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Abstract

In this work, we report on progress towards realizing microwave-to-optical transduction
between a superconducting qubit and an optical mode of a fiber, by using a phonon mode
of a high-overtone bulk acoustic wave resonator (HBAR) as an intermediary between the
qubit and the optics.
We adapt the experimental setup from [1] for pulsed laser operation and work towards
optimizing a Pound-Drever-Hall laser locking scheme for locking a laser in pulsed operation
with 15 µs pulses at a repetition rate of around 1 kHz to an optical mode of a Fabry-Pérot
cavity placed in a dilution refrigerator. While locking in pulsed operation, we observe
average reflected powers on the order of 20 % of the reflected power observed when the
laser is completely off resonance. The feedback parameters can be studied and optimized
more in the future, but the implementation of lock performance characterization of every
individual pulse already allows for post-selection of acceptable lock performance.
As an application of this locking procedure, we perform an optomechanical storage and
retrieval experiment. We excite a mechanical mode of an HBAR placed in a Fabry-Pérot
cavity by means of Brillouin scattering and retrieve this excitation by the inverse process.
This retrieval process is identical to the optomechanical readout required for microwave-
to-optical transduction using an HBAR. We probe the response of two separate mechanical
modes by varying the time between storage and retrieval as well as the frequency at which
we drive the mechanical modes. We measure a retrieved phonon energy corresponding to
30 % of the value predicted by a coupled classical oscillator model. We further find that
the T1 lifetime depends on the frequency at which the mode was driven. Most notably, we
find a maximum T1 time of 4.9 ± 0.1 µs at a drive frequency detuning of 60 kHz, which
is ∼ 70 % larger than the lifetime expected from the intrinsic linewidth of the mechanical
mode. We hypothesize that this is due to diffraction losses in the HBAR.
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Chapter 1

Introduction

Since the onset of what is now often referred to as the "second quantum revolution" during
the second half of the 20th century, there has been great interest in developing devices that
exploit quantum mechanical entanglement for information processing applications [2, 3].
The ability to transfer quantum states from one such device to another over macroscopic
distances is an essential ingredient of many relevant quantum information processing pro-
tocols, such as quantum key distribution [4] or loophole-free Bell inequality tests [5]. A
natural choice is to use infrared photons as information carriers for this, since they are
robust to thermal decoherence even at room temperature due to their high frequencies and
can be sent over long distances through optical fibers with moderate losses. Another reason
for using infrared photons is the fact that a lot of classical communication is already built
around infrared light at 1550 nm wavelength, meaning that there are many commercially
available components tailored to these wavelengths, that can also be used for quantum
applications. In this work, we are specifically concerned with transferring quantum states
between superconducting circuits using infrared photons.
Superconducting circuits engineered to behave as anharmonic microwave frequency oscil-
lators are one of many promising platforms for future quantum information processing
applications [6]. Once cooled to sub-Kelvin temperatures in a dilution refrigerator, these
circuits are operated as quantum two-level systems that can be used as qubits, usually
referred to as superconducting qubits.
To achieve the desired long-distance communication between such superconducting devices,
we need to be able to transfer the quantum state of the qubit to infrared photons and vice
versa. This process is known as microwave-to-optical transduction [7].
One of the main challenges in microwave-to-optical transduction is bridging the large fre-
quency gap between the microwave and optical domains. While there are many other
approaches to this problem [8], the one pursued by this group is to use a phonon mode of
a high-overtone bulk acoustic wave resonator (HBAR) as an intermediary system. In this
case, the qubit state is first converted into a phonon state of the HBAR by piezoelectric
coupling [9] and then this phonon state is read out as an infrared photon by means of
Brillouin scattering [10].

In this work we focus on aspects of the optomechanical readout, i.e. the conversion of
high frequency phonons in an HBAR to infrared photons. The report is divided into to
two major parts.
In the first part, consisting of chapter 2, we report on work done towards frequency locking
a laser in pulsed operation to an optical resonance of a Fabry-Pérot cavity located in the
noisy environment of a dilution refrigerator. We do this by means of a Pound-Drever-Hall
lock.
The second part consists of chapter 3, where we perform an optomechanical storage and
readout experiment: First, we expose our HBAR to laser light, containing a sideband
detuned from the carrier frequency by the phonon frequency. This creates a mechani-
cal excitation in the HBAR via Brillouin scattering. We then readout this excitation by
the inverse process: Laser light inelastically scatters with the existing phonons, creating
a higher freuency optical sideband, that we subsequently measure. The optomechanical
readout performed in this experiment is in principle identical to the readout that needs
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1 Introduction

to be performed in a microwave-to-optical-transduction experiment using this system, al-
though we only readout coherent states and do so in the low optomechanical cooperativity
regime.
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Chapter 2

Pulsed laser locking in a dilution
refrigerator

2.1 Introduction

The goal of the first part of this project was to frequency lock a laser in pulsed operation
to a resonance of an optical Fabry-Pérot cavity located in a dilution refrigerator. For this
we adapted the fiber optical setup from [1] to allow for pulsing of the main laser and made
some adaptions to the locking scheme for pulsed laser operation.
This pulsed laser locking setup will then be used in a future microwave-to-optical trans-
duction experiment,which we introduced in chapter 1 and is being pursued by the hybrid
quantum systems research group [11]. In order to achieve the high electric field strengths
required for efficient readout of the intermediary phonon state, the high-overtone bulk
acoustic wave resonator (HBAR) is placed in an optical Fabry-Pérot cavity (see [10, 12]
and chapter 3). This optomechanical readout requires locking a laser to the aforementioned
Fabry-Pérot cavity.
Shining an infrared laser near a superconducting qubit destroys the superconducting state,
as the infrared photons carry enough energy to break up the Cooper pairs of the super-
conductor. This means that the laser needed for the optomechanical readout cannot be
on while the qubit is active and further the qubit needs some time to recover the super-
conducting state after each run of the experiment. Effectively this means that the readout
laser needs to be pulsed. Continuously leaving the laser on would also lead to excess heat-
ing in the refrigerator.
The exact needed parameters for the microwave-to-optical transduction experiment are
still to be determined. Our current estimates are that the laser pulses need to be 15 µs
long for the desired readout efficiency and the recovery time of the superconductor limits
the repetition rate of the experiment to around 1 kHz for our experiment.
Pulsing of the laser was achieved by introducing an acousto-optic modulator (AOM) into
the setup, which is driven by an arbitrary waveform generator (AWG) that sends radio
frequency (RF) pulses to the AOM. When the AOM receives an RF signal, it transmits
the input optical signal, otherwise it blocks the incoming light. Thus, the AOM acts as an
optical shutter controlled by the AWG. The technical specifications of both the used AWG
and AOM easily allow us to achieve the desired optical pulse lengths and repetition rates.
The laser needs to be resonant with a mode of the Fabry-Pérot cavity located in a Bluefors
dilution refrigerator (which we simply call the fridge). In order to keep the laser resonant
with the cavity mode, we utilize a Pound-Drever-Hall locking scheme (PDH lock). The
PDH lock, which is described in the next section, produces an error signal (the PDH error
signal) quantifying how far off resonance the laser is at a given point in time. The PDH
error signal can then be sent to a PID controller, which produces an appropriate control
signal, that is sent to the laser controller, which controls the laser frequency and thus holds
it on resonance.
While the PDH lock is a very standard technique, there are some challenges due to our
setup and the pulsing of our laser. Mechanical vibrations in the fridge constantly change
the distance between the mirrors of our cavity, causing its resonance frequencies to fluctuate
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2 Pulsed laser locking in a dilution refrigerator

accordingly. The goal of the PDH lock is to react to these shifts in the optical resonances in
real time in order to keep the laser resonant with the cavity throughout these fluctuations.
The mechanical vibrations caused by the fridge far exceed the vibrations experienced by a
cavity mounted on a conventional optical table. Indeed, with the current vibration isola-
tion appreciable laser locking is only possible if the pulse tube cooler of the fridge is turned
off.
A further challenge is posed by the pulsed operation of the laser. Between pulses, when the
laser is off, the PDH error signal contains no information on how the resonance of interest
is shifting. Further, due to noise in the photodiodes and other electronics involved in the
PDH lock, the error signal is non zero and fluctuating between pulses. Hence there should
be no feedback applied in between pulses. To achieve this we have to be able to turn the
active feedback on and off on a microsecond timescale, which is achieved by sending a
’marker’ signal from the AWG to the PID controllers, indicating when the feedback should
be active or not. Additionally, our controller needs to have a high enough bandwidth once
it is on, to make appreciable corrections to the laser frequency within a couple of microsec-
onds.

In section 2.2 we give a brief introduction to Pound-Drever-Hall laser locking. In sec-
tion 2.3 we describe our experimental setup and discuss how to quantify the performance
of the locking scheme. Our initial tests using two PID controllers directly integrated in our
laser controller are presented in section 2.4. After these tests we decided to replace one
of the PID controllers with a faster PID controller on a Red Pitaya. The implementation
of the faster controller as well as subsequent pulsed laser locking results are shown and
discussed in section 2.5.

2.2 Pound-Drever-Hall lock

The Pound-Drever-Hall lock (PDH lock) is a technique for laser frequency stabilization
and holding a laser on resonance with an optical cavity mode. This process is commonly
referred to as laser locking. In this section we cover the basic operating principles of a
PDH lock. A more comprehensive review of the technique can be found in reference [13].
When light enters a Fabry-Pérot cavity with a frequency that is close to one of the cavity’s
resonances, the amount of reflected optical power is a measure for how close the laser
frequency is to the one of the resonances of the cavity. In the case of a critically coupled
cavity, where the input coupling rate is equal to the internal loss rate (see [14]), if the laser
is perfectly resonant with the cavity, no reflected power is detected. If the laser frequency
is far from a resonance of the cavity, all of the optical power is reflected. The optical power
reflected by a Fabry-Pérot cavity, when the optical frequency is swept over a resonance of
the cavity, can be seen in figure 2.1a.
One could imagine a simple scheme, where the reflected power is entered into a control loop,
which tries to minimize the reflected power by adjusting the optical frequency. However,
this scheme has one very large draw back: The reflected power is symmetric about the
resonance, meaning if some non zero reflected power is measured, one cannot infer if one
is above or below the resonance. Hence the control loop cannot reliably adjust the optical
frequency in the correct direction.
The PDH lock circumvents this issue. While the reflected power is symmetric about the
resonance, its derivative is not. The derivative of reflected power with respect to optical
frequency is positive when the frequency is above the resonance and negative when below
the resonance.
Measuring the derivative of the reflected power can be achieved by constantly varying
the frequency of the input laser beam a little bit in a controlled, sinusoidal fashion and
monitoring if the reflected power oscillates in or out of phase with the laser frequency. We
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2.2 Pound-Drever-Hall lock

do this by running the optical input beam through a phase modulator, driven by an RF
signal at frequency Ω, where Ω ≪ ω with ω the frequency of the input beam. To first
order, this phase modulation creates sidebands at frequencies ω±Ω. Figure 2.2 shows our
experimental setup including all of the components needed for a PDH lock.
The PDH lock can be operated in two different regimes. In the first regime, the LO
frequency Ω is much smaller than the linewidth κ of the resonance, in the second regime
the opposite holds. We operate in the second regime where Ω ≫ κ. In this regime, one
can consider the sidebands created by the phase modulation to be off resonance and hence
they are completely reflected by the cavity.
The reflected signal then consists of the completely reflected sidebands oscillating at ω±Ω,
as well as the the reflected part of the carrier signal, oscillating at frequency ω. The reflected
power, which we measure with a photodiode, then contains a beat note at frequency Ω
from the sidebands interfering with the reflected carrier, a beat note at frequency 2Ω
from the two sidebands interfering with each other as well as constant and high frequency
terms. Going through the theory (see [13]), one finds that for laser frequencies ω close to
the resonance, the amplitude of the term oscillating at frequency Ω is proportional to the
frequency detuning of the carrier from the cavity resonance for small detunings. Therefore
if we take the output of a photodiode that captures the reflected light, mix it with an
electrical signal at frequency Ω (effectively multiplying the photodiode output with sinΩ)
and then apply a low-pass filter to this signal, we are only left with the signal proportional
to the frequency detuning of the carrier to the resonance of the cavity.
In practice, one mixes the photodiode output with the same signal used to modulate the
input beam. In order to ensure the correct polarity of the error signal, the LO output and
the photodiode output need to be in phase at the mixer. This can either be achieved by
adding a phase shifter in the LO arm before the mixer or more simply by adjusting the
frequency of the LO until the two mixer inputs are in phase.
This mixed and filtered output of the photodiode is what we call the PDH error signal.The
PDH error signal produced for the room temperature cavity located on an optical table
in our lab can be seen in figure 2.1b. The PDH error signal can then be input into a
conventional linear control loop, e.g. a set of PID controllers, that minimize the error
signal by adjusting the laser frequency.
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Figure 2.1: a) Optical power reflected by a Fabry-Pérot cavity for optical frequencies near a
resonance. b) Reflected power and PDH error signal as a function of the optical frequency detuning
from a resonance of the room temperature cavity. The additional small dips in reflected power
appear when the sidebands generated by the phase modulator become resonant with the cavity.
The LO frequency is 42.7 MHz.

Note that the PDH error signal is only proportional to the frequency detuning of the
carrier when the carrier is very close to the cavity resonance (within a linewidth κ). How-
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2 Pulsed laser locking in a dilution refrigerator

ever, the PDH error signal maintains the correct sign up to a detuning of Ω, which is useful
for the start-up phase of the lock.

2.3 Experimental setup

In this section we give an overview of the experimental setup used for locking a laser in
pulsed operation to an optical cavity in a dilution refrigerator by means of a PDH lock and
mention the used components and software. We further discuss how to asses the quality
of the laser lock.

2.3.1 Overview

A schematic of the experimental setup is shown in figure 2.2. The output of a continu-
ous wave (CW) tunable laser is pulsed using an AOM controlled by an AWG. The AOM
output passes through a phase modulator (PM) needed for the PDH lock (see previous
section). Ten percent of the phase modulated light is split off and sent to a photodiode
(subsequently called the reference port) in order to monitor the optical input power. The
rest of the light is sent through a circulator and finally a polarization controller, before it
is sent to the dilution refrigerator containing the optical cavity.
Note that the optical cavity we are using contains a flat-flat quartz crystal, which is needed
for the optomechanical storage and readout experiment described in chapter 3. The bire-
fringence of the crystal causes the frequency of the optical resonance to depend on the
polarization of the incoming light. More precisely, a single optical resonance is split into
two resonances, each corresponding to one of the principal crystal axes. In order to address
just one resonance, we tune the polarization of the input beam to be parallel with one of
the principal crystal axes.

Cavity

Tunable
laser

ωpump

Dil. Fridge

AWG

AOM

ΩAOM/2π =
150 MHz

Piezo CM

LPF

Error

PS

~45 MHz

PM

LO RF

PS

Det.

Circ.

Ref. port

10%

PID 1

PDH Lock

CM

Piezo

PID 2

ADC
Marker 1

Marker 2

Figure 2.2: The setup used for pulsed laser locking. Red paths are optical fibers, green paths
are electrical analog lines and black paths are electrical digital lines. See main text for a detailed
description of the setup.

The light reflected from the cavity again passes through the circulator and is then split
between two photodiodes. The output of the first photodiode (labeled "Det." in figure 2.2)
is sent to an analog to digital converter (ADC) used for data acquisition. This data is used
to determine the quality of the lock.
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2.3 Experimental setup

The other photodiode is used for the PDH lock. Its output is processed as described in the
previous section. The PDH error signal passes through a power splitter (PS) and is sent
to two different PID controllers. PID 1 is a fast PID controller used for high bandwidth
current modulation (CM) of the laser. PID 2 is slower and controls the voltage on the piezo
element of the laser. This way of adjusting the laser frequency is much slower than CM but
grants access to a much wider frequency range. This is needed to correct for larger drifts of
the resonance as well as hysteresis of the piezo element, which are too large to be corrected
via CM. The separately programmable marker channels of the AWG are used to put the
PID controllers on hold between pulses. Putting a PID controller on hold means that the
controller holds its last output without making any further corrections. This means that
the laser frequency is not further adjusted once a pulse is done and the controllers only
resume locking the laser once the next pulse starts. We use two separate marker channels
to account for the different reaction times of the two controllers, see section 2.5.1.

In addition to the cavity inside the fridge, we use another cavity placed on an optical
table (not shown in figure 2.2) for testing purposes. We refer to it as the room temper-
ature cavity and we call the cavity located in the fridge the cryogenic cavity. The room
temperature cavity is similar to the cryogenic cavity except that it does not contain a crys-
tal. We can choose to either send the light to the cryogenic or to the room temperature
cavity.

Note that when actually performing experiments involving locking laser pulses, we en-
gage the lock while sending CW light to the selected cavity, before we start pulsing the
laser.

2.3.2 Selected Equipment and Software

Here we document the most relevant equipment and software used in this experimental
setup.
The laser is a Toptica 1550 CTL tunable laser, creating light around 1550 nm. It is
controlled by a DLCpro digital laser controller by Toptica. The AOM is a TEM-150-18-
30-1580-2FP by Brimrose, driven by an HDAWG from Zurich Instruments. The phase
modulation for the PDH lock is done with an iXblue MPX-LN-0.1. The optical cavity is
located within a Bluefors LD400 dilution refrigerator, for details on the cavity and how it
was aligned see [1]. Data acquisition was performed with an AlazarTech ATS9870 digitizer,
controlled by the QCoDeS software package [15]. For the initial tests of pulsed locking as
well as for the optomechanical storage and readout experiment, we used the integrated
PID controllers of the laser controller itself for both PID 1 and 2. For the later tests of the
laser lock (section 2.5), PID 1 is implemented on a Red Pitaya controlled by the PyRPL
software package [16]. For the Red Pitaya, PID 1 is operated simply as a PI controller due
to software restrictions. The output of PID 1 is plugged into the Mod DC port directly on
the laser head. The photodiode used for the PDH lock was a high bandwidth fixed gain
Thorlabs PDA05CF2 photodiode. The photodiode used to record the reflected signal was
a Thorlabs PDA10CS2 set to 20 dB gain.
All the optical paths except for the cavity itself are contained within single mode fibers.

2.3.3 Assessing lock quality

We generally use two different methods to asses the quality of the locking scheme.
The first method is fairly qualitative: On the screen of the laser controller we can monitor
the error signal in real time by eye. If the observed fluctuations of the error signal are
much smaller than the amplitude of the error signal during a frequency sweep over the
resonance, we can say that we are well locked to the resonance. This is the method we use
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2 Pulsed laser locking in a dilution refrigerator

to tune PID parameters in section 2.4.1.
A more quantitative method of assessing the quality of the lock is to use what we call
the lock level. The lock level is equal to the average reflected power throughout a pulse
expressed as a percentage, normalized such that 0% corresponds to the laser being com-
pletely on resonance and 100% corresponding to the laser being completely off resonance.
Similarly we speak of the instantaneous lock level, when considering the reflected power
during a pulse without averaging. Note that our cavity is not critically coupled, therefore
there is some residual power reflected, even when the input beam is perfectly on resonance.
Thus when the laser is off, as is the case before a pulse, we record a negative instantaneous
lock level. This effect is especially pronounced in the cryogenic cavity, where reflections
and losses at the vacuum crystal interfaces lead to the modes not all being critically cou-
pled [12].
When averaging the instantaneous lock level (i.e. the measured reflected power during a
pulse) to calculate the lock level of a pulse, we exclude the beginning and end of the pulse.
This is due to the fact that the reflected power measured during a well locked square pulse
exhibits a peak at the beginning and end (see figure 2.3). These peaks can be explained by
the cavity dynamics when the rise time of the pulse is much shorter than the average life-
time of a photon inside the cavity. As previously mentioned, when perfectly resonant light
gets sent to a critically coupled Fabry-Pérot cavity, no reflected power is measured. This
is not due to there being no light reflected by the cavity but rather due to the promptly
reflected beam destructively interfering with the light exiting from the cavity. When a
square optical pulse is sent to a Fabry-Pérot cavity, some reflected power is measured at
the start of the pulse even when the pulse is perfectly resonant with the cavity. While
the resonance is building up, there is not yet enough light exiting the cavity to completely
cancel out the promptly reflected input beam and hence some reflected power is measured.
When the input beam suddenly ends at the end of the pulse, the opposite happens and
one again measures a peak in reflected power. The time it takes to build up a resonance is
given by the lifetime of the cavity. For our cavity this is around 70 ns, corresponding to a
linewidth of κ/2π = 2.4 MHz. Note that the width of the peaks in figure 2.3 agree with the
response time of the photodiode, which has a bandwidth of around 1.1 MHz for the used
gain setting, meaning that the peaks are likely more narrow, than what the photodiode
measures.
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Figure 2.3: Instantaneous lock level during a 15 µs long pulse on resonance with the room tem-
perature cavity.

8



2.4 Initial tests with slow PID 1

2.4 Initial tests with slow PID 1

Before implementing the Red Pitaya as a fast PID controller (see section 2.5), the first tests
were performed with the laser controller as PID 1 and PID 2. We first tune PID parameters
(section 2.4.1) and then test the performance of this setup (2.4.2) in pulsed operation. If
not specified otherwise all pulses are 15 µs long square pulses and the repetition rate is 1
kHz.

2.4.1 Tuning PID parameters for the room temperature cavity

The first step is to find suitable PID parameters. We do this by minimizing the error
signal fluctuations seen on the screen of the laser controller, while sending pulses to the
room temperature cavity, as we are adjusting the PID parameters. We can then use the
found PID parameters to test the quality of the lock when trying to lock laser pulses to
the cryogenic cavity. Note that doing this directly in the cryogenic cavity would have been
more tedious and time consuming, since we can only turn the pulse tube of the fridge off
(which is required for the lock to work) for a couple minutes at a time, after which the
fridge needs to recover.

Recall that for given PID parameters P, I, D and overall gain G, the output Vout of a
PID controller for given input error signal ε(t) is given by

Vout(t) = G

(
Pε(t) + I

∫
ε(t′)dt′ +D

dε(t)

dt

)
. (2.1)

Our starting point is the set of parameters used in [1] for laser locking in CW operation to
the same cavity. In [1], laser locking was performed using only the PID 2 controller in the
laser controller connected to the piezo element of the laser. The parameters used for CW
operation can be found in table 2.1.

PID 2 parameter
P2 0.003

I2 15

D2 23.3

Table 2.1: PID 2 parameters for laser locking in CW operation. The optimal overall gain
depends on the laser power. For example for an optical power of −18 dBm
measured at the reference port (see figure 2.2) an overall gain of G2 = 1 is
appropriate.

Using just PID 2 for locking of 15 µs long square pulses with a repetition rate of 1 kHz
in the room temperature cavity shows that for pulsed operation the performance of the
lock is better if D2 is reduced by roughly a factor of 10. Further, when also using PID 1,
we reduce the gains of PID 2 by a factor of 10, since PID 2 only needs to correct for slow
drifts and we do not want the slow controller overreacting to errors that PID 1 can correct
much faster.
To find suitable PID parameters for PID 1 we first disable PID 2 and find parameters
of PID 1 suitable for locking to CW light sent to the room temperature cavity. For this
we follow a standard parameter tuning procedure taken from the user manual of the laser
controller:

1. Set the integral (I) gain to a non-zero value (all others to zero) and increase the
overall gain until the system locks.
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2 Pulsed laser locking in a dilution refrigerator

2. Alternate between increasing the proportional (P) gain and the integral (I) gain each
until the feedback loop starts to oscillate, then reduce the gains until the oscillation
definitely stops. Standard optimization procedures set the proportional (P) gain to
about 0.6 of the value where oscillations start.

3. Increase the integral (I) gain until the feedback loop starts to oscillate, then increase
the differential (D) gain until the oscillation stops. Proceed iteratively Increasing both
gains until the oscillation cannot be stopped by further increase of the differential (D)
gain. At that point, reduce both gains until the oscillation definitely stops.

After finding PID 1 parameters suitable for locking a CW laser, we turn on PID 2 with the
adapted parameters and begin pulsing the laser. To see if the PID 1 parameters are also
suited for pulsed operation we then try increasing and decreasing each PID 1 parameter
while monitoring the error signal to see if we can observe an improvement in the lock. The
chosen PID parameters for both controllers can be found in table 2.2.

PID 1 parameter
P1 10

I1 5

D1 6

PID 2 parameter
P2 0.001

I2 2.1

D2 0.2

Table 2.2: PID parameters for laser locking in pulsed operation using the two PID con-
trollers of the laser controller. Parameters were optimized using the room tem-
perature cavity. The optimal overall gains depend on the laser power. For
example for an optical power of −20 dBm measured at the reference port (see
figure 2.2) overall gains of G1 = −3 and G2 = 1 are appropriate. Note the
minus sign for G1.

We expect that these parameters have further room for improvement, for the following
two reasons: Firstly the parameters were optimized using the room temperature cavity
which has a different noise environment than the cryogenic cavity. Secondly the method
of optimization (minimizing error signal fluctuations as seen by eye) was only qualitative
in nature.

2.4.2 Testing lock with cryogenic cavity

Using the PID parameters from table 2.2 we send pulsed laser light to the cryogenic cavity
and measure how well the lock works. Results of sending pulses to the cryogenic cavity
for two minutes and measuring the lock level of each pulse can be seen in figure 2.4. The
average lock level for this data set is 37 % and the distribution of lock levels (figure 2.4a)
can be seen to be very broad. Similar experiments with slightly different PID 1 gains taken
on the same day show similar results with the average lock level fluctuating ∼ 2% between
subsequent experiments. The moving average of lock levels shows fluctuations in time, but
without long-term trend (see figure 2.4b).
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Figure 2.4: Results of two minutes of pulsed laser locking in the cryogenic cavity using the laser
controller PID controllers. The used PID parameters can be found in table 2.2, the overall gains
were G1 = −3 and G2 = 1, the optical power measured at the reference port was −20 dBm. a)
Lock level histogram. b) Moving average over 1000 pulses.

Looking at individual time traces of the reflected power during a pulse shows the limi-
tation of this setup. Two such traces are shown in figure 2.5. The first trace is an example
of the lock making meaningful corrections and the second trace shows the controller over-
compensating, causing the lock level to get worse. We can make a couple of observations:
First of all, the PID controllers only start making corrections to the laser frequency roughly
3 µs after the start of a pulse. This delay comes from the time it takes the PID controllers
to be taken out of "hold". For these experiments we did not yet properly understand this
delay and simply sent the signal to take the lock out of "hold" at the same time as the RF
pulse, which creates the optical pulse. Later (section 2.5) we correct for this delay.
The lock seems to make only two corrections during one pulse and keeps the frequency
fairly constant in between these two corrections. This is most likely due to the limited
bandwidth of the used PID controllers, which result in this staggered response. While the
laser frequency can be adjusted via current modulation with a very high bandwidth (on
the order of 100 MHz), the speed at which PID 1 can change the laser frequency is limited
by the controller itself, which has a bandwidth of only 30 kHz (see section 2.5.1 for an
illustration of this). Note that a controller with a bandwidth of 30 kHz is theoretically
too slow to make meaningful adjustments on the timescale of a couple microseconds, as
1/30kHz ≈ 33 µs. PID 2 also has a bandwidth of 30 kHz however the actual expected
bandwidth of the laser frequency response is on the order of 1 kHz, due to the piezo element
used to adjust the laser frequency, which is the limiting factor here. This should not be a
problem though as PID 2 only needs to correct larger drifts in the laser frequency, which
happen on the order of seconds.
Finally, we see two very different responses between a pulse that begins near resonance and
one that starts further off resonance. The instantaneous lock level during the pulse shown
in figure 2.5a starts at around 17 % and the lock manages to bring the laser completely
on resonance by the end of the pulse. Ideally this should happen within the first couple
of microseconds but this behavior is promising. In contrast, figure 2.5b shows almost the
opposite. Initially the instantenous lock level is at roughly 50 % and the initial response
of the lock brings the laser further off resonance than it already was. Since the PDH error
signal is still linear in the frequency detuning at an instantaneous lock level of 50 % (see
figure 2.1b) this most likely means that the controller over corrected, resulting in a rise
in reflected power. The two selected traces are taken from the same data set that was
used to create figure 2.4 and show typical behavior for traces starting at their respective
instantaneous lock levels.
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2 Pulsed laser locking in a dilution refrigerator

We conclude that the response for pulses that start close to being resonant is a bit too
weak while the response to a pulse further off resonance is too strong. This kind of trade
off is fairly typical for PID controllers. While a lower gain might lead to a better average
performance, the bandwidth of PID 1 is clearly too small for the lock to properly work
with such short pulses.
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Figure 2.5: Instantaneous lock level measured during two pulses, while using integrated PID con-
trollers of the laser controller. a) The controllers make corrections to the laser frequency, bringing
the laser on resonance. b) The controllers over correct, causing an initial rise in reflected power.

2.5 Red Pitaya as PID 1

Due to the bandwidth limitations of the PID controllers in the laser controller, we now use
the PID module of a Red Pitaya controlled by the PyRPL software package [16] as our
PID 1 controller. The PID controller on the Red Pitaya has a much higher bandwidth and
should in principle far outperform the previous setup. PID 2 remains the same as before.

2.5.1 Characterizing components

Similarly to the PID module in the laser controller, the PID on the Red Pitaya also comes
with a "hold" function that can be toggled with a DC signal sent to a designated input.
If a high Voltage is detected the controller is put on hold and the output is frozen at its
current value. If a low Voltage is detected the controller runs normally. Since the manu-
facturers of both of the used PID controllers do not specify the reaction time between the
controller receiving a DC signal telling the controller to be put on "hold" and the controller
actually being put on "hold", we perform a simple test to find these numbers. This test
also illustrates the large discrepancy in bandwith between the PID module on the Red
Pitaya and that of the laser controller.

First we test the reaction time and bandwidth of PID 1. We apply a 50 MHz sinusoidal
signal to the error signal input of the Red Pitaya and set G1 = 1, P1 = 1, I1 = 0,D1 = 0
and record both the input error signal as well as the output of PID 1 on an oscilloscope.
For our chosen error signal and PID parameters we expect to retrieve the same sinusoid
that we input. Further, we periodically put the lock on hold with a marker from the AWG
and also record this marker. The result of this test can be seen in figure 2.6a.
The controller reacts roughly 0.1 µs after the controller is taken out of "hold". After this,
the output of the controller follows the error signal, demonstrating that the PID controller
of the Red Pitaya is capable of reacting to changes in the error signal on a sub microsec-
ond timescale, which is comparable to the timescale on which the cavity reacts to external
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2.5 Red Pitaya as PID 1

changes, given by the inverse linewidth of ∼ 70 ns. The amplitudes of the error signal and
the PID output don’t exactly match. However this is not relevant for us and we did not
further investigate this discrepancy. When putting the controller on hold we observe the
same delay of around 0.1 µs.
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Figure 2.6: a) Response of PID 1 (Red Pitaya) to being taken out of hold while receiving a 50
MHz sinusoidal error signal. b) Response of PID 2 (laser controller) to being taken out of hold
while receiving a 10 kHz sinusoidal error signal.

Performing the same test for PID 2 but with a 10 kHz signal and PID parameters P = 1,
I,D = 0, G = 10 (we increased the overall gain to get a stronger response), we observe a
different behavior. The PID controller in the laser controller takes roughly 3 µs to react
to being taken out of "hold". Further, the controller is too slow to properly follow the
error signal. The results can be seen in figure 2.6b. Due to this longer reaction time, we
anticipate this delay when using the lock by sending the signal to take PID 2 out of "hold"
before the AWG sends the RF pulse to the AOM to create the optical pulse.
A further delay that needs to be taken into account is the time that passes between the
AWG sending an RF pulse to the AOM and the detection of a reflected optical signal from
the cavity, allowing the locking mechanism to make corrections to the laser frequency.
This delay mainly comes from the AOM itself. The AOM starts to transmit light once an
acoustic standing wave has built up in its internal crystal. For the AOM we used, this was
measured to take on the order of 400 nanoseconds. Further, there are delays introduced by
the optical paths as well as the photodiodes detecting the reflected signal. When measured
in our setup, the total delay between sending an RF pulse with the AWG and measuring
a rise in the reflected signal is around 500 ns, the exact number depending on whether the
room temperature or the cryogenic cavity is used.
Finally, we time the marker channels such that the PID controllers are taken out of hold
around 300 ns after the pulse started. This is to account for cavity dynamics. As discussed
in section 2.3.3 and seen in figure 2.3, the reflected signal of a pulse that is on resonance
with a cavity mode has peaks at the beginning and end of the pulse. Thus the PDH error
signal does not represent the detuning of the cavity during these peaks. To make sure the
controllers do not react to these peaks we time the controllers to be taken out of hold 300
ns after the the initial rise in measured reflected power.

2.5.2 Tuning PID parameters using both cavities

After characterizing PID controllers reaction times to being put on "hold", the next step
is to find suitable PID parameters. We follow a very similar procedure to section 2.4.1 but
try to be a bit more quantitative in our choice of PID 1 parameters.
We decide to set D2 = 0. This can be motivated in two ways. Firstly, the role of PID 2
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2 Pulsed laser locking in a dilution refrigerator

is to correct for larger drifts in the laser frequency. These do not happen suddenly so the
differential gain D2 should not be needed. Secondly, the role of the differential gain D2 is
to react to sudden changes in the error signal and these are corrected for by PID 1 on a
much faster timescale than PID 2 is able to, due to the much higher bandwidth of PID 1.
Finally, for similar reasons we reduce the proportional gain P2 in relation to I1 a little bit
compared to the parameters for CW operation and also reduce the overall gain, since we
want the faster PID 1 to perform most of the corrections. The chosen PID 2 parameters
for pulsed laser locking can be found in table 2.3.

PID 2 parameter
P2 0.0001

I2 2.1

D2 0

Table 2.3: PID 2 parameters for laser locking in pulsed operation when using the Red
Pitaya as PID 1. The optimal overall gain depends on the laser power. For
the typical laser power used for the tests (around −18 dBm measured at the
reference port) an overall gain of G2 = 1 is appropriate.

To find good PID parameters for PID 1, we perform tests in the room temperature
cavity. We follow standard procedure for calibrating PID parameters (see section 2.4.1)
and start by leaving the proportional gain P1 at zero and increase I1 until we get a decent
lock. The way the controller module is implemented in the PyRPL software package, the
over all gain is fixed at G1 = 1 and there is no option for differential gain (i.e. D1 = 0).
Note that during all of these tests PID 2 is also on with the parameters from table 2.3.
Contrary to section 2.4.1, we now use the lock level to quantify the lock performance while
tuning PID parameters. Results from two sweeps of I1 in the room temperature cavity can
be found in figure 2.7. From the results of these two sweeps we choose I1 = 15000 for now.
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Figure 2.7: Results of locking a pulsed laser to the room temperature cavity while varying I1. For
each value of I1 we plot the average and standard deviation of the lock level of 30′000 pulses. PID
2 was on during these measurements with the parameters from table 2.3 and a gain of G2 = 1.
The optical power at the reference port was −17.6 dBm.

Leaving the integral gain of PID 1 fixed at I1 = 15000, we begin to turn up the propor-
tional gain P1 and observe its effect on the performance of the lock. Results of two such
sweeps performed in the room temperature cavity can be seen in figure 2.8. The results
merely show that the lock is close to perfect in the room temperature cavity for a fairly
wide range of P1. However, we then also perform a sweep of P1 in the cryogenic cavity
(see figure 2.9), which leads us to settle on the PID 1 parameters found in table 2.4.
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2.5 Red Pitaya as PID 1
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Figure 2.8: Results of locking a pulsed laser to the room temperature cavity while varying P1. For
each value of P1 we plot the average and standard deviation of the lock level of 30′000 pulses. PID
2 was on during these measurements with the parameters from table 2.3 and a gain of G2 = 1.
The optical power at the reference port was −17.6 dBm. Note that for I1 = 15000 and P1 = 0 we
measured an average lock level of 0.8± 0.7 % (see figure 2.7b).

PID 1 parameter
P1 10

I1 15000

Table 2.4: PID 1 parameters for laser locking in pulsed operation for typical laser powers
(around −18 dBm measured at the reference port). For different laser powers
the parameters have to be scales accordingly, as the PID 1 module has no overall
gain setting.

1 5 10 15
P1

0

10

20

30

40

50

60

Av
er

ag
e 

lo
ck

 le
ve

l [
%

]

Figure 2.9: Results of locking a pulsed laser to the cryogenic cavity while varying P1. For each
value of P1 we plot the average and standard deviation of the lock level of 30′000 pulses. PID 2
was on during these measurements with the parameters from table 2.3 and a gain of G2 = 1. The
optical power at the reference port was −18 dBm.

We also did some tests of the lock in the cryogenic cavity with the same PID 2 parameters
as in table 2.3 but with P1 = 15 and I1 = 7500 that actually produced the best results.
If these are simply better PID 1 parameters or if it was some other, potentially external,
factor is unclear at this point, see section 2.5.3.

15



2 Pulsed laser locking in a dilution refrigerator

2.5.3 Long-time lock behavior

Having found suitable PID parameters with the new PID 1 controller, we now study the
lock performance over longer time scales without changing any parameters during single
measurements in order to get better statistics and to see if there are any long term trends.
As before, when not specified otherwise we are using 15 µs long square pulses at a repeti-
tion rate of 1 kHz.

General performance

First we present results from running the lock in pulsed operation in the cryogenic cavity
with the PID parameters from tables 2.3 and 2.4 over a duration of two minutes. The
results are shown in figure 2.10. The distribution of the lock levels is less broad compared
to a similar measurement done using the slower PID 1 (see figure 2.4a) and we see no
clear temporal trend of the lock levels. The average lock level for this measurement was
27 %, showing a clear improvement in the quality of the lock compared to using the laser
controller for PID 1.
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Figure 2.10: Results of locking a pulsed laser to the room temperature cavity over the course of
two minutes. The used PID parameters can be found in tables 2.3 and 2.4. The overall gain of PID
2 was G2 = 1, the optical power at the reference port was −17.9 dBm. a) Lock level histogram.
b) Moving average over 1000 pulses.

Further, we can record the reflected power during a pulse to inspect the effect of the
lock. An example of such a time trace can be seen in figure 2.11. At the beginning of
the pulse the lock makes a fast correction during the first couple of microseconds and then
slows down substantially and does not manage to bring the laser entirely on resonance.
Note that the initial peak here differs from the one shown in figure 2.3 and actually comes
from the lock making a correction. The peaks seen in figure 2.3 only occur when the laser
is almost on resonance to begin with, which is corroborated by the fact that we see no
peak in reflected power at the end of the pulse in figure 2.11.
In general, the reflected power during a pulse is a lot smoother when the Red Pitaya is
used for PID 1 as opposed to the slower laser controller. However as one clearly sees in
figure 2.11, the lock is not quite doing enough to ensure fully locked pulses, see section
2.5.4. Since the chosen I1 is close to the maximum settable value and in fact the output
of the Red Pitaya maxes out quite regularly during pulses (for further discussion of this
issue see section 2.5.4), we tried increasing the gain of PID 2 in the hopes of improving the
results but this did not have a significant impact.

16
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Figure 2.11: Reflected power during a pulse, while locking with the Red Pitaya.

Turbo pump noise

The main noise source in the fridge when the pulse tube is off is the turbo pump, which
creates vibrations at a frequency of around 820 Hz. If this noise is not corrected for by
the lock, we should in principle see oscillations in the lock level of subsequent pulses at
this frequency. To test this we need to increase the repetition rate, since a sampling rate
of 1 kHz is too low to properly detect an oscillation at 820 Hz. More precisely, we expect
oscillations at 1640 Hz, as the lock level does not differentiate between being blue or red
detuned from the resonance.
To test this, we increase the repetition rate to 10 kHz and measure the lock level of 120′000
pulses. The results from this test are shown in figure 2.12. The lock level over time shows
clear oscillations (figure 2.12a) and the discrete Fourier transform (DFT, figure 2.12b) ex-
hibits clear peaks at multiples of 820 Hz with the peak at 1640 Hz being the highest. i

We can conclude that the turbo pump is still a significant error source, even with the lock
enabled.

0 2 4 6 8 10
Time [ms]

0

20

40

60

80

Lo
ck

 le
ve

l [
%

]

a

0 1000 2000 3000 4000 5000
Frequency [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

DF
T 

am
pl

itu
de

 [a
.u

.]

b

Figure 2.12: Results from locking pulses at a repetition rate of 10 kHz for 12 seconds. a) Lock
levels during the first 10 ms. b) Spectral analysis of the lock levels. The y-axis is normalized such
that the maximal value is 1. For clarity the component at 0 Hz is not shown. It is roughly five
times the height of the peak at 1640 Hz.

iIf anyone is interested in f(o)unding a startup to build terrible (and expensive) microphones using this
technique, please write me an email.
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2 Pulsed laser locking in a dilution refrigerator

Best lock performance

At this point it is worth mentioning that the performance of the lock is greatly influ-
enced by external factors, such as people talking and walking around in the lab, what
people are doing in other rooms of the building, how the air conditioning is running, etc.
Since we cannot control for all of these factors, it is difficult to compare data sets from
different days. Nevertheless we now present the measurements with the best lock quality
observed. For these measurements the PID 1 parameters were chosen slightly differently,
somewhat at random. Namely we used P1 = 15 and I1 = 7500. Further due to a typo in
the measurement code the slower PID 2 turned on roughly 2 µs after the faster PID 1. It is
unclear if these two aspects led to the better lock quality or if it just was a calm day in the
lab. The individual traces of reflected power during the pulses do not look qualitatively
different from 2.11. The results of observing the lock level in pulsed operation can be seen
in figure 2.13. The average lock level for this data set was 16 % and two further repetitions
of the same experiment on the same day had average lock levels of 18 % and 20%.
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Figure 2.13: The best performance of the lock we observed during this project. We only observed
this quality of the lock on one day. a) Lock level histogram. b) Moving average over 1000 pulses.

On a different day we used the same PID parameters as in the measurement shown
in figure 2.13 but using the timing of lock hold described in 2.5.1 and compared it to a
measurement taken directly afterwards using the PID 1 parameters from table 2.4. The
lock performed very similarly for both sets of PID parameters. Due to the limited time
available for this project, we have not yet been able to further study what might be re-
sponsible for these measurements having such good results but the adjusted timing of the
two PID controllers could very well have made a difference.

Finally we show that the quality of the lock shows some improvement, when the repe-
tition rate is increased. Results of a measurement showing this can be found in figure 2.14.
This data was taken on the same day of the good lock performance mentioned above and
also with the same slightly different PID 1 parameters.
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2.5 Red Pitaya as PID 1
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Figure 2.14: Lock performance as a function of the time τwait between pulses (i.e. changing the
repetition rate). Each data point is the average and standard deviation of 30′000 pulses.

2.5.4 Discussion and potential improvements

In this section we discuss the results of using the Red Pitaya for PID 1 and outline some
steps that can be taken in the future to potentially improve the overall performance of the
lock.
Due to the short pulses of around 15 µs required for the proposed microwave-to-optical
transduction experiment, the PID controllers and in particular PID 1 needs to have a
high bandwidth as it is responsible for making frequency corrections on a microsecond
timescale. We have seen (figure 2.6a and 2.11) that the Red Pitaya is capable of doing this
in a controlled manner and this leads to a decent performance of the locking mechanism.
However there is still a lot of room for improvement and some unresolved technical issues
that we would like to address.
Firstly there is the issue of finding optimal PID parameters. While we have performed
some sweeps of PID parameters in the cryogenic cavity, these sweeps were fairly sparse.
I.e. only a couple different PID parameter values could be tested in each measurement
and we only got feedback after the measurement was completed. Ideally we would like to
be able to tune the PID parameters while we are pulsing and get real-time, quantitative
feedback of the lock performance while doing this. This way we could potentially find
better suited parameters for locking a pulsed laser in the noise environment of the fridge.
Alternatively if these measurements could be performed while the pulse tube of the fridge
is on, we could perform many more and longer measurements, allowing us to more system-
atically explore the parameter space of this problem.
A further, related avenue worth exploring (especially due to the good lock seen in figure
2.13a) is the timing of taking the PID controllers out of hold. Maybe the two PID con-
trollers cooperate better if the fast PID 1 is allowed to make some initial corrections, before
the slower PID 2 is enabled.
Finally there are technical issues with the Red Pitaya itself. The range of the output
channel of the Red Pitya is merely ±1 V. This voltage range is enough to sweep the laser
frequency over the entire resonance but not much further. Due to this limited range the
output of the Red Pitaya regularly maxes out, meaning that PID 1 is not making any
corrections until the much slower PID 2 makes a correction that leads to the output of the
Red Pitaya coming away from ±1 V. This would happen less often if one would amplify
the output of the Red Pitaya. For comparison, the output of the PID controller on the
laser controller we used as PID 1 in section 2.4 has a range of ±4 V.
Another technical aspect with the Red Pitaya which is still unclear, is how well we set the
lock point (i.e. which Voltage should the error signal be held at). Before each experiment,
we record the PDH error signal on the Red Pitaya with its internal oscilloscope and use this

19



2 Pulsed laser locking in a dilution refrigerator

to set the lock point. However the error signal is very noisy, even for the room temperature
cavity, as can be seen in figure 2.15 and taking steps to improve this might prove fruitful.
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Figure 2.15: Error signal as recorded by the oscilloscope on the Red Pitaya during a frequency
sweep over a resonance of the room temperature cavity.
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Chapter 3

Optomechanical storage and readout

In this chapter we report on the optomechanical storage of an infrared pulse in a high
frequency (∼ 12.6 GHz) phonon mode of a high-overtone bulk acoustic wave resonator
(HBAR) and the subsequent readout thereof. High-overtone refers to the fact that the
phonon modes we address have longitudinal mode numbers on the order of ∼ 104. The op-
tomechanical readout of high frequency phonons, i.e. the conversion of phonons to infrared
photons, when performed at the single phonon to photon level, is an essential component
of the microwave to optical transduction experiment introduced in chapter 1 and further
described in [11]. This experiment also constitutes a first application of the pulsed laser
locking scheme discussed in chapter 2.
We create coherent phonon states by means of stimulated Brillouin scattering and subse-
quently read them out after a variable wait time. A very similar experiment has previously
been performed using whispering gallery modes of a fused silica microsphere resonator [17,
18].

This chapter is structured as follows: In section 3.1 we describe the optomechanical system
consisting of an HBAR placed within an optical Fabry-Pérot cavity. Section 3.2 contains
a simple theoretical model of the experiment based on the semi-classical treatment of two
optical modes coupled to a single mechanical mode. In section 3.3 we give an overview
of the performed experiment and describe the experimental setup, further we relate the
measured detector output voltage to the retrieved phonon energy. In section 3.4 we present
our experimental results and then discuss them in section 3.5.

3.1 The optomechanical system

In this section we describe our optomechanical system and the Brillouin scattering mecha-
nism, by which the mechanical and optical modes interact. We further briefly discuss the
effect of placing a flat-flat quartz crystal in a Fabry-Pérot cavity on the mode spacing.

Our optomechanical system consists of an HBAR, which in our case is a flat-flat, 5 mm
thick, z-cut quartz-crystal, placed within a Fabry-Pérot cavity (the cryogenic cavity from
chapter 2, see figure 3.1). This system is then cooled to cryogenic temperatures in a
conventional dilution refrigerator. This increases the coherence length of phonons in the
quartz crystal well beyond its spatial extent, turning the flat-flat crystal into a mechanical
Fabry-Pérot cavity, where phonons are reflected at the quartz-vacuum interface [19]. The
optomechanical system is the same one used in [1] and very similar to the ones in [12, 19].
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HBARGRIN lens

ferrule

optical fiber

mirrors

optical mode

Figure 3.1: Drawing of the cryogenic cavity. Light from an optical fiber is focused into a Fabry-
Pérot cavity, containing an HBAR made up of a flat-flat quartz crystal. The output is refocused
into the output fiber by another GRIN lens. (Source: [1])

The optomechanical interaction in this system takes place between a phonon mode of
the HBAR and two optical modes of the cavity, which are separated by the frequency of
the phonon mode. The electric fields of the two optical modes form standing waves in the
Fabry-Pérot cavity. The beat-note between these two standing waves creates a grating in
the index of refraction within the HBAR due to the photoelasticity of the quartz. A photon
in the higher energy mode can then scatter off this grating and get downconverted to the
lower frequency mode, creating a phonon in the process (Stokes scattering). The opposite
process, where a photon in the lower frequency mode absorbs a phonon to create a photon
in the higher energy mode (anti-Stokes scattering) is also possible. The optomechanical
interaction Hamiltonian of this system in the rotating wave approximation (see [12, 14]) is

ĤOM = −ℏg0
(
â1â

†
2b̂+ â†1â2b̂

†
)
, (3.1)

where â1 (â2) is the annihilation operator of the lower (higher) frequency optical mode, b̂
is the annihilation operator of the phonon mode and g0 is the single photon coupling rate.
In our experiment we classically pump the optical mode â1. In the rotating frame of the
pump laser, this corresponds to making the replacement â1 →

√
N1 in the interaction

Hamiltonian (choosing the phase to yield real expectation value ā1), leading to

ĤOM,eff = −ℏgeff
(
â†2b̂+ â2b̂

†
)
, (3.2)

where geff = g0N1 is the effective, cavity enhanced coupling rate and N1 is the mean in-
tracavity photon number for the pumped mode â1 [12]. This linearized Hamiltonian shows
a beamsplitter interaction between the cavity mode â2 and the phonon mode b̂, allowing
us to swap excitations from one mode into the other.
In our setup, the linewidth of the optical modes κ ≃ 2π · 2.4 MHz is much larger than
the mechanical mode spacing of ∼ 625 kHz. This means that in reality we couple to more
than just one mechanical mode at once. However, we can assume these different mechani-
cal modes to be independent, because the mechanical linewidth is much smaller than the
mechanical mode spacing. The effective interaction Hamiltonian is the sum over multiple
phonon modes of interaction Hamiltonians of the form (3.1) and thus for simplicity we
only consider one mechanical mode at once.

The frequency difference between the two optical modes being equal to the phonon fre-
quency ensures that the described Brillouin interaction obeys energy conservation. When
taking momentum conservation (i.e. wave vector matching) into account, one finds that
this interaction only occurs (i.e. one finds an appreciable g0) for phonon frequencies near
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the Brillouin frequency ΩB, given by

ΩB ≃ 2ω
va
vo

, (3.3)

where ω is the frequency of the pump light and va (vo) is the longitudinal speed of
sound (light) in quartz and we assumed va ≪ vo (see SI of [19]). For quartz at cryo-
genic temperatures and 1550 nm wavelength light, the Brillouin frequency is roughly
ΩB/2π ≈ 12.64 GHz. So to get a non-zero optomechanical coupling rate, we need to
tune the free spectral range (FSR) of our optical cavity to be equal to the Brillouin fre-
quency.
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Figure 3.2: Simulated FSR modulation of six neighboring modes for similar parameters as our cav-
ity. Each line corresponds to one mode pair. The presence of the HBAR in the optical cavity leads
to a periodic modulation of the FSR, when changing the spacing between the mirrors. (Source:[1])

A conventional optical Fabry-Pérot resonator exhibits a regular mode spacing with an
FSR of ∆fc = c/(2L), where c is the speed of light and L is the spatial separation between
the two mirrors. Placing the quartz crystal between the two mirrors however changes this.
The crystal introduces reflections within the cavity at the quartz-vacuum interfaces and
changes the optical path length between the mirrors. This leads to a modulation in the
FSR ∆f j

c = fj − fj−1 of the cavity between adjacent modes fj and fj−1. The FSR varies
by up to roughly 20 % of the mean FSR. See the SI of [12] for an in depth treatment of
this.
If we change the length of the cavity, we observe a similar periodic modulation of ∆f j

c but
now as a function of the length change δL. A plot illustrating this can be found in figure
3.2. Since the cavity is subject to a fair amount of noise in the fridge, causing fluctuations
in the distance between the mirrors, which in turn causes fluctuations in the FSR, we tune
the distance between our mirrors and the frequency of our laser such that there is a mode
pair (j, j − 1) with ∆f j

c = ΩB/2π, with a mode spacing that is to first order insensitive to
fluctuations in δL. For more details on adjusting the mode spacing, see [1].

3.2 Theory

In this section we present a simplified model of the performed optomechanical storage and
readout experiment. In section 3.2.1 we describe what we call the write pulse, in which
two laser tones separated by the phonon frequency drive the phonon mode into a coherent
state. In section 3.2.2 we describe what we call the readout pulse, where the phonon state
is partially swapped into the higher frequency optical mode by applying the beam splitter
interaction of equation (3.2).
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3 Optomechanical storage and readout

3.2.1 Write pulse

First we describe the write pulse. For this, we closely follow the first steps in the derivation
of thermometry signals given in the SI of [1]. We start with the Hamiltonian of two optical
modes â1 and â2 at frequencies ω1 and ω2 coupled optomechanically to a single phonon
mode b̂ at frequency Ωm with single photon coupling rate g0

i. As mentioned in section
3.1, we include only one phonon mode in the theoretical treatment since they are well
separated in frequency. We assume the optical mode spacing to be detuned from the
mechanical frequency by ∆m = ω1 +Ωm − ω2.
During the write pulse, mode â1 is pumped on resonance with frequency ω1 and amplitude
αin
1 , which is ensured by a laser lock like the one described in chapter 2. An intensity

modulator driven with frequency ΩIM creates a second tone at frequency

ωwrite = ω1 +ΩIM = ω2 +∆write +∆m (3.4)

with amplitude αin
2 , where ∆write = ΩIM − Ωm is the detuning between the IM drive

frequency and the mechanical frequency.

This results in the following Hamiltonian:

Ĥ = ℏω1â
†
1â1 + ℏω2â

†
2â2 + ℏΩmb̂†b̂− ℏg0

(
â1â

†
2b̂+ â†1â2b̂

†
)

(3.5)

+ iℏ
√
κextα

in
1

(
â†1e

−iω1t − â1e
iω1t
)
+ iℏ

√
κextα

in
2

(
â†2e

−iωwritet − â2e
iωwritet

)
,

where we assume both external fields to have the same coupling rate κext to the optical
modes.

The Langevin equations of motion [20] for the optical modes are

˙̂a1 = −iω1â1 +
√
κextα

in
1 e−iω1t − κ

2
â1, (3.6)

˙̂a2 = −iω2â2 +
√
κextα

in
2 e−iωwritet − κ

2
â2, (3.7)

where we assumed both optical modes to have the same decay rate κ and the single
photon coupling rate g0 to be small compared to κ, κext and ω1 (ω2), allowing us to drop
the term ig0â2b̂

† (ig0â1b̂).

Treating the optical modes classically and ignoring any quantum fluctuations in the signal,
we replace the operators â1/2 with their expectation value ā1/2. Solving for these classical
amplitudes, we find

ā1 =

√
κext
κ/2

α1,ine
−iω1t ≡ αcav

1 e−iω1t, (3.8)

ā2 =

√
κext

κ/2− i(∆write +∆m)
α2,ine

−iωwritet ≡ αcav
2 e−iωwritet, (3.9)

where αcav
1/2 is the intra-cavity amplitude of the respective optical mode.

The number of intra-cavity photons N1/2 in a given mode is therefore N1/2 = |αcav
1/2|

2.
For simplicity, we take αcav

1/2 to be real valued (the two incident fields are in phase and the
phase of αcav

1/2 can be absorbed into e−iω1/2t by a shift in the time t).

iThis is the main simplification of this model. In reality we excite a superposition of eigenmodes of the
HBAR with a collective mode profile that matches the Gaussian profile of the optical mode. See section
3.5.
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Inserting these results into equation 3.5 and defining the cavity-enhanced optomechanical
coupling rate gwrite = g0

√
N1N2 for the write pulse, we get

Ĥ = ℏω1N1 + ℏω2N2 + ℏΩmb̂†b̂− ℏgwrite

(
b̂ei(Ωm+∆write)t + b̂†e−i(Ωm+∆write)t

)
. (3.10)

The Langevin equation of motion for the phonon mode is thus

˙̂
b = −iΩmb̂+ igwritee

−i(Ωm+∆write)t − Γm

2
b̂, (3.11)

where Γm is the mechanical decay rate. Treating the phonon mode classically, i.e. making
the replacement b̂ → βe−i(Ωm+∆write)t one finds

β̇ = (i∆write −
Γm

2
)β + igwrite. (3.12)

Assuming no initial phonon population (β(0) = 0), the solution to equation 3.12 is given
by

β(t) = i
gwrite

Γm/2− i∆write

(
1− e(i∆write−Γm/2)t

)
. (3.13)

Thus if the writing pulse is much longer than 2/Γm, the initial phonon state right after
the write pulse is a coherent state |β0⟩ with amplitude

β0 ≈ i
gwrite

Γm/2− i∆write
. (3.14)

The incident field amplitudes αin
1/2 needed to calculate the effective coupling rate gwrite

can be related to optical power PRP measured at the reference port (see figure 3.4) via

|αin
1 |2 = N1 = ηin(1− ηIM )

PRP

ℏω1
(3.15)

|αin
2 |2 = N2 = ηinηIM/2

PRP

ℏωwrite
, (3.16)

where ηIM is the fraction of the total optical power contained in the sidebands after
passing through the intensity modulator and ηin accounts for the conversion between power
measured at the reference port to power at the cavity input, including losses. The main
losses between the reference port and amount of light coupled into the cavity come from
the misalignment of the GRIN lens which focuses the fiber output onto the cavity as well
as the performance of the lock.ii

3.2.2 Readout pulse

Next we describe what happens during the readout pulse, where only the lower frequency
optical mode â1 is driven but we have a non-zero initial phonon population. For this we
follow the derivation from the previous section but assume only the lower frequency optical
mode â1 to be pumped classically. This leads to the Hamiltonian

Ĥ = ℏω1N1 + ℏω2â
†
2â2 + ℏΩmb̂†b̂− ℏgread

(
â†2b̂e

−iω1t + â2b̂
†eiω1t

)
, (3.17)

iiActually, the performance of the lock should be taken into account by assuming the frequency of the
input beam to be detuned from ω1. However, for simplicity and since the lock performance is pretty
consistent during this experiment, we assume the input to be resonant with the cavity mode and absorb
the non perfect lock into the prefactor ηin.
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3 Optomechanical storage and readout

where gread = g0
√
N1 is the cavity-enhanced coupling rate for the readout pulse.

The Langevin equations of motion for the optical mode â2 and the phonon mode b̂ are

˙̂a2 = −iω2â2 + igreadb̂e
−iω1t − κ

2
â2 (3.18)

˙̂
b = −iΩmb̂+ igreadâ2e

iω1t − Γm

2
b̂. (3.19)

Taking both the remaining optical and phonon mode to be classical as well, by making the
replacements â2 → αcav

2 e−iω2t and b̂ → βe−iΩmt, the Langevin equations reduce to

α̇cav
2 = −κ

2
αcav
2 + igreade

−i∆mtβ (3.20)

β̇ = −Γm

2
β + igreade

i∆mtαcav
2 , (3.21)

taking the form of coupled oscillator equations.
Finally the field amplitude αout

2 of optical mode 2 in the output fiber of the cavity is given
by

αout
2 = −

√
κextα

in
2 . (3.22)

Note that between the write and readout pulse, the phonon amplitude decays as |β0| →
|β0| exp(−Γmtwait/2). Hence the initial conditions with which one needs to solve the equa-
tions of motion are αcav

2 (0) = 0 and β(0) = β0 exp(−(iΩm + Γm/2)twait), where twait is
the time between the end of the writing pulse and the start of the readout pulse.
In figure 3.3 we plot the output power in mode âout2 given by ℏω2|αout

2 |2 as well as the
phonon amplitude |β| during the readout pulse for typical parameters of our experiment
(see section 3.4.3).
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Figure 3.3: Optical power in mode âout2 and phonon amplitude |β| during the readout pulse for
typical parameters of our experiment.

The qualitative behavior of β and αout
2 is determined by the value of the optomechanical

cooperativity Cread given by

Cread =
4g2read
κΓm

. (3.23)

For gread < κ as is the case in our experiment, the phonon amplitude |β(t)| is well ap-
proximated by an exponential decay of the form ∝ exp(−Γm(1 + Cread)t/2). The coupling
to the optical mode introduces an additional loss channel for the phonons, leading to a
faster decay. For Cread < 1, as is the case in this experiment, we are in the low coopera-
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tivity regime. In this case the regular decay channels described by Γm are still dominant.
For Cread > 1 (but still gread < κ) one is in the high cooperativity regime, where a phonon
is more likely to swap into a photon rather than decay internally and vice versa. Once
the photon is in the cavity however, it is more likely to decay through the optical output
port than to swap back into a phonon (as would be the case in the strong coupling regime
gread > κ), allowing for allowing for efficient detectioniii.

Integrating the power in the output mode âout2 over time yields the energy contained in
the readout pulse. Measuring the energy in the readout pulse as a function of the wait time
twait between the write and readout pulse, we can measure the phonon lifetime T1 = 1/Γm.
The measured energy in the readout pulse is proportional to

∫
|αout

2 |2dt ∝ exp(−Γmtwait)
due to the linearity of the equations of motion. Hence the measured energy follows the
same exponential decay as the phonon energy. We will show how to relate the measured
detector voltage to the retrieved phonon energy in section 3.3.2, after the description of
the experimental setup.

3.3 Experimental methods and setup

In this section we first give an overview of how the experiment was performed. Then we
present the experimental setup and mentioned the used equipment. Finally we derive an
expression relating the balanced detector output to the retrieved phonon energy.

3.3.1 Overview and experimental setup

Overview

We work with two optical modes â1/2 with frequencies ω1/2 and ω2 − ω1 ≃ ΩB, where
the Brillouin frequency ΩB is close to the frequency of the main mechanical mode of inter-
est. In order to store an optical pulse as an excitation in the phonon mode of the HBAR,
we pump mode â1 of the optical cavity and at the same time send an additional weaker
optical pulse to mode â2. This additional write pulse is a sideband of the pump light, cre-
ated with an intensity modulator (IM) and lasts 30 µs. During the write pulse, a coherent
phonon state is created, as previously described in section 3.2.1. The length of the write
pulse was chosen to be much longer than the phonon lifetime of around ∼ 3 µs in order to
create a large phonon population.
After the write pulse we block the laser and wait for some variable time twait after which
we readout our mechanical excitation with a readout pulse. During this pulse, the phonons
that remain after twait scatter with pump photons in mode â1, creating a population in the
higher frequency optical mode â2 as described in section 3.2.2. The readout pulse consists
of pumping optical mode â1 for 15 µs, where we chose the length of the pulse such that
most of the phonon energy has either decayed internally or been swapped into the optical
mode â2 by the end of the readout pulse. We then detect the optical power that leaves
the cavity from mode â2 via balanced heterodyne detection. The measured optical power
at frequency ω2 can then be related to the retrieved phonon energy (see section 3.3.2).
By varying the wait time twait between write and readout pulse, we can measure the T1 life
time of the mechanical excitation. We further vary the frequency detuning of the sideband
in the write pulse to probe the frequency response of the mechanical mode. Since the
mechanical FSR is smaller than the optical mode linewidth, we also sweep the frequency

iiiFor an efficient transduction process, one wants to be in the C ≫ 1 regime. For our transduction
experiment, we aim for C = 20.
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of the sideband over an entire mechanical FSR in order to see the response of a second
mechanical mode.

Experimental setup

The experimental setup can be seen in figure 3.4. The output of a tunable laser is split
into two arms, called the pump arm and the local oscillator (LO) arm.

Cavity

Tunable
laser

Balanced 
heterodyne 
detection

ωpump ωpump , ωprobe

PDH lock

... PM

PD

IM

ΩIM/2π≈
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AOM

Ref. port

10%

Figure 3.4: Experimental setup for the optomechanical storage and retrieval experiment. Red
paths are optical fibers, green paths are electrical analog lines and black paths are electrical digital
lines. See main text for a detailed description of the setup.

In the pump arm, the light is pulsed by an acousto optic modulator (AOM), driven by
the amplified output of an arbitrary waveform generator (AWG) at frequency ΩAOM/2π =
150 MHz. During the write pulse the light is additionally intensity modulated by an in-
tensity modulator (IM) driven by an RF source at frequency ΩIM , close to the Brillouin
frequency ΩB/2π ≈ 12.64 GHz. This creates sidebands detuned from the pump frequency
by the input RF frequency ΩIM . The frequency ΩIM is swept to probe the response of
the various mechanical modes. The pump light is then locked to mode â1 of the cryogenic
cavity, which is located inside the fridge. Laser locking is performed by a PDH lock (see
chapter 2). Similar to the experiment in chapter 2, before entering the cavity, we record
the optical power at the reference port and polarize the light to be parallel with one of
the crystal axes, due to the birefringence of the crystal. The reflected optical power passes
through a circulator and is measured by a photodiode (PD), the output of which we record
with an analog to digital converter (ADC) in order to monitor the quality of the lock.
In the LO arm, a single sideband modulator (SSBM), driven by an RF source at frequency
∼ 12.8 GHz, shifts the frequency of the LO light to ωLO. This light is used as the LO for
balanced heterodyne detection of light at frequency ω1 + Ωm stemming from the readout
of phonons: The electric fields of the fridge output and the LO arm are added via a 50:50
beamsplitter, whose outputs are sent to an auto-balanced detector. The auto-balanced de-
tector consists of two high bandwidth PDs of which the outputs are subtracted from each
other. The auto-balanced detector uses an internal control loop to balance the power levels
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of the outputs of the two PDs to compensate for any beamsplitter or PD gain imbalance.
The output of the auto-balanced detector is recorded by the ADC. By postprocessing this
data, we can extract the measured optical power coming from mode â2, see section 3.3.2
for more details.
We choose the frequency of the LO arm such that the difference between ωLO and ω1+Ωm

is well resolvable with the sampling rate of 100 Megasamples per second we choose for
the ADC. We drive the SSBM at 12.78 GHz, this results in (ωLO − ω1 − Ωm)/2π ≃ 14
MHz. Note that the AOM shifts the pump arm frequency by ΩAOM . We further adjust
the polarization of the LO arm to match the polarization of the fridge output to allow for
maximal interference between the signal and the LO.

The timing of the various components is coordinated by the AWG using the RF output as
well as two marker channels. The pulse sequence executed in every run of the experiment
is seen in figure 3.5. Note that for this experiment we use both PID controllers of the laser
controller and do not use the Red Pitaya, which is why only one marker channel is needed
for the PDH lock. This is mainly due to technical issues that arose with the AWG when
using three separate marker channels. Due to the short wait times between pulses (we can
run the experiment with a repetition rate of around 10 kHz), the lock performs consistently
in this experiment even when using the slower PID controllers of the laser controller.
When starting the experiment, we first send continuous wave (cw) light to the cavity to
engage the lock before starting the pulse sequences, since starting the lock during pulsed
operation did not work.

RF output
twait

30 μs 15 μs

Write
pulse

Readout
pulse

Marker 1

Marker 2

Figure 3.5: Pulse sequence executed by the AWG during one run of the optomechanical storage
and retrieval experiment. The RF output drives the AOM, creating the optical pulses. Marker
channel 1 is responsible for the timing of the IM and marker channel 2 triggers the data acquisition
and puts the PDH lock on hold between pulses.

Used equipment

The pump arm was intensity modulated by an Optilabs IM-1550-20-P, driven by a Lab
Brick LMS-163 by Vaunix with the pulse modulation option. The SSBM was an iXblue
MXIQER-LN-30, driven by a Keysight MXG N5183B signal generator. The heterodyne
detection was done by a Thorlabs PDB570C auto-balanced detector. The rest of the setup
is identical to the one used in chapter 2 (see section 2.3).

3.3.2 Calculating retrieved phonon energy from the balanced detector signal

After the description of the experimental setup in section 3.3.1, we show how to relate the
measured balanced detector voltage to the retrieved phonon energy.
The light from the output fiber of the cavity is mixed with light from the LO arm with
frequency ωLO and amplitude αLO in a 2x2 50:50 beamsplitter, whose outputs are fed into
a balanced detector. We now calculate the output voltage Vbal of this detector from αout

2

and relate the frequency spectrum of the output to the optomechanically retrieved energy
Er. We now again assume the amplitudes αLO and αout

2 to be complex, as the pump
and LO arm are not phase locked and the relative phase does not remain stable between
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subsequent runs of the experiment.

The incident field amplitude αdet1 on the first detector is given by

αdet1 =
1√
2

(
αLOe

−iωLOt +
√
ηoutα

out
2 e−i(ω1+Ωm)t

)
, (3.24)

where ηout accounts for the efficiency of the GRIN lens that feeds the output mode of
the cavity back into the optical fiber as well as further losses in the fibers and optical
components between the cavity and the detector. The output voltage of the detector is
proportional to the incident optical power, which for the first detector is given by

Pdet1 =
1

2

(
ℏωLO|αLO|2 + ηoutℏ(ω1 +Ωm)|αout

2 |2
)

(3.25)

+

√
ηout

2
ℏ
√
ωLO(ω1 +Ωm)

(
αLO

(
αout
2

)∗
e−i(ωLO−ω1−Ωm)t + α∗

LOα
out
2 ei(ωLO−ω1−Ωm)t

)
,

where we have neglected the terms oscillating with twice the optical frequencies as these
are outside of the detector bandwidth. Defining ωdet ≡ ω1 + Ωm − ωLO and writing
αLO = |αLO|eiφLO and α2,det = |αout

2 |eiφ2,out we get

Pdet1 =
1

2

(
ℏωLO|αLO|2 + ηoutℏ(ω1 +Ωm)|αout

2 |2
)

(3.26)

+
√
ηoutℏ

√
ωLO(ω1 +Ωm)|αLOα

out
2 | cos(ωdett+ φ2,out − φLO).

Similarly, the incident field amplitude αdet2 on the second detector is given by

αdet2 =
1√
2

(
αLOe

−iωLOt −√
ηoutα

out
2 e−i(ω1+Ωm)t

)
. (3.27)

The relative minus sign comes from the phase shift experienced upon reflection within the
beamsplitter. The incident optical power on the second detector is therefore

Pdet2 =
1

2

(
ℏωLO|αLO|2 + ηoutℏ(ω1 +Ωm)|αout

2 |2
)

(3.28)

−√
ηoutℏ

√
ωLO(ω1 +Ωm)|αLOα

out
2 | cos(ωdett+ φ2,out − φLO).

The voltage output by one of the detectors of the balanced detector for optical input
power P is given by

V = GP, (3.29)

where G is the gain of the detector, specified in volts per optical input power. The total
output of the balanced detector is given by the difference between the output voltages of
the two detectors. In our case this difference is given by

Vdet = Vdet1 − Vdet2 (3.30)

= 2Gℏ
√

ωLO(ω1 +Ωm)ηout|αLOα
out
2 | cos(ωdett+ φ2,out − φLO).

During the measurement time tmeas we record the voltage of the balance detector with
sampling rate R and store the absolute value |Vdet(ωn)| of the discrete Fourier transform
(DFT) of this data, which is given by

|Vdet(ωn)| =

∣∣∣∣∣∣
(N−1)/2∑

m=−(N−1)/2

Vdet(tm)e−iωntm

∣∣∣∣∣∣ , (3.31)

where ωn = n 2π
tmeas

and N = tmeasR is the number of recorded samples, which for simplic-
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ity we assume to be odd.

Starting with Parseval’s theorem for the DFT we find

1

N

∑
n

|Vdet(ωn)|2 =
∑
n

|Vdet(tn)|2

≈ R

∫ tmeas

0
|Vdet(t)|2dt

≈ Rηout(Gℏ)2ωLO(ω1 +Ωm)|αLO|2
∫ tmeas

0
|αout

2 (t)|2dt (3.32)

In the first step we replaced the sum by an integral, since the sampling rate R is much
larger than ωdet/2π. In the second step we inserted the expression 3.30 and made the
approximation

∫
|αout

2 (t)|2 cos2(ωdett + φ)dt ≈ 1/2
∫
|αout

2 (t)|2dt, which is justified as the
oscillation in the cosine is much faster than the timescale on which |αout

2 (t)| changes ap-
preciably and tmeas ≫ 2π/ωdet.

We can now express equation (3.32) in terms of the retrieved phonon energy Er con-
tained in the output mode âout2 of the cavity. The photons in the output mode âout2 have
energy ℏ(ω1 +Ωm). Of this energy, ℏΩm comes from the the mechanical excitation. Thus
the retrieved phonon energy is given by integrating ℏΩm|αout

2 (t)|2 from the start of the
readout pulse at t = 0 for the measurement time tmeas

Er =

∫ tmeas

0
ℏΩm|αout

2 (t)|2dt. (3.33)

Using this expression for the retrieved phonon energy, equation (3.32) becomes

1

N

∑
n

|Vdet(ωn)|2 =
Rηout(Gℏ)2ωLO(ω1 +Ωm)|αLO|2

ℏΩm
Er. (3.34)

As a last step we express |αLO|2 through the optical power in the LO arm via

|αLO|2 = PLO/ℏωLO. (3.35)

Thus we find the following expression for Er in terms of the DFT of the balanced detector
voltage:

Er =
Ωm

ω1 +Ωm

(
1

RNηoutG2PLO

∑
n

|Vdet(ωn)|2
)
. (3.36)

The expression in the parentheses is the retrieved energy from the optical mode âout2 ,
the prefactor Ωm/(ω1 +Ωm) scales this energy to be the retrieved phonon energy.
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3.4 Results

In this section we present our experimental results. First in subsection 3.4.1 we show
an optomechanically induced transparency (OMIT) measurement, used to verify that the
optical mode spacing is close to the Brillouin frequency ΩB and to precisely determine the
frequencies of the mechanical modes. Then in subsection 3.4.2, we present experimental
data from sweeping ΩIM over the main mechanical mode at frequency Ω1 for different
wait times twait. In the next subsection 3.4.3, we compare these results with numerical
estimates made with the model described in the previous section. Finally in subsection
3.4.4, we extend the sweep of ΩIM to include a second mechanical mode at frequency Ω2.

3.4.1 OMIT spectrum

After adjusting the distance between the mirrors in the cavity and the laser wavelength
such that we have an optical mode pair separated by the Brillouin frequency and at the dis-
placement insensitive point, we measure the Brillouin frequency for the current conditions.
To experimentally determine the mechanical mode frequencies Ωm of our HBAR modes,
we record an optomechanically induced transparency (OMIT) spectrum. First, we lock
the pump laser to the lower frequency mode of the optical mode pair. Then we drive the
intensity modulator with the output (port 1) of a vector network analyzer (VNA) to create
a weak probe tone and feed the output of a 25 GHz-bandwidth photodiode measuring the
transmitted optical power back into to the VNA (port 2, see [1] for details). This allows
us to record the scattering parameter S21 as function of frequency, which is proportional
to the beat note between the transmitted pump and probe tone.
The OMIT spectrum, seen in figure 3.6, shows a broad optical resonance with two sharp
dips located at Ω1/2π = 12.643′930 GHz and Ω2 = Ω1 +ΩFSR with ΩFSR/2π = 625 kHz.
These sharp dips correspond to two mechanical modes. When the VNA frequency matches
the frequency of a phonon mode, pump light is upconverted via Brillouin scattering and
destructively interferes with the probe light, leading to a dip in S21.
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Figure 3.6: OMIT spectrum recorded to verify the location of the mechanical modes and the
mechanical FSR.

Seeing that the optical mode spacing is in fact equal to the Brillouin frequency and that
we have observed optomechanical coupling between the optical modes and two mechanical
modes of the HBAR, we are now ready to perform the storage and readout experiment.

3.4.2 Probing the main resonance

We perform the described optomechanical storage and readout experiment for 40 values
of (ΩIM − Ω1)/2π ranging from −200 kHz to 190 kHz and 15 values of twait from 1 µs to
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8.5 µs. Shorter values of twait were not possible with the way the data acquisition was set
up but the measurement scripts can easily be adapted to allow for this in the future. The
experiment was repeated 1500 times for each value of ΩIM and twait.
During each read pulse we record the discrete Fourier transform (DFT) Vdet(ω) of the
output of the balance detector. This spectrum exhibits a clear peak at ω = ωdet, where
ωdet ≡ ω1 + Ω1 − ωLO (see section 3.3.2). This is due to photons from the pump mode at
frequency ω1 getting upconverted to photons at frequency ω1+Ω1 via anti-Stokes scatter-
ing with the phonons in the HBAR (see figure 3.7). The height of this peak depends on
both the detuning ΩIM −Ω1, which determines how many phonons are created during the
write pulse, as well as twait, which determines how many phonons are still in the HBAR
at the start of the read pulse (see section 3.2). The height of the observed peak becomes
smaller for larger twait, due to the smaller remaining phonon population after longer wait
times between pulses. All measurements were taken with the same optical power in the
read and write pulse (−17.9 dBm CW power measured at the reference port). The error-
bars on the DFT amplitude (smaller than the markers in the plot) were taken to be the
standard deviation of the DFT amplitude away from the resonance after averaging over
multiple runs of the experiment.
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Figure 3.7: Amplitude of the DFT of balanced detector signal for different values of twait with
ΩIM = Ω1. A constant noise floor has been subtracted from all traces.

We then calculate
∑

n |Vdet(ωn)|2, where we sum over the frequencies close to the ob-
served peak. Note that there is a second, identical peak at frequency −(ω1 + Ω1), that
we do not show in our plots. We only sum over positive frequencies and then multiply
the result by two, to account for the negative frequencies. As shown in section 3.3.2, this
quantity is proportional to the retrieved phonon energy, so we refer to it as "retrieved
energy [a.u.]" in the following plots.
The behavior of the retrieved energy as a function of the frequency detuning as well as twait

are shown in figure 3.8. The response of the mechanical resonance is not symmetric in the
frequency detuning as seen most clearly in figure 3.8b for larger values of twait. In fact al-
ready for the shortest twait of 1 µs, the retrieved energy as a function of the drive detuning
does not follow the Lorentzian profile expected from driving a single mechanical eigenmode
coupled to a phonon bath (see figure 3.9). In fact, as we further discuss in section 3.5,
we are not driving a single mechanical eigenmode of the HBAR but a superposition of
eigenmodes that are close enough in frequency, such that we drive them simultaneously.
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Figure 3.8: Retrieved phonon energy for various wait times twait between the read and write pulse
as well as different IM drive frequencies ΩIM . We can see the response of a phonon mode with
frequency Ω1.
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Figure 3.9: Retrieved phonon energy as a function of the IM drive frequency detuning (ΩIM −Ω1)
for twait = 1 µs (blue points). We also plot a Lorentzian best fit to the data (orange line), to
illustrate the discrepancy between the two.

Looking at vertical slices of the plot from figure 3.8a, i.e. retrieved energy as a function
of twait for fixed frequency detuning, we can analyze the decay of the mechanical mode (see
figure 3.10). Ideally, this decay follows an exponential ∝ exp(−twait/T1), characterized by
the life time T1 = 1/Γm of the phonon mode as described in section 3.2.2. However the
observed decay only approximately follows an exponential decay best fitted to the data
and we find that the observed T1 is frequency dependent (figures 3.10 and 3.11). Note that
the experiments performed in [1] find an instrinsic mechanical linewidth of 54.5± 0.4 kHz,
corresponding to a T1 lifetime of 2.9 µs.
Generally, we observe that the retrieved energy follows the exponential for the first ∼ 6 µs
before dropping off below the exponential fit. However, for frequency detunings around 70
to 90 kHz we observe the opposite (see figure 3.10d). For larger twait, the retrieved energy
curve levels out a bit and lies above the best fit exponential decay. For larger frequency
detunings we again observe the initial behavior of the retrieved energy curve dropping off
(see figure 3.10e). The errorbars on the data points are propagated from the uncertainty
on the DFT averages, the uncertainty on the shown T1 lifetimes are extracted from the fits.
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Figure 3.10: Retrieved phonon energy (blue points), as a function of twait for different values of
ΩIM illustrating the different decay behaviors depending on ΩIM . We also plot exponential decays
∝ exp(−twait/T1) best fit to the data (orange line).

In figure 3.11 we plot the phonon T1 lifetime as a function of the frequency detuning.
Contrary to what one expects from a single mechanical eigenmode, we find that the T1

is highly non uniform and peaks at a frequency detuning of 60 kHz (figure 3.10c) with
a T1 more than twice as large as when measured when driving the mechanical mode on
resonance. One can also see evidence of this longer lifetime in the evolution of the traces
in figure 3.8b. Outside of the peak in T1, we measure T1 lifetimes on the order of 2 µs,
which would correspond to a mechanical linewidth of around 80 kHz - quite a bit larger
than the 54.5± 0.4 kHz that were found in [1]. It is not clear how to relate these varying
decay times to a single mode linewidth that we can compare to the linewidth found with
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3 Optomechanical storage and readout

the methods in [1].
Note that optomechanical backaction cannot be the reason for the enhanced or reduced

damping, since during the free evolution between write and readout pulses, no light is
populating the cavity. Most likely, the varying T1 times, which are a symptom of the
asymmetric response of the mechanical mode, have to do with the fact that we are probing
a superposition of eigenmodes of the HBAR. As previously mentioned we further discuss
this aspect in section 3.5.
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Figure 3.11: Dependence of phonon T1 on the frequency detuning (ΩIM − Ω1) of the drive.

Here we need to mention a potential calibration issue with the frequency axis in all of
these plots. As described in section 3.4.1, we recorded an OMIT spectrum to experimentally
determine the mechanical mode frequencies Ωm. For the OMIT spectrum, the IM was
driven by a VNA. For the optomechanical storage and retrieval measurements however we
used a separate RF source to drive the intensity modulator. This means that the location
of zero frequency detuning in the plots in this section relies on the comparison of two 12.6
GHz signals down to around 10 kHz, implying a relative accuracy of 10−6 when comparing
these devices, which we cannot guarantee, as we did not use a common clock source for
these measurements.
The upshot is that we can conclude that the maximum in retrieved energy (observed at
0 frequency detuning) and the maximum in phonon T1 (observed at a frequency detuning
of 60 kHz) happen 60 kHz detuned from eachother, however we cannot make an accurate
statement about where these features lie with respect to the dip in the OMIT spectrum.

3.4.3 Comparison with numerical estimates

In this section we list our typical experimental parameters and use them to compare the
retrieved phonon energy predicted by the model in sections 3.2.1 and 3.2.2 with the re-
trieved energy as calculated from the experimental results using equation (3.36) found in
section 3.3.2. Note that our theoretical model only accounts for one phonon mode which
is why we make the comparison using the data set from section 3.4.2.

A list of typical experimental parameters as well as the various relevant parameters of
our setup can be found in table 3.1. These are the parameters dictated by the setup itself
and or settings of various devices. Note that we only want to do a rough comparison, which
is why we do not give many significant digits the values in the table and rely on order of
magnitude similarity for numbers like the single-photon coupling rate.
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PRP −17.9 dBm
PLO −8.7 dBm
ηin 4.8

ηout 0.2

ηIM 0.02

ω1 2π · 193.4 THz
ωwrite ω1 +Ω1

Ω1 2π · 12.64 GHz
∆1 200 kHz
κ 2π · 2.4 MHz

κext 2π · 1.2 MHz

Γm 2π · 55 kHz
g0 2π · 8.4 Hz
G 2500 V/W
R 100 Megasamples/s
N 1401 samples

Table 3.1: External parameters for the optomechanical storage and retrieval experiment.
Parameters of the cavity as well as the single photon coupling rate g0 and the
mechanical linewidth Γm are taken from [1]. For the input coupling efficiency
ηin we take the value found in [1] and modify it to account for an average lock
level of 10 %. ηIM was measured using an IM drive power of 13.5 dBm, which
is what we use for our experiments.

In table 3.2 we list the effective coupling rates, the initial phonon amplitude β0 and the
optomechanical cooperativity Cread during the readout pulse as calculated using parame-
ters from table 3.1. We also list the retrieved phonon energy Er, theory for twait = 1 µs and
tread = 15 µs. To do this we numerically solved the equations of motion for the amplitudes
αcav
2 and β (see equations (3.20) and (3.21)) and then calculated Er, theory with equation

(3.33), again using parameters from table 3.1.

gwrite 2π · 93 MHz
gread 2π · 75 kHz
|β0| 2830

Cread 0.17

Er, theory 7.65 · 10−19 J ≈ 5.74× 105 · ℏΩm

Table 3.2: Calculated parameters using parameters from table 3.1, twait = 1 µs and tread =
15 µs

As can be seen in table 3.2, from our theoretical model we expect to retrieve the en-
ergy of roughly 5.74× 105 phonons. For comparison, at the start of the readout pulse for
twait = 1 µs we expect there to be roughly |β0|2 exp(−Γmtwait) ≈ 5.669×106 phonons. The
large difference between these numbers is due to the low cooperativity Cread ≪ 1 during
the readout pulse, meaning that it is much more likely for a phonon to decay rather than
swap its energy into a photon. Note that we could not go to higher cooperativity due to
laser power limitations.

Finally, we use our measurement results to calculate a measured value of the retrieved
phonon energy using equation (3.36).
For twait = 1 µs and ΩIM = Ω1 we measured

∑
n |Vdet(ωn)|2 = 0.52 V2 (see figures 3.7 and

3.8b). Plugging this and the required values from table 3.1 into equation (3.36), we find

Er,measured = 2.3 · 10−19J ≈ 1.71× 105 · ℏΩm,

corresponding to 30 % of the predicted value Er, theory ≈ 5.74× 105 · ℏΩm.
We mainly attribute this discrepancy to errors in estimating the parameters. While we
do not believe any single parameter estimate to be off by a factor of 3, it is entirely
possible that considerable errors in multiple parameter estimates lead to the theoretical
and measured value differing by this much. Notably the single photon coupling rate g0
varies from mode to mode (see [1]) and the value for the IM efficiency ηIM has an errorbar
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comparable to its magnitude.

3.4.4 Probing two mechanical resonances

Next we scan the frequency detuning of ΩIM from the Brillouin frequency ΩB over a wider
range than before, in order to see the second mechanical resonance at frequency Ω2 =
Ω1 + ΩFSR (see figure 3.6). Recall that the mechanical FSR is roughly ΩFSR/2π ≃ 625
kHz. Therefore we sweep the frequency detuning from −110 kHz to 748 kHz to see the
response of both the mechanical resonance at frequency Ω1 as well as the mechanical res-
onance at frequency Ω2.
As ΩIM gets close to Ω2, we see a second peak appear in the spectrum of the balanced
detector output at ω ≃ ωdet + ΩFSR (figure 3.12). The frequency resolution of the DFT
is merely 71 kHz, resulting in the peaks in the spectrum being separated by ∼ 640 kHz.
Nevertheless, the second peak is a clear indication that we are creating and reading out
phonons in the higher frequency mode at Ω2.
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Figure 3.12: DFT amplitude for various frequency detunings (ΩIM − Ω1) for fixed twait.

In figure 3.13 we show the retrieved energy as a function of the frequency detuning
ΩIM − Ω1 as well as the wait time twait. We can clearly see the presence of the second
mechanical mode at ΩIM−Ω1 = ΩFSR, although we get a weaker response from the second
mode. It is detuned a bit further from the optical mode spacing and exhibits a slightly
lower coupling, as can be seen in the OMIT spectrum (figure 3.6). Note that the optical
sideband generated during the write pulse at frequency ω1+ΩIM is still resonant with the
optical cavity even for ΩIM ≃ Ω1 +ΩFSR, as the linewidth κ/2π = 2.4 MHz of the optical
resonance is larger than the mechanical FSR ΩFSR = 625 kHz.
The evolution of the retrieved energy for increasing twait shows the same asymmetric
behavior seen before in figure 3.8 in both mechanical modes.
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Figure 3.13: Retrieved phonon energy for various wait times twait between the read and write pulse
as well as different IM drive frequencies ΩIM . We can see phonon modes located at frequencies Ω1

and Ω2.

We perform the same analysis of the retrieved energy as a function of twait for fixed fre-
quency detuning as we did in section 3.4.2. We fit an exponential decay ∝ exp(−twait/T1)
to the vertical slices of figure 3.13a and plot the retrieved T1 as a function of the frequency
detuning in figure 3.14. We again see that the phonon lifetime T1 peaks when the mode
is driven roughly 60 kHz above the phonon frequency. The second phonon mode exhibits
the same behavior.
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Figure 3.14: Phonon lifetime T1 as a function of the frequency detuning (ΩIM − Ω1).

Finally, we can also separate the retrieved phonon energy into energy retrieved from
phonon mode 1 at frequency Ω1 and energy retrieved from phonon mode 2 at frequency
Ω2. Recall that the retrieved energy is proportional to

∑
n |Vdet(ωn)|2, where Vdet(ω) is the

DFT of the the auto-balanced detector output. We split this sum in half and assign the
energy coming from terms in

∑
n |Vdet(ωn)|2 with ω < Ω1 + ΩFSR/2 to mode 1 and the

energy coming from terms in
∑

n |Vdet(ωn)|2 with ω > Ω1 +ΩFSR/2 to mode 2.
In figure 3.15 we plot the phonon energy retrieved from mode 1 and 2 respectively as a
function of the frequency detuning (ΩIM − ΩB) for twait = 1 µs. We can see that this
scheme works fairly well for differentiating between the two modes. However we do still
see a bump in the retrieved energy from mode 2 at zero frequency detuning. This is due to
the "tails" of the peak at ωdet in the DFT spectrum reaching out into the upper half of the
considered spectrum (see figure 3.12), meaning that we assign some of the retrieved energy
from phonon mode 1 to phonon mode 2. The width of the peaks in the DFT spectrum can
be explained by the linewidth of the phonon mode and the finite duration of the readout
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pulse causing a broadening in the detected frequency.
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Figure 3.15: Retrieved phonon energy separated by the two phonon modes we excite during the
write pulse.

3.5 Discussion

In this section we briefly recap the results of this chapter and discuss some of the unex-
pected and unexplained features thereof. We further propose an avenue with which one
might be able to better theoretically describe the results of our experiments.

With our experimental setup we were able to perform the proposed optomechanical storage
and readout experiment and achieve a sufficient signal to noise ratio to get clear signals
in the explored parameter regimes. We were able to selectively store an optical pulse in
one of two mechanical modes and retrieve it after multiple microseconds. We probed the
response of two mechanical modes to being driven with different frequency detunings and
characterized their temporal decay. The measured energy retrieved out of the generated
mechanical excitations matches within an order of magnitude what we expected to measure
based on the simple model in sections 3.2.1 and 3.2.2, based on the semiclassical treatment
of two optical modes coupled to a single phonon mode.
However, we did encounter behavior not captured by this model: The observed T1 lifetimes
of the mechanical modes depend strongly on the frequency detuning with which they were
driven at (e.g. see figure 3.14) and we see systematic deviations from exponential decay in
the T1 plots. This is also related to the fact that the response (i.e. the retrieved phonon
energy) of the mechanical modes is not symmetric in the frequency detuning of the drive
and generally does not follow a Lorentzian profile for the used values of twait. Probably the
response would look more like a Lorentzian for shorter values of twait but for the reason
mentioned below, we do not necessarily expect a Lorentzian response even for twait = 0.
The explanation we currently deem the most likely for these effects mainly relies on the fact
that the mechanical resonance we see is not a single mechanical eigenmode of the HBAR.
Each mechanical mode we see consists of multiple eigenmodes with Bessel function mode
profiles. They are not frequency degenerate due to the finite extent of the crystal, however
they are close enough in frequency, such that we always excite a superposition of these
eigenmodes in our experiment (see SI of [12]). In the following, we sketch an argument
that may be able to explain the mentioned properties of our results, although more theo-
retical work needs to be done to completely verify this.
Our optical modes apply a forcing function to the HBAR with a Gaussian mode profile,
meaning that the mechanical excitation we create is a superposition of Bessel modes with
a Gaussian mode profile that matches the optical mode profile. This superposition is sub-
ject to diffraction loss stemming from the discrepancy in longitudinal and transverse sound
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velocities in quartz [12].
In the Langevin equation that we used to describe the evolution of our mechanical mode,
losses are modeled by the term −Γm/2 b̂, describing the coupling of the mode b̂ to a
phonon bath with Markovian dynamics. However diffraction loss, which has been studied
in HBARs (see e.g. [12] or [21]), is not a Markovian process and is only qualitatively
described by the term −Γm/2 b̂ in the Langevin equation. Since we expect diffraction to
be our main loss channel [1], this might be able to explain why we see deviations from
exponential decay in our T1 plots.
The frequency detuning with which we drive the mechanical mode affects which superpo-
sition of mechanical eigenmodes is excited in the HBAR. We suspect that the amount of
diffraction loss depends on the specific superposition of eigenmodes. This might provide
an explanation for the large variations in phonon lifetimes that we observe. One should
be able to verify (or falsify) this theory by calculating what the excited superpositions are
and simulating their diffraction losses using the method from [21].
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Chapter 4

Conclusion

In this work we have made progress towards microwave-to-optical transduction by adapt-
ing the experimental setup and PDH laser locking scheme from [1] for the pulsed operation
needed for a future transduction experiment. Further, we have demonstrated the creation
and subsequent readout of large coherent phonon states by means of Brillouin scattering.
The readout of phonon states by means of Brillouin scattering comprises an essential part
of microwave-to-optical transduction using a phonon mode of an HBAR as an intermediary
between the superconducting qubit state and the optical mode of a fiber.

First tests of the locking scheme in pulsed operation using PID controllers directly built in
to the laser controller demonstrated the need for higher bandwidth PID controllers with
faster reaction times to turning the active feedback on and off.
We have demonstrated that the PID controller implemented on a Red Pitaya through
the PyRPL software package has a bandwidth high enough to make corrections on the
timescale of the cavity dynamics and has active feedback that can be turned on and off
within ∼ 0.1 µs. Through tests performed in both the room temperature test cavity as
well as the cryogenic cavity, we have found a PID parameter regime that appears to be
relatively well suited to deal with the noise environment in the fridge.
Monitoring the quality of the lock during longer measurements on the timescale of minutes,
while pulsing at a repetition rate of 1 kHz, has shown average lock levels as low as 17 %,
although this is not typical and average lock levels over 30 % were observed in similar
measurements. These large fluctuations are probably caused by external environmental
conditions (people in the lab, construction in the same building, etc.).
It remains open how the relative timing of turning on the PID controllers affects the lock
performance and most likely the PID parameters can be further optimized. A more sys-
tematic study of these aspects is still needed. Further, we believe that the performance
of the Red Pitaya is currently limited by the limited output range, causing the feedback
voltage to get stuck at the minimal or maximal value, hindering further active feedback.
Related to this, we have seen that the quality of the lock clearly oscillates at the frequency
of the turbo pump, which is the dominant noise source in the fridge, indicating that our
locking scheme is not yet doing enough to suppress this noise source and the setup would
benefit from further vibration isolationi.

In the second part of this work we successfully stored and subsequently retrieved opti-
cal pulses from a phonon mode of an HBAR through Brillouin scattering. Within an order
of magnitude, the retrieved phonon energy matches what we predict using a simplified
coupled oscillator model. We probed the response of two phonon modes for different de-
tunings of the drive frequency and characterized the lifetimes of the mechanical excitations
we created through this. We found that the lifetimes of the mechanical excitations depend
on the frequency detuning at which the mechanical mode was driven and the decay only
approximately follows an exponential. We find T1 lifetimes as high as 4.9 ± 0.1 µs for a
drive detuning of 60 kHz, which is 70 % larger than what one expects from the instrinsic
linewidth of the phonon modes found in [1]. Related to this, the mechanical modes did

iNote that we used the same vibration isolation as [1]. The improved vibration isolation stage had not
yet been mounted at the time of this project.
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4 Conclusion

not exhibit a Lorentzian response for the values of twait we used. Although based on our
discussion in 3.5 this is to be expected, as we were measuring the response for twait > 0.
We hypothesize that these effects are caused by diffraction loss, which generally does not
fulfill the assumptions which lead to the typical exponential energy decay. The observed
mechanical modes are comprised of a superposition of eigenmodes of the HBAR and we
suspect that the frequency detuning of the drive affects the exact composition of these
superpositions, leading to drive frequency-dependent diffraction losses.
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