overlap. For a given size, a two mode transducer
with perfect efficiency comes at the cost of reduced speed. For the same size, a faster
transducer can be built using multiple strongly hybridized modes, which might not have
perfect rephasing properties. The HBARs with rotational symmetry investigated in
Chapter 3 are an extreme example of strongly hybridized modes, where the notion of
localized modes does not really exist. They are thus much faster than the double-well
HBAR with strongly localized modes.

A possible path towards a fast transducer with perfect rephasing could be a geometry
similar to the one in Figure 4.7, but with a harmonic profile in x-direction. The harmonic
potential would lead to uniform frequency spacing of mechanical modes, and the sym-
metry plane at x = 0 could lead to similar EM and OM forcing overlap envelopes. The
combination of the two would result in high fidelity rephasing even with more than two
mechanical modes. Simulations on this geometry were unfortunately out of the scope of
this work.
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5. Measurements on cylinder HBARs

In this chapter we will present the results of electromechanical measurements performed
on HBARs with cylinder piezo shapes, flip-chip bonded to a superconducting qubit, i.e.
ℏBARs. The purpose of these measurements is to extract information about phonon
coherence and electromechanical coupling strengths.

Three devices of this kind were measured. An overview of which is presented in Ta-
ble 5.1, where we label the devices with the cooldown (CD) number of the dilution
refrigerator that they were measured in. The device CD 38 is designed in the geometry
resulting from optimization prior to this work (see Figure 3.1). Out of the three, it is
closest to the design of the final transduction device as its qubit has a ring antenna and
a frequency close to the Brillouin frequency in quartz, ΩB = 12.64 GHz (see Subsec-
tion 2.2.2). The same HBAR was bonded to a qubit with lower frequency and a pad
antenna in CD 43 in order to obtain data on its phonon coherence at this frequency.
Finally, a second HBAR was bonded to this qubit in CD 45 for more statistics. The
main difference between the two HBARs is their surface roughness and their distance
from the qubit antenna. Figure 5.1 shows pictures of the devices CD 38 and CD 43. Note
that the antenna of CD 43 is misaligned by about 20 µm from the center of the HBAR.
Unfortunately there is no picture available for CD 45.

As we will see in Section 5.3 the devices measured are not in the strong coupling
regime. Section 5.1 thus gives a brief overview of the relevant aspects of cQAD in
the weak-coupling regime. Next, the measurement procedure and apparatus will be
described in Section 5.2. In Section 5.3 to 5.6 the measurement data will be analyzed
and discussed.

device label CD 38 CD 43 CD 45
qubit label W2424-TR09 W2430-L14

qubit antenna ring pad
qubit frequency 11.4 GHz 6.1 GHz

HBAR label W2405Q3-D20 W2446Q2-D19
AlN cylinder radius 266 µm 266 µm

AlN thickness 425 nm 430 nm
HBAR-antenna-gap 2.4 µm 0.9 µm

surface roughness (RMS) 4.2 nm 11.9 nm

Table 5.1.: Overview of measured ℏBARs.
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Figure 5.1.: Photographs of the devices CD 38 (left) and CD 43 (right). The antenna of
CD 43 is misaligned by about 20 µm from the center of the HBAR.

5.1. The weak-coupling regime of cQAD
Here we give a brief introduction to the behavior of a weakly coupled cQAD-system.
The unitary dynamics of the system are governed by the electromechanical Hamiltonian
(see Equation 2.20),

ĤEM/ℏ = ωqσ̂
†σ̂ +

∑
n

(
ωnb̂

†
nb̂n + ge,n

(
b̂nσ̂

† + b̂†
nσ̂
))
, (5.1)

where the sum includes all kinds of mechanical modes, i.e. longitudinal and transversal
mode numbers as well as polarizations. We assume Markovian decoherence for both the
qubit and mechanical modes at the qubit relaxation and pure dephasing rates, γ and
γϕ, and the relaxation and pure dephasing rates, Γn and Γϕ,n, of the phonon mode n.
Additionally, we assume the environment to be at zero temperature.

If the coupling strengths exceed the decoherence, we expect vacuum Rabi oscillations
between the qubit and phonon populations. This is called strong-coupling and is required
for high effieciency transduction. As we will see in Section 5.3, no coherent oscillations
but only exponential decay of the qubit population are observed in this experiment,
indicating that the phonon modes act as an incoherent environment for the qubit. This
is the weak-coupling regime of cQAD.

A similar situation has been studied in the context of qubit decoherence due to an
environment of incoherent two-level-systems (TLS) [47, 48]. Although phonon modes
are harmonic oscillators, which have more than two levels, they behave identically to
TLS if we assume them to be in the ground state initially. This is because the Jaynes-
Cummings interaction in Equation 5.1 couples the phonon ground state only to the first
excited state, such that higher phonon Fock states cannot get populated. Solving the
master-equation for the coupled system in the limit Γn > ge,n > γ yields the phonon
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enhanced qubit decay rate [47],

γ1 (ωq) = γ +
∑
n

2g2
e,nκ2,n

κ2
2,n + (ωq − ωn)2 , (5.2)

where κ2,n = γ/2 + γϕ + Γn/2 + Γϕ,n is the total decoherence rate. We observe that
each phonon mode enhances the intrinsic qubit relaxation rate γ by a Lorentzian profile
around its resonance frequency. By measuring γ1 as a function of frequency ωq we can
thus extract information about the decoherence rates κ2,n and coupling rates ge,n. This
will be the main goal of this chapter.

5.2. Experimental methods
The measurements in this work use standard techniques from cQED. We will thus only
briefly cover some relevant aspects here. For a detailed treatment we refer to references
[1, 49]. Subsection 5.2.1 presents the basic principle of dispersive qubit readout, Subsec-
tion 5.2.2 sketches the experimental setup, and Subsection 5.2.3 introduces the relevant
calibration measurements for this experiment.

5.2.1. Dispersive qubit readout
Qubit readout is performed via dispersive coupling of the qubit at rate g to a microwave
readout resonator at frequency ωr, where |∆| = |ωq−ωr| ≫ g . In this regime the system
Hamiltonian is well approximated by the dispersive Hamiltonian,

Ĥdisp/ℏ =
(
ωr + χσ̂†σ̂

)
r̂†r̂ + ωqσ̂

†σ̂, (5.3)

where r̂ is the microwave resonator’s lowering operator, and χ = 2g2α
∆(∆+α) is the dispersive

shift. The interpretation of this Hamiltonian is, that the resonator frequency depends
on the qubit state, such that it is equal to ωr +χ if the qubit is in the excited state, and
ωr if it is in the ground state. By measuring the transmission of the resonator, we can
thus infer the qubit state. This is commonly refered to as dispersive readout. Figure 5.2
shows how the transmission and the phase of the transmitted signal theoretically behave
for the two qubit states [1].

The readout resonator is implemented as a stripline resonator on the qubit chip for
CD 38 (see Figure 3.1) and as a 3D microwave cavity for the other devices. For all
measurements presented here, we choose to readout the qubit state by measuring the
amplitude of the resonator transmission at the frequency ωr. If the qubit is in the ground
state, the amplitude will be maximal, while it will be suppressed if the qubit is in the
excited state.

52



−90

−45

0

45

90

Ph
as

e
sh

ift
(d

eg
re

es
)

ωr + χ ωr ωq
Frequency

Tr
an

sm
iss

io
n |e〉 |g〉

∆

Figure 5.2.: Resonator transmission (solid line lines) and corresponding phase shifts
(dashed lines) for the two qubit states (blue, ground; red, excited). The
resonator response strongly depends on the state of the qubit. Frequency
differences are not to scale. Adopted from [1].

5.2.2. Experimental setup
Figure 5.3 shows a schematic of the experimental setup. The ℏBAR coupled to its
readout resonator is mounted at the base plate of a dilution refrigerator (hereafter fridge)
from Bluefors, which has a temperature of Tbase ≈ 10 mK, when cooled down. This is
necessary to operate the qubit as well as the phonon modes close to their quantum ground
state, where quantum effects dominate over thermal fluctuations. Several attenuators
at different temperature stages of the fridge ensure that thermal photons cannot reach
the sample through the input line. A circulator isolates the sample from noise coming
from the output line. The experiment requires signal generation at the qubit frequency
for direct manipulation of the qubit state, and at the resonator frequency for qubit
readout. The signals are generated independently and combined in a directional coupler.
Each signal is composed of two frequency components, which are combined in an IQ-
mixer [50] by mini-circuits. When calibrated (see Subsection 5.2.3), the mixer outputs
a signal at the sum or difference frequency of the two components, depending on its
calibration. The first frequency component is produced by a signal generator from
Windfreak (Rhode & Schwarz), called the local oscillator (LO), which provides a stable
sinusoidal wave the frequency ωLO

q (ωLO
r ). This frequency is detuned from the qubit

(resonator) frequency by +50 MHz (−200 MHz). The second frequency component is
provided by Quantum Machines’ Operator-X [51] (OP-X). The OP-X creates arbitrary
waveforms in a frequency range of 0 to 500 MHz, called the intermediate frequency (IF),
for the qubit (resonator) signal at ωIF

q (ωIF
r ). It is thus responsible for shaping pulses

and sweeping the frequency.
Signal detection is only required at the resonator frequency. The signal coming

from the output line of the fridge is down-converted to ωIF
r by mixing it with the

resonator-LO in an image-rejection-mixer [50]. The OP-X then records the I- and Q-
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Figure 5.3.: Sketch of the most relevant microwave components for performing measure-
ments on the ℏBAR inside a microwave resonator.

quadratures of the down-converted signal, which can be converted to an amplitude and
a phase. For the measurements presented here, we only require the average amplitude
Vmeas =

〈√
V 2
I + V 2

Q

〉
. A small fraction (−30 dB) of the input signal is recorded in a

spectrum analyzer (SA), which is necessary for mixer calibration and useful for moni-
toring purposes.

5.2.3. Device calibration
Before performing the electromechanical measurements, it is necessary to do calibra-
tion steps. We will use measurements from CD 43 as an example in this section. The
calibration measurements for the other devices can be found in Appendix B.

Qubit readout and drives

Basic requirements for the experiment are the knowledge of the qubit and resonator
frequencies, as well as the the ability to perform qubit rotations and readout. The first
step towards this is the calibration of the IQ-mixers. Mixing the the LO-signal at ωLO

with the OP-X signal at ωIF and direct current (DC) results in the creation of a carrier at
ωLO and upper and lower sidebands at ωLO±ωIF. By calibrating the DC-amplitudes and
the ratio of amplitudes between the I- and Q-output channels of the OP-X, the mixed
signals constructively interfere at the frequency of one sideband, while destructively
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Figure 5.4.: Resonator frequency (left), Qubit frequency (center), and π-amplitude
(right) calibration measurements (blue) and fits (red) for CD 43.

interfering at the carrier frequency and the other sideband frequency. By controlling
ωIF and the amplitude of the OP-X output, one can generate flexible waveforms at
the constructively interfering sideband. Since the correct mixer calibration depends
on the frequencies, amplitudes, and bandwidths of the generated signals, it should be
redone when changing any of these parameters drastically. In this experiments, mixer
calibration is done with an automatized software, which controls the OP-X output, while
monitoring the mixed signal on the SA. More on mixer calibration can be found in [52].

To find out the resonator and qubit frequencies, we perform spectroscopy measure-
ments. For the resonator spectroscopy, we record the resonator transmission as a function
of frequency. We then fit a Lorentzian function to the resonance, which allows us to ex-
tract the resonance frequency ωr and the linewidth of the resonance. We will perform
dispersive qubit readout by applying a readout pulse at ωr in all future measurements.
The average voltage Vmeas is then related to the qubit ground state population by an
affine trasnformation. Qubit spectroscopy is done by applying a long pulse at variable
probe frequency followed by qubit readout. If the probe frequency matches the qubit’s
resonance, the qubit is driven and it eventually saturates to steady state. By averaging,
we arrive at a spectrum with a notch with Lorentzian shape at the qubit frequency ωq,
which we extract by fitting. For full control of the qubit, we now need to calibrate the
qubit drive amplitude required to perform a π-rotation. For this we apply a Gaussian
pulse with a fixed duration at the qubit resonance, followed by qubit readout. Varying
the drive amplitude and averaging results in Rabi oscillations on which we perform a
sinusoidal fit. We call the amplitude of the first minimum in the oscillations the π-
amplitude. Figure 5.4 shows the three calibration measurements for CD 43, where the
the measured data is plotted as blue diamonds and the Lorentzian and sinusoidal fits as
a red solid line.
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Figure 5.5.: Stark shift to frequency calibration for CD 43. Left: Qubit spectroscopy for

different Stark shift amplitudes. Right: Fitted qubit frequencies (blue) and
fitted calibration curve (red).

Stark shift to frequency calibration

In Section 5.1, we saw that information about electromechanical couplings and phonon
coherences can be extracted from measurements of the qubit relaxation rate at different
frequencies. This requires control of the qubit frequency, which we achieve by applying
an off-resonant drive with frequency ωd and strength ξd to the qubit. The drive induces
a frequency shift on the qubit, the so called Stark shift δStark = αξ2

d
2∆d(∆d+α) , where

∆d = ωq − ωd [39]. In this setup, the drive is applied at the frequency ωLO
r by changing

the DC-output of the OP-X from the calibrated value. This way the carrier of the
resonator signal will have a nonzero amplitude, Vss, instead of destructively interfering.
We call this the Stark shift amplitude.

In order to match a given Stark shift amplitude to a frequency shift, a calibration
measurement is performed (see Figure 5.5). In this measurement, qubit spectroscopy is
done for a set of Stark shift amplitudes (left plot). Performing a second order polynomial
fit on the resulting qubit frequencies (right plot) yields a function which converts between
Stark shift amplitude and qubit frequency.

Qubit decoherence

As we saw in Section 5.1, extracting information about phonon coherence, requires
knowledge about the bare qubit relaxation rate γ, and pure dephasing rate γϕ. These
can be extracted from standard T1-measurements and T ∗

2 -Ramsey-measurements [49],
examples of which are shown in Figure 5.6 for CD 43. To extract the T1 and T ∗

2 values
we fit an exponential decay and a sinusoidally modulated exponential decay respectively.
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Figure 5.6.: Qubit T1-measurement and T ∗
2 -Ramsey-measurement for CD 43.

device label CD 38 CD 43 CD 45
ωmeas
q /2π (GHz) 11.4180 6.10115 6.04287

bonded γϕ/2π (kHz) 239±8 67.5±1.7 8.2±0.4
unbonded γϕ/2π (kHz) none 3.7±2.2 3.7±2.2

Table 5.2.: Qubit dephasing rates (Equation 5.4) of the two qubits before and after
bonding to the HBAR, and the frequency where the measurements were
performed for the bonded case. Errors are from linear error propagation of
Equation 5.4.

Since γ will be a fit parameter of the model, we only need to determine

γϕ = 1
T ∗

2
− 1

2T1
(5.4)

from calibration measurements.
In the devices measured here, it is hard to tell what are the bare qubit decoherence

rates, as coupling to the incoherent phonon modes induces additional decoherence. The
best we can do is measure the qubit dephasing at a frequency ωmeas

q , where the influence
of phonon modes is minimized, to get an upper bound on γϕ. A lower bound can be
obtained from qubit measurements of a previous CD before the qubit was bonded to an
HBAR. Table 5.2 shows the result of these measurements. Unfortunately, there are no
available data for CD 38 before bonding.
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Figure 5.7.: Sequence of applied pulses for a single run of the qubit T1 spectroscopy
measurement.

5.3. Qubit T1-spectra
Let us now turn to the electromechanical measurements. We will go through the analysis
step by step, simultaneously for the three devices.

To obtain data about phonon coherence and coupling strengths, we record the tem-
poral evolution of the qubit population as a function of qubit frequency. Figure 5.7
shows the sequence of pulses of a single run of this measurement. The qubit starts at
its rest point frequency ωrp, and is excited with a π-pulse. After that, the qubit is Stark
shifted to a frequency ωq by applying a voltage Vss at the frequency ωLO

r . After a time
τwait of evolution due to qubit-phonon interaction and decoherence, it is measured with
dispersive readout. The results is averaged over navg = 103 runs for each pair (ωq, τwait).
The average voltage Vmeas is related to the qubit ground state population by an affine
transformation.

The spectra for CD 43 and CD 45 were recorded in five to seven chunks and concate-
nated afterwards. The data for CD 38 were obtained by Tom Schatteburg, a PhD-student
from the group.

Spectrum of CD 38

Figure 5.8 shows the recorded spectrum for CD 38 in the left plot. As will be the case for
all recorded spectra in this work, no vacuum Rabi oscillations, but only a modification
of the qubit’s decay rate due to the phonons are observed. This a sign of weak coupling
as discussed in Section 5.1. For each frequency, we fit an exponential decay of the form,

Vmeas(τwait) = A−B exp (−γ1τwait) , (5.5)

to the measured voltage, where γ1 is the fitted decay rate, and the fit parameters A and
B account for the affine relation between Vmeas and the qubit ground state population.

We plot the extracted decay rates γ1 as a function of frequency in the right plot of
Figure 5.8. The decay rates have a baseline at around 140 kHz with two peaks emerging
up to 220 kHz. We can estimate the frequency spacing between the two peaks to be
around 3.3 MHz, which is consistent with the expected FSR for longitudinally polarized
phonons, FSRl = 3.17 MHz (see Subsection 2.1.2). From this, we can conclude that
the device CD 38 shows weak coupling between the qubit and longitudinally polarized
phonon modes. We will proceed in Section 5.4 with further analysis.
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Figure 5.8.: T1-spectrum (left) and fitted decay rates (right) for CD 38.

Spectra of CD 43

Figure 5.9 shows the spectrum (top), and fitted decay rates (center) of CD 43. The
frequency range is much larger here, spanning several longitudinal FSRs, and the wait
time range was chosen larger due to longer qubit coherence times. Looking at the decay
rates, the structure is much more complicated than in CD 38. Most notably, it is different
from peaks occurring at the periodicity of the longitudinal FSR.

To make sense of this structure, we compute the fast Fourier transform (FFT) of the
decay rates (bottom plot of Figure 5.9) in order to find out, at which periodicity, features
in decay rates occur. The two largest contributions in the FFT occur at 2.3 MHz and
3.1 MHz, which match the expected FSR for transversely and longitudinally polarized
phonon modes, FSRt = 2.34 MHz and FSRl = 3.17 MHz respectively. The peaks at
lower periodicity in the FFT, are harmonics of these two main contributions. The
harmonics are expected to show up in the FFT since the peaks in the decay rates are
not sinusoidal, but have a more complicated structure. We conclude that the observed
spectrum is described by the qubit weakly coupling to transversely and longitudinally
polarized phonons.

Since the transduction experiment is designed around longitudinally polarized phonons,
we are interested in their coherence and coupling strengths. For this we record another
spectrum, with smaller frequency range, but higher resolution. The fitted decay rates to
this spectrum are plotted in Figure 5.10. Looking at this data carefully, we can match
the features to the observed periods in the FFT. It turns out that the transversely po-
larized modes consist of a triple peak structure, with a broad central feature, a more
narrow feature to its left and a tiny feature to its right. We mark these features in cyan
and observe that most of the spectrum is covered with some part of them. On the other
hand, the peaks corresponding to longitudinally polarized phonons (red patches) are
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narrower and oftentimes appear on top of transverse peaks. To analyze the longitudinal
peaks, we want to minimize the transversal background. For this we choose the two
peaks marked with arrows, as they appear in conjunction with only the tiny transversal
side peaks.

0

10

20

30

40

50

60

τ w
ai

t
(µ

s)

6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10
ωq (GHz)

10

20

30

γ
1/

2π
(k

H
z)

0 1 2 3 4 5
Fourier periods (MHz)

0.0

2.5

5.0

FF
T

-a
m

pl
itu

de

V
m

ea
s

(a
rb

.
u.

)

Figure 5.9.: T1-spectrum (top), fitted decay rates (center), and FFT of decay rates (bot-
tom) for CD 43.
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Figure 5.10.: Fitted decay rates to a second T1-spectroscopy measurement of CD 43 with
finer resolution and smaller frequency range. Features corresponding to
transversely (longitudinally) polarized phonons are marked with cyan (red)
patches. The two peaks to be analyzed are marked with arrows.

Spectra of CD 45

For CD 45 we again look at the spectrum (top), the fitted decay rates (center), and their
FFT (bottom) in Figure 5.11. The data is recorded over a comparable frequency range
as Figure 5.9, but the structure of the decay rates is notably different, as the peaks
seem to appear much more frequently and regularly. From 6.040 GHz to 6.049 GHz, and
from there to 6.058 GHz, we can see the background level increase. This is likely not a
signature of qubit-phonon coupling, but rather of the measurement electronics, as the
sudden jumps in decay rate coincide with frequencies, where individual measurements
were concatenated. Looking at the FFT of the decay rates confirms, that a single
periodicity at 1.2 MHz and its harmonics dominate the spectrum. In fact no signs of
the expected FSRs for longitudinally and transversely polarized phonons can be found
in the FFT.

To interpret this, we again look at a spectrum with smaller frequency range and higher
resolution, and plot the decay rates in Figure 5.12. We clearly see the peaks occurring
at the expected periodicity. Looking at the peak shapes, we can distinguish between two
types, which we mark in red and cyan. The red peaks are broader and have somewhat of
a double peak structure, while the red ones are narrower with a broader bottom. If we
assume the peaks to have different physical origin, i.e. corresponding to different phonon
modes, we notice that each of them appears at the periodicity of transversely polarized
phonons FSRt = 2.34 MHz. Since red peaks appear right at the center between cyan
peaks and vice versa, this periodicity does not show up in the FFT, but only the joint
periodicity of 1.2 MHz.

From this data, we can conclude that in this device the qubit couples to two kinds of
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transversely polarized modes, but not to longitudinally polarized ones.
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Figure 5.11.: T1-spectrum (top), fitted decay rates (center), and FFT of decay rates
(bottom) for CD 45.
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Figure 5.12.: Fitted decay rates to a second T1-spectroscopy measurement of CD 45 with
finer resolution and smaller frequency range. There are two types of fea-
tures, marked with cyan and red patches, which correspond to transversely
polarized phonons

5.4. Analysis of longitudinally polarized phonon modes
In the spectra of CD 38 and CD 43, we were able to find two peaks in decay rates each,
corresponding to longitudinally polarized phonons. More precisely, corresponding to a
longitudinal mode number of longitudinally polarized photons. As we saw in Subsec-
tion 2.1.2, for each longitudinal mode number, there exists a set transverse modes. For
the cylinder HBAR, these are the described by the Bessel functions of the first kind.
This means that the peaks in decay rates combine information about the coupling to a
set of transverse eigenmodes.

The goal of this section is to fit Equation 5.2 to the peaks in decay rates and to extract
values for ge,m and κ2,m, where m labels the transverse eigenmodes of the HBAR. By
making assumptions and including simulations in the analysis, we will reduce the number
of fit parameters to four for each peak. To verify if the extracted fit parameters accurately
describe the dynamics of the system, we will then simulate the system in QuTiP using
these parameters. This will also help us to estimate the contributions of phonon and
qubit decoherence to κ2,m.

5.4.1. Fitting results
To start, we simulate the transverse mechanical eigenmodes in DASE (see Subsec-
tion 3.1.2) with the geometry parameters of the HBAR (see Table 5.1) and the frequencies
11.415 GHz (6.090 GHz) for CD 38 (CD 43). This gives us the mode functions as well
as their detunings ∆m from the fundamental mode. The frequency of the fundamen-
tal mode ω0 will then serve as a fit parameter. Additionally we perform an eigenmode
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Figure 5.13.: Electric field inside the AlN cylinder for CD 38 (left) and CD 43 (right),
simulated in Ansys.

simulation of the two devices in Ansys HFSS (see Subsection 3.1.1), which allows us to
extract the qubit electric field inside the AlN cylinder. This is shown in Figure 5.13 for
the two devices. One can see the different antenna shapes and how their sizes compare
to the cylinder, which has a radius of rcut = 266 µm. The electric field increases outside
of this radius because of the material boundary. Using Equation 2.13, we then calculate
the electromechanical couplings gsim

e,m. The absolute values of these couplings usually
deviate significantly from the experiment. To account for this, we normalize them by

the total coupling gsim
e,tot =

√∑N
m

(
gsim

e,m
)2

= 2π · 403 kHz (2π · 158 kHz) with N = 12 (7)
for CD 38 (CD 43). The number of modes N was chosen such that the mode frequencies
match the frequency range where we will perform the fit. This leaves us to use a scaling
factor ge,tot as a fit parameter. In order to further decrease the number of fit parameters,
we have to make an assumption about the decoherence rates of the phonons. We do
not have a good way of simulating the scaling of the decoherence with mode number,
which is why we choose the simplest possible model, assuming equal decoherence, Γ2,
for all modes. The parameters κ2,m in Equation 5.2 thus become independent of the
mode number, κ2,m = γ/2 + γϕ + Γ2.

Having reduced the number of fit parameters using simulations and assumptions, we
fit the following function to the data,

γ1 (ωq) = γ + g2
e,tot

N−1∑
m=0

2(gsim
e,m/g

sim
e,tot)2 (γ/2 + κ)

(γ/2 + κ)2 + (ωq − (ω0 + ∆m))2 . (5.6)

The fit parameters are the intrinsic qubit relaxation rate, γ, the frequency of the fun-
damental mode, ω0, the total coupling rate, ge,tot, and a decoherence rate κ = γϕ + Γ2.
Figure 5.14 shows the experimental data (blue) together with the fit (red) and the fre-
quency interval (black), where the fit was performed. Additionally the fitted couplings
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Figure 5.14.: Experimental data (blue), fitting function (red), fitting interval (black),
fitted couplings (gray) of the two peaks of CD 43.

ge,m = ge,tot(gsim
e,m/g

sim
e,tot) are plotted as gray bars. The fit is able to match the experimen-

tal data well, with the caveat that the data set is rather sparse and has large errorbars.
The fit itself is reminiscent of a single Lorentzian, which is because the most strongly
coupled modes are much closer in frequency than the overall width of the peak.

In Figure 5.15 the results for CD 43 are plotted. The data set is much richer in this
case, and we can clearly see deviations from the fit to the data at similar positions in
both peaks. The most prominent deviation is at the zenith of the peak, where the data
increases to values of γ1, which are approximately 2 kHz larger than in the fit. A potential
reason for this deviation is the transversal background. Comparing with Figure 5.10,
this background indeed has an extent of about 2 kHz. A second deviation is observed
at the fifth mechanical mode, where the fit goes to higher values than the data. This
deviation and parts of the first deviation, could be caused by the simplifying assumption
of equal decoherence rates for all phononic modes. A higher decoherence rate of the fifth
mode would decrease the amplitude and increase the width of the Lorentzian caused
by this mode, and could thus be more consistent with the data. At last, mechanical
modes without rotational symmetry could play a role in CD 43. The qubit electric field
is notably asymmetric due to the antenna lead, as well as a slight misalignment of the
antenna to the HBAR center, which is not captured by our model. This could also be a
reason for the deviations.

All values extracted from the fits are presented in Table 5.3. We can now check if the
condition Γm > ge,tot > γ, for Equation 5.2 to be valid, is satisfied so that our analysis is
self-consistent. Assuming sufficiently large contribution of phonon relaxation to κ, the
condition is satisfied for both peaks in CD 43. For the peaks in CD 38 the condition is
violated, as γ > ge,tot, so that the fitting result violates the assumptions.
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Figure 5.15.: Experimental data (blue), fitting function (red), fitting interval (black),
fitted couplings (gray) of the two peaks of CD 43.

peak label CD 38-1 CD 38-2 CD 43-1 CD 43-2
γ/2π (kHz) 135±4 134.4±2.2 10.02±0.23 11.34±0.22

ω0/2π (GHz) 11.41400 11.41730 6.085147 6.094046
ge,tot/2π (kHz) 102±9 104±7 28.6±0.8 28.0±0.8

κ/2π (kHz) 220±60 200±50 64±6 80±7

Table 5.3.: Parameters from fitting Equation 5.6 to the data in Figure 5.8 and Fig-
ure 5.10. Errors for ω0 are smaller than the given digits.
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5.4.2. Further analysis using QuTiP simulations
We will now further investigate the validity of our fitting results with QuTiP master
equation simulations of the Hamiltonian in Equation 5.1 using the extracted fit param-
eters. The simulations, as well as the independently measured qubit dephasing rates
(Table 5.2), will help us to set bounds on the contributions of γϕ and Γ2 to the fit pa-
rameter κ. For simplicity we will assume zero phonon dephasing, as it is usually weak
in HBARs [44]. This means that the phonon relaxation rate is 2Γ2.

A lower bound γϕ,lower on qubit dephasing is set by the measurements of the unbonded
qubit. For CD 38, we have to use γϕ,lower = 0 as there is no available data. For the upper
bound, γϕ,upper, we use the minimum between κ and the measurements of the bonded
sample for now. We refine the value by checking for consistency between experimental
and simulation data.
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Figure 5.16.: Simulated time dynamics of the qubit population for the peaks CD 38-1
(left column) and CD 38-2 (right column). The top (bottom) row assumes
minimal (maximal) qubit dephasing.
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(cyan) and γϕ = γϕ,upper = κ (blue). The simulated data do not reproduce
the function (red), that was fit to the experimental data (gray), rendering
Equation 5.2 invalid for this parameter regime.

Simulations of CD 38

Using seven mechanical modes, we simulate the time dynamics of the the peaks from
CD 38 for both bounds on γϕ. Figure 5.16 shows the simulated qubit excited state
population pe as a function of interaction time τ and detuning ∆ from ω0. The top row
shows the case of zero qubit dephasing, where the time dynamics are exponential. In the
bottom row maximal qubit dephasing is assumed. On resonance the the time dynamics
are not quite exponential, as the color seems to not change much beyond τ = 2 µs. We
still fit an exponential decay,

pe(τ) = exp(−Γτ), (5.7)

to the simulation data and plot the results in Figure 5.17 (blue and cyan diamonds)
together with the fitting result from Figure 5.14 (red) and the experimental data (gray).
As expected, neither of the simulation results are consistent with the fit, as the system
is in a regime, where the fit function is not valid. The simulation results in lower decay
rates than the experimental data, but only close to resonance.

At this point, it becomes hard to analyze the data, as all relevant time scales are
presumably on the same order of magnitude. One option would be a brute force sweep
of the simulation parameters ge,tot, Γ2, and γϕ, to see if we can find a set of parameters,
which is consistent with the experimental data. This was unfortunately out of the scope
of this thesis, which is why we have to leave the measurement unconcluded.
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Figure 5.18.: Simulated time dynamics of the qubit population for the peaks CD 43-1
(left column) and CD 43-2 (right column). The top (bottom) row assumes
minimal (maximal) qubit dephasing.

Simulations of CD 43

For CD 43, we simulate the time dynamics of the system with six mechanical modes.
Figure 5.18 shows the simulated qubit population for both bounds of γϕ for both peaks.
The time dynamics are exponential for all panels but the bottom left, which shows the
simulation for peak CD 43-1 for Γ2 = 0 and γϕ = κ. There we see the qubit population
slightly increase again after τ = 30 µs on resonance. This behavior is not consistent with
the experimental data, where only exponential decay is observed.

To find a threshold of γϕ, where the simulation data is consistent with exponential
decay, we simulate the time dynamics of peak CD 43-1 at ω0, sweeping γϕ/κ. We fit
Equation 5.7 to each time trace and plot the summed residuals of the fit in Figure 5.19.
We can see a clear onset of increasing residuals, after which the simulation is less well
described by an exponential decay. We choose γϕ,upper/κ = 0.91 as the threshold value,
which is still consistent with exponential decay. At this threshold, we simulate again the
dynamics of CD 43-1, and fit the decay rates for each detuning.
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Figure 5.19.: Summed residuals of exponential fits to qubit population at ∆ = 0 for
CD 43-1. As the contribution of γϕ to κ increases, we observe an onset at
the threshold value.
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Figure 5.20.: Simulated decay rates of peaks CD 43-1 and CD 43-2 for γϕ = γϕ,lower
(cyan) and γϕ = γϕ,upper (blue). The simulated data match the function
(red), that was fit to the experimental data (gray) quite well, rendering the
model self-consistent.
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Figure 5.20 shows the fitted decay rates for both peaks and both bounds of γϕ (blue
and cyan), as well as the fitting result (red) from Figure 5.15 and the experimental data
(gray). The simulated data agree reasonably well with the fitting function, which means
that both boundaries lead to the dynamics observed in the experiment. Note that for the
case of qubit dephasing assuming γϕ,upper, Γ2 falls short of ge,tot, meaning Equation 5.2
is not in a valid regime. This does not take away from the fact, that these parameters
are still able to approximately reproduce the fitting result in the simulations.

The resulting intervals of γϕ and Γ2 which are consistent with the measurements
of CD 43 are presented in Table 5.4. Since we assumed no phonon dephasing in the
simulations, we calculate the phonon relaxation rate as T1 = (2Γ2)−1.

peak label CD 38-1 CD 38-2
γϕ/2π (kHz) (3.7 ± 2.2, 58 ± 6) (3.7 ± 2.2, 67.5 ± 1.7)
Γ2/2π (kHz) (5.7 ± 0.6, 60 ± 7) (13 ± 7, 76 ± 7)

T1 (µs) (1.32 ± 0.16, 14.0 ± 1.5) (1.05 ± 0.10, 6.1+7.2
−2.2)

Table 5.4.: Intervals of qubit dephasing rates and phonon coherences, which are consis-
tent with the measurements of CD 43. Errors with a ±-sign are calculated
with linear error propagation. Errors of the upper bound on T1 for CD 38-2
are assuming the plus and minus values of the Error on Γ2 respectively.
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Figure 5.21.: Ansys simulation of Ez inside the AlN cylinder for the two gap sizes between
qubit chip and HBAR, averaged over the angle coordinate.

5.4.3. Absence of longitudinally polarized phonons in CD 45
After having the longitudinally polarized phonon modes in devices CD 38 and CD 43,
it is left to ask why we did not observe any longitudinally polarized modes in CD 45.
We can be sure that the sample did not unbond, since we obseved transversely polar-
ized phonons. Thus, the only possible reason for not observing longitudinally polarized
phonons are high decoherence rates or low electromechanical couplings to these modes.
This would cause the signatures of phonon enhanced qubit decay to be very broad and
low in amplitude, such that they effectively form a uniform background. We can iden-
tify potential reasons for this behavior by looking at the differences between the two
HBARs (see Table 5.1). The two HBARs follow the same design, nevertheless there
were differences regarding the material quality and fabrication process.

The first difference to notice is the gap size between qubit chip and the AlN cylinder.
To see the effect on the qubit electric field, we simulate the two geometries in Ansys and
plot the electric field inside the AlN cylinder in Figure 5.21. There is indeed a slight
difference in the magnitude of the electric field. But this difference cannot account for
an orders of magnitude change in electromechanical coupling strength, which would be
necessary to explain the absence of longitudinally polarized modes.

The second difference lies in the surface roughness of the samples. The higher rough-
ness of CD 45 could lead to increased surface loss of the phonons. This seems to be
the most likely reason for not observing coupling to longitudinally polarized phonons.
We can estimate roughly what this would mean for the T1 of a longitudinally polarized
phonon. Let us assume, the enhancement of qubit decay rate due to longitudinally po-
larized phonons is less the ∆γ1 = 2π · 1 kHz, because otherwise we would have been able
to detect it. For a single mechanical mode, the enhancement of qubit decay rate is given
by (see. Equation 5.2),

∆γ1 = 4g2
eT1, (5.8)

on resonance, assuming that the phonon decoherence rate dominates the total decoher-
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ence of the coupled system. In CD 43, the fundamental mode couples to the phonons
with about ge,0 = 2π · 14 kHz (see Figure 5.15), which we also assume for this estimate.
This lets us conclude that,

T1 <
∆γ1
4g2

e
≈ 0.18 µs, (5.9)

for the case that high phonon loss due to surface roughness is the correct explanation
for not observing longitudinally polarized phonons in CD 45.

Which ever physical mechanism is responsible for not being able to observe longitu-
dinally polarized phonons, it is apparent that this mechanism does not suppress the
transversely polarized modes in the same way, as we can clearly see enhanced qubit
decay due to these modes.

5.5. Analysis of transversely polarized phonon modes
Transversely polarized modes, were observed in the spectra of CD 43 and CD 45, but not
in CD 38. Since these modes are not relevant for the transduction experiment, we will
only do a qualitative analysis here.

The first question that comes to mind is how the mode shapes and polarizations look
like. One can think of several possibility here. In general the mode shapes have to
depend on the polarization. A mode with linear transversal polarization will experience
similar boundary conditions as the longitudinally polarized one. One could also think
of modes with polarizations in radial (breathing mode) or angular (twisting mode) di-
rection. These modes must have zero amplitude at the center of the HBAR because
of their symmetry. The dominant strain components of transversely polarized modes
are the Sxz and Syz components. Using the same arguments as in Subsection 2.2.1, we
can deduce that the Ex/Ey components of the qubit electric field dominantly couple to
linearly polarized modes with x/y polarization, and the Er/Eϕ components dominantly
couple to breathing/twisting modes, where r, ϕ are the polar coordinates of the cylinder.

In CD 43/CD 45, we observed that transversely polarized modes come in families with
frequency splitting between the members. Recall the triple peak structure in CD 43 and
the alternation of peaks with cyan and red coloring in CD 45. A similar observation was
made in reference [53], where acoustic radiation of a superconducting qubit into sapphire
HBARs was investigated. The authors observe coupling to two kinds of transversely
polarized phonons with a small frequency splitting, ∆ω, and they attribute this splitting
to a slight angle, ∆θ, between the crystal’s c-axis and the geometrical z-axis of the
device. Looking back at Figure 2.1, this explanation also holds for quartz. The two
branches of transversely polarized phonons only overlap precisely at the the qz-axis of
the velocity surface. For ∆θ ̸= 0, there are two transversal phase velocities, giving rise
to two distinct FSRs and thus to a frequency splitting. Following the authors formula,

∆ω
ω

= ∆θ2|C14|
C44

, (5.10)
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where C is the stiffness tensor, the splittings are consistent with

∆θ43 =0.012◦, (5.11)
∆θ45 =0.018◦. (5.12)

where we assumed a splitting of ∆ω43 = 2π ·0.8 MHz between the central and left feature
of transversal phonons for CD 43, and ∆ω45 = 2π ·1.2 MHz for CD 45. Unfortunately, we
do not have specifications from the manufacturers of the quartz wafers on their accuracy
when it comes to that angle. It still seems reasonable to attribute the observed splitting
to such an angle mismatch. The existence of the triple peak structure in CD 43, remains
unexplained.

At last, we can ask ourselves, why there was no sign of transversely polarized phonons
in CD 38. Although the data set was quite sparse, the measured frequency range should
have been enough to observe these modes. There are two differences between CD 38 and
the other devices, the operation frequency and the antenna geometry. The frequency
could play a role if the loss mechanism for transversely polarized phonons scales strongly
with frequency such that these modes are so lossy at high frequency, that they are not
observed. A second effect of the frequency difference is related to the AlN thickness,
which was optimized for longitudinally polarized phonons at the Brillouin frequency,
ΩB = 12.64 GHz in all devices. The AlN thickness is thus too large for optimal coupling
to the shorter wavelength transversely polarized modes at high frequency in CD 38, but
too small for optimal coupling to the lower frequency transversely polarized modes in
CD 43 and CD 45. This means that coupling to longitudinally polarized phonons is
favored in the higher frequency device, while coupling to transversely polarized modes is
not. The perhaps stronger effect comes from the ring geometry of the qubit antenna. The
transversal electric field components, which drive transversely polarized phonons, are
always pointing outwards of the ring. This means that above the ring, the electric field
changes sign rather quickly through space, posing strict requirements on the symmetry
of phonon modes it can couple to.

Overall, the transversely polarized phonons are undesired for the transduction experi-
ment, as they introduce additional loss into the system. Not observing them in CD 38 is
a promising sign, that they will not be the limitation of future transduction experiments.

5.6. Discussion of the results
Let us now discuss the implications of these results for moving closer towards the goal
of microwave to optical transduction of single photons. It is apparent that the over-
all volume of results is very underwhelming. Only one of the three measured devices,
CD 43, could provide meaningful values for electromechanical coupling rates and phonon
lifetimes, of which the latter could fall within the range of one order of magnitude. More-
over, the device CD 43 that was able to provide these values has significant differences
in design to the final transduction device regarding antenna geometry and operation
frequency. It is fair to say that the measurements of especially CD 38 and to an extend
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CD 43 were limited by qubit decoherence. A lower qubit dephasing rate in CD 43 would
have set stricter bounds on phonon lifetimes or even enabled vacuum Rabi oscillation,
depending on the true phonon lifetime. In CD 38, the high qubit decay rate prohibited
the usage of an analytical treatment entirely. It is thus crucial for future experiments to
reliably produce high coherence qubits, especially for high frequencies. CD 45 was likely
not limited by qubit decoherence, but by phonon decoherence due to increased surface
roughness, as we were able to detect longitudinally polarized phonons in CD 43 with the
same qubit.

An alternative way to collect data on quality factors of HBARs, is to bond them
to a microwave antenna and measure their frequency response with a vector network
analyzer. The phononic resonances appear as notches in the reflected signal, whose
lineshapes determine the internal and external quality factors of the HBAR [54]. This
kind of measurement has the advantage of being able to collect information over a broad
frequency range, without having to rely on qubit coherence times. The group attempted
such a measurement of a cylinder HBAR without success, due to low signal to noise
ratio as well as problems in the measurement electronics that were only later resolved.

In spite of the low yield of the measurements, we can still draw conclusions. Unfor-
tunately, we were not able to extract reliable values for the electromechanical couplings
in CD 38. This would be desirable, in order to do simulations on further optimization of
the device. We can make a very rough estimate by comparing the simulated couplings
gsim

e,tot for the two devices CD 38 and CD 43 (see Subsection 5.4.1) and assume their ratio
r ≈ 2.5 to be somewhat reasonable. Using then the measured values from CD 43, we can
estimate ge,tot ≈ 2π · 75 kHz for the ring antenna geometry. This is the value we used
for geometry optimizations in Section 3.3. As we saw in Figure 3.7, the corresponding
electromechanical swap time is tsw ≈ 4 µs, which sets requirements on qubit coherence
times for the transduction experiment.

For the electromechanical, but especially for the optomechanical interaction, sufficient
phonon lifetimes are required. In the optimized cylinder HBAR design, the optomechan-
ical interaction takes more than 15 µs (see Figure 3.7). The measured interval of phonon
lifetimes, 1 µs < T1 < 14 µs, in CD 43 is thus not sufficient, already at this low frequency
of 6 GHz. Going to higher frequencies (ΩB), phonon lifetimes are not expected to in-
crease but rather to fall off [55]. Looking additionally at CD 45, where phonon lifetimes
were too low to even be measured, it becomes clear that the current cylinder HBARs
are not good enough for the transduction protocol they were designed for. Besides qubit
fabrication, we thus identified the lacking phonon life times in cylinder HBARs as the
factor limiting progress. Because of the groups experience in fabrication of high quality
dome HBARs [23, 44] and an improved recipe for fabricating domes with large radius
of curvature, we made a decision, to move to dome HBARs for the next iteration of de-
vices. This will hopefully allow us to observe vacuum Rabi oscillations at the Brillouin
frequency.
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6. Conclusion and Outlook

The first part of this thesis investigated the implications of operating a quantum trans-
ducer with multiple intermediary oscillators. We saw that the transduction process with
multiple mechanical modes is dictated by the time evolution of the mechanics. This is in
contrast to a single mode transducer, which uses one mechanical eigenmode. Optimizing
the transduction efficiency is thus a matter of engineering the mechanical mode spec-
trum, which we did for rotationally symmetric HBARs with various simulation methods
in Chapter 3. We concluded that achieving perfect mechanical rephasing is not possible
for this symmetry. In Chapter 4, we approached the system from another angle, inves-
tigating the properties of an idealized transducer with just two mechanical modes. The
double-well HBAR could approximately resemble this two mode structure, but came at
the cost of unreasonably long transduction times. From these two chapters we concluded
that perfect rephasing has to be realized with more than two mechanical modes. An
elongated harmonic dome could potentially be a good candidate for this. A more gen-
eral approach for achieving perfect transduction efficiency is to find a way to model the
multimode transducer as a chain of bosonic quantum channels as mentioned in the intro-
duction. For these systems, a generalized matching condition of system parameters has
been derived, which allows for unity transduction efficiency at a certain frequency [11].
Looking even a step further, a multimode transducer is in principle able to outperform
a single mode transducer, because it is able to reach a higher quantum capacity for a
given coupling rate [13].

In practice, progress in the transduction experiment is currently not limited by the
rephasing of mechanical states. As we saw in Chapter 5, we are currently unable to
reach the strong coupling regime of cQAD with HBARs with cylinder piezo shapes,
which is a basic requirement for the transduction experiment. From the measurement of
three ℏBAR devices, we concluded that both qubit and HBAR coherence times need to
improve to reach the strong coupling regime at the Brillouin frequency. For this reason,
we decided to transition to spherical cap domes, where the team is able to consistently
achieve high mechanical quality factors. As we saw in Section 3.3, this piezo shape is only
slightly disadvantageous compared to the cylinder in terms of transduction efficiency.
Together with recent progress in qubit fabrication, reaching electromechanical strong
coupling at the Brillouin frequency in transduction ℏBARs is within sight.
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A. Estimate on experimentally achievable
optomechanical coupling

The experimentally achievable optomechanical coupling is limited by the laser power
used to pump the lower frequency optical mode. The coupling to a single mechanical
mode n is given by

g2
o,n =

4Pg2
0,nκext

ℏωκ2 , (A.1)

where P is the laser power, ω the laser frequency, g0,n the single photon coupling, κext
the output coupling of the optical cavity, and κ the linewidth of the optical cavity. We
assume the largest value of g0,n = 2π ·7.5 Hz observed in [25], and a ratio of κext/κ = 0.9
with κ = 2π · 1 MHz. From input-output theory we get the reflection coefficient of
the pump light at the optical cavity Rp =

(
1 − 2κext

κ

)
= 0.64. Our filter cavity setup

attenuates the pump light by 120 dB and signal photons by 3 dB. The average number
of pump photons incident on the SPDs per transduction sequence is then

Np = 10−12PRptOM
ℏω

, (A.2)

where tOM = 25 µs is the pulse length of the pump laser. The average number of signal
photons is

Ns = 10−0.3κext
κ
ηt = ηtot = 0.27, (A.3)

where ηt = 0.6 is the transduction efficiency simulated in Section 3.3. Requiring a signal
to pump ration of SPR = Ns/Np = 10, we calculate the allowed pump power to be

P = 1012 ℏωηtot
RptOM

1
SPR

= 217 µW, (A.4)

while the pulse is on. Plugging this into Equation A.1, we get go,n = 2π · 233 kHz.
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B. Calibration measurements

Here we show for completeness the calibration measurements for CD 38 (see Figure B.1)
and CD 45 (see Figure B.2). The measurements are standard for the most part. In CD 38,
the notch of qubit spectroscopy is comparatively small because of poor qubit coherence
times. In CD 45 The cavity spectroscopy does not extend to the same amplitude as the
other measurements. This is because a different readout amplitude was chosen for the
other measurements. In the T ∗

2 -Ramsey-measurement, we can observe a beatnote. It
is unclear, what causes this. Multiple T ∗

2 -Ramsey-measurements (not shown here) were
performed at different qubit frequencies, which the beating frequency was not affected
by. To account for the beating, we include an additional cosine in the fitting function.
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Figure B.1.: Calibration measurements of CD 38. From top left to bottom right: Cav-
ity spectroscopy, qubit spectroscopy, Rabi measurement, Stark shift to fre-
quency calibration, T1-measurement, T ∗

2 -Ramsey-measurement.
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Figure B.2.: Calibration measurements of CD 45. From top left to bottom right: Cav-
ity spectroscopy, qubit spectroscopy, Rabi measurement, Stark shift to fre-
quency calibration, T1-measurement, T ∗

2 -Ramsey-measurement.
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