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Abstract

Loss mechanisms in circuit quantum acousto-dynamic systems (cQAD) are investigated
using different simulation methods. COMSOL Multiphysics simulations from which key
system parameters can be extracted, such as energy participation ratios and coupling
rates, are tested for sensitivity, improved and extended. Furthermore, a novel model to
describe a specific type of loss due to electromechanical coupling in the hybrid system
is developed, which is based on results extracted from COMSOL as well as from a new
approach called the acoustic Schrödinger equation.
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Chapter 1

Introduction

1.1 Quantum information processing

In the advent of the highly active field of quantum information processing (QIP), different
quantum platforms including photons [1–3], spins in quantum dots [4], NV centers [5],
trapped ions [6], superconducting circuits [7] and phononic systems [8] are being in-
vestigated in the search of scalable and high fidelity quantum computing and sensing,
each system having advantages and disadvantages. While for example the polarization
or the number of photons can be used to encode quantum information robustly, due
to their weak interaction with the environment, interaction between photons and hence
two-qubit gates are difficult to achieve. Qubits based on the internal energy levels and
shared motional states in trapped ions inherently have long coherence times [9] and offer
high gate fidelities [10], but comparably slow gate times. Furthermore, increasing the
number of ions poses challenges. As a third example, superconducting circuits have rela-
tively low coherence times, only recently surpassed the 500 µs mark in a transmon based
on tantalum [11]. However, these circuits can be fabricated according to human-made
design choices, providing scalability and opening the door for optimization. Recently,
error correcting codes have been implemented on different platforms, as for example the
distance-three error correcting code using 17 superconducting qubits [12] or the Gottes-
man–Kitaev–Preskill (GKP) code on single trapped ions [13], showing potential paths
towards fault tolerant quantum computing. Still, many challenges remain to be solved
and no particular system is clearly a favorite.

1.2 Hybrid systems: cQAD

One possible solution to the challenges on the road towards fault tolerant computing that
has been proposed is to combine different types of quantum systems taking advantage of
their intrinsic properties. A promising direction is given by the nascent field of circuit
quantum acustodynamics, in which mechanical resonators in the quantum regime and
superconducting circuits are coupled [3, 14, 15]. For example, mechanical resonators can
be used as long-lived quantum memories [16] due to their high quality factors [17], small
device footprints and the fact that cooling different types of mechanical resonators to
the groundstate has become possible at GHz frequencies. Apart from quantum mem-
ories, phononic systems can also be used for many interesting information processing
tasks themselves, as well as for transduction between microwave and optical quantum
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1 Introduction

systems [18, 19] by bridging their wavelength mismatch. Finally, mechanical resonators
may offer the possibility to explore fundamental principles of quantum mechanics in
sensing applications [20, 21].

1.3 Modeling

Modeling these coupled systems is difficult both analytically and numerically, and no ma-
ture methods exists yet. Specifically, the dominant loss channels of such coupled systems
must be investigated in order to improve hybrid quantum systems, as experimentally the
coherence times are lowered significantly when superconducting circuits and quantum
acoustics are combined.

1.4 Goal of this thesis

In this thesis, we investigate different types of simulations with the goal of describing
a model for phononic losses in a cQAD device. The work focuses on three types of
simulations: solid mechanics simulations based on paraxial beam propagation in a high-
overtone bulk acoustic resonators, multiphysics simulations of this resonator coupled to
a transmon-like qubit in a 3D microwave cavity as well as simulations based on a new
analogy between acoustic modes in a mechanical resonator and solutions of an equivalent
Schrödinger equation. From the multiphysics simulations we extract quantities that
are combined with the results of this new method, and throughout the thesis, cross-
comparison of the used simulations is done.
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Chapter 2

Theory

In this thesis, a cQAD device called ℏBAR consisting of a superconducting qubit coupled
piezo-electrically to a mechanical resonator in a 3D microwave cavity is investigated. The
relevant theoretical framework to model these type of devices is presented in this chapter.

2.1 Modeling superconducting qubits

Different models exist to describe the interactions between superconducting qubits cou-
pled to a common multi-mode cavity, which fall under the field of circuit QED. While the-
oretically Jaynes-Cummings models can be applied, including higher order cavity modes
becomes problematic [22] for practical purposes. Alternatively, semi-classical black box
quantization methods [23] allow to determine the Hamiltonian and quality factors of
eigenmodes by partitioning the circuit into purely linear and non-linear terms, such that
the system properties can be derived from system response simulations. A third ap-
proach is the energy participation (EPR) method [24], in which the energies of classical
electromagnetic eigenfields are used as a bridge to the quantum description.

2.1.1 Black box quantization

Black box quantization methods allow the computation of the system Hamiltonian in
the weak anharmonic limit and are centered on the idea of finding a basis of the linear
Hamiltonian part of the superconducting circuit, to which the pure non-linearities are
added as perturbations.

In the case of a single Josephson junction coupled to a 3D cavity, the junction is divided
into a purely non-linear element, and its linear inductance and capacitance,

LJ =
ϕ20
EJ

(2.1)

CJ =
e2

2EC
(2.2)

as can be seen in Figure 2.1.
Here, ϕ0 = ℏ/(2e) is the magnetic flux quantum, e the elementary charge and EJ , EC

denote the Josephson and charging energies, respectively.
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2 Theory

Z(ω)

Figure 2.1: Conceptual division in the black box quantization method of a system com-
posed of a Josephson junction (grey box) coupled to a cavity (bold), resulting
in a total linear impedance of Z(ω). The top-most circuit symbol represents
the entirely non-linear element of the junction.

The linear junction elements together with the linear electromagnetic environment
posed by the cavity can be decomposed into a lumped equivalent Foster circuit (the
black box) with the total impedance being a sum of the impedances of each mode p

Z(ω) =
M∑
p=1

(
jωCp +

1

jωLp
+

1

Rp

)−1

(2.3)

From the linearized circuit, the quality factor of each mode on resonance frequency ωp

can be estimated as

Qp =
ωp

2

Im[ ∂
∂ωY (ωp)]

Re[Y (ωp)]
(2.4)

which relates to a purcell limited qubit lifetime of T1 = Qp/ωp.
The linear Hamiltonian can be derived from quantizing each mode represented in the

impedance Z(ω) in the canonical way, yielding

H0 =

M∑
p=1

ℏωpa
†
pap (2.5)

Thus, by adding the non-linear element, the total Hamiltonian becomes

H = H0 +Hnl (2.6)

In the basis of the eigenstates of H0 the non-linear part can be treated perturbatively.
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2.1 Modeling superconducting qubits

This procedure can be easily expanded to a circuit including a number of N Josephson
junctions, where the total linear impedance will take the form of a N × N matrix.
Therefore, the only remaining question to complete the method for general circuits lies
in how to determine the impedance Z(ω) of the linear circuit as well as its poles (to
find the resonance frequencies). This could be achieved by direct measurement, but
for prediction of device properties for design and optimization this is not practical. An
alternative natural solution is given by means of high frequency structure simulation
(HFSS) software such as Ansys HFSS or COMSOL Multiphysics, which solve Maxwell’s
equations of the system numerically by discretizing the device hosting the circuit in space.
However, the needed frequency domain simulations are computationally expensive, as
will be illustrated in chapter 3, which is the main disadvantage of black box quantization
methods.

A second approach to numerically compute the spectrum of a superconducting circuit
without need of frequency domain simulations is the energy participation ratio (EPR)
method, which is based on computation of the eigenenergies of the system instead.

2.1.2 EPR method

In this section we review the EPR method [24]. The method is a quantization method
based on solutions of a classical finite element method (FEM) simulation. The key idea
is that as in black box methods, the system Hamiltonian can be decomposed into a
linear and a non-linear part, the former being defined by the eigenfrequencies of the
system, while the latter will be found to be defined by the energy participations. Both
can be extracted from the simulations. To understand how this is possible, one can
derive the system Hamiltonian of a superconducting circuit, quantize it and find this new
quantity, the EPR, from which the quantum fluctuation amplitudes can be computed.
The procedure starts by computing a spanning-tree of the circuit. The flux in branch j
is denoted by ϕj , and the vector containing all spanning-tree fluxes by Φt. With this, the
sum of the energy of all capacitive elements in the circuit can be written in the quadratic
form

ϵcap(Φ̇t) =
1

2
Φ̇T
t CΦ̇t (2.7)

where C is the capacitance matrix of the circuit. The inductive energy on the other
hand is composed of a magnetic and kinetic part

ϵind(Φt) = ϵmag(Φt) + ϵkin(Φt) (2.8)

where the former is the energy stored in the magnetic fields and reads similarly to
equation 2.7

ϵmag =
1

2
ΦT
t L

−1
magΦt (2.9)

while the kinetic energy is due to the energy of the electrons in the Josephson junctions
of the circuit. This energy that every junction contributes can be divided into a linear
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2 Theory

and non-linear part

ϵj(ϕj) =
1

2
Ej(ϕj/ϕ0)

2

︸ ︷︷ ︸
ϵlinj (ϕj)

+Ej

∞∑
p=3

cjp(ϕj/ϕ0)
p

︸ ︷︷ ︸
ϵnl
j (ϕj)

(2.10)

with the second term on the right hand side representing the expansion of the non-
linearity. Since the energy of a Josephson junction is

ϵ(ϕj) = EJ(1− cos(ϕ/ϕ0)) (2.11)

the coefficients in equation 2.10 are

cjp =
(−1)(p/2+1)

p!
(2.12)

for even p and zero otherwise. With the capacitive and inductive energies of the system
defined, the Lagrangian can be written down as their difference. Again, a partition into
a linear and non-linear part is made

L(Φt, Φ̇t) = ϵcap − ϵind = Llin + Lnl (2.13)

This is done in order to first diagonalize the linear part, after which the non-linear
part can be treated as perturbation. For the diagonalization one can use the fact that
both the capacitance and inductance matrices are real and symmetric, so they can be
diagonalized each with an orthogonal matrix. This gives for the inductance matrix L =
OLΛO

−1
L , where OL is orthogonal and Λ diagonal. Therefore, the corresponding energy

term becomes

1

2
ΦT
t L

−1Φt =
1

2
(ΦT

t OLΛ
−1/2︸ ︷︷ ︸

Φ̃T

)I−1
L (Λ−1/2OT

LΦt)︸ ︷︷ ︸
Φ̃

(2.14)

Here, I−1
L is the identity matrix with inverse dimensions of inductance. Transforming

the Lagrangian to the new flux Φ̃ transforms the capacitance matrix to

C̃ =
(
Λ1/2OT

L

)
C
(
OLΛ

1/2
)

(2.15)

which is also diagonalizable as OT
CC̃OC = ΛIC . Applying the same procedure as for

the inductance, we finally can write the Lagrangian in diagonal form

L(Φm, Φ̇m) =
1

2
Φ̇T
mΛICΦ̇m −

1

2
ΦT
mI

−1
L Φm + Lnl(Φm) (2.16)

where Φm is the new eigenmode magnetic flux. Applying the Legendre transform to
it gives the system Hamiltonian
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2.1 Modeling superconducting qubits

H =
1

2
QT

mΩ2ILQm +
1

2
ΦT
mI

−1
L Φm − Lnl(Φm) (2.17)

where Qm = ΛICΦ̇m is the canonical momentum and Ω the eigenfrequency matrix.
Crucially, this eigenfrequency matrix and the corresponding eigenvector matrix can be
computed numerically with finite element methods. Now, equation 2.17 is quantized
using the canonical Dirac approach, leading to

Ĥ =

M∑
m=1

ℏωma
†
mam︸ ︷︷ ︸

Hlin

+

J∑
j=1

∞∑
p=3

Ejcjpϕ̂
p
j︸ ︷︷ ︸

Hnl

(2.18)

where the quantized dipole flux operator is given as

ϕ̂j =

M∑
m=1

ϕmj(âm + â†m) (2.19)

with the zero point fluctuations (ZPF) ϕmj . One can then define a quantity called
energy participation ratio (EPR) for a mode m and junction j as the ratio of the time
averages of the linear energy in the junction to the inductive energy of the mode as

pmj =
⟨ϵj,lin⟩m
⟨ϵind⟩m

(2.20)

where the inductive energy ϵind corresponds to half of the total linear energy according
to the equipartition theorem. For the expectation, a state with an excitation in mode m
is used, but the resulting EPR is in fact independent of the state. The EPR can be
extracted from HFSS by computing the eigenmodes of the electromagnetic fields by
using the linear inductance Lj and peak current at the junction Imj of eigenmode m,

pmj =
1

2

LjI
2
mj

ϵind
(2.21)

The key of the EPR method is the following: it can be derived that the energy partic-
ipation is related to the ZPF as

ϕ2mj = pmj
ℏω
2Ej

(2.22)

Therefore, the energy participation is a parameter that allows the extraction of the
quantum fluctuations and with it, Hnl. Furthermore, the participations provide insight
into losses, as will be explained in the next section.
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2 Theory

2.1.3 Losses in superconducting circuits

To date, losses in superconducting qubits are thought to be dominated by close defects
acting as a bath of two-level systems (TLS) that couple to the qubits, leading to their
decoherence [25, 26]. These defects typically stem from contaminations in the bulk and
surface of dielectric materials, and since the type of loss is proportional to the electric
field intensity, it is denominated as capacitive. Both bulk and surface dielectric losses
can be computed numerically through their corresponding energy participation, which
for the former is proportional to the integral of the electric field over its volume V

pcap,bulk =
1

4εelec
Re

∫
V
dvE⃗∗

maxϵ⃗E⃗max (2.23)

where ϵ denotes the dielectric permittivity and εelec is the total electric field energy.
In the case of surface dielectric loss, this is simplified using a spatially constant dielectric
permittivity over the surface thickness t.

pcap,surf =
tϵ

4εelec
Re

∫
A
ds
∣∣∣E⃗max

∣∣∣2 (2.24)

The sum over the all dielectric elements l leads to the associated capacitive loss

1

Qcap
=
∑
l

plcap
Ql

cap

(2.25)

Apart from dielectric losses, inductive losses can arise from currents in metals at sur-
faces and in seams, which are proportional to the magnetic field magnitude instead. The
former lead to the participation ratios

pind,surf =
λ0µ

4ϵ
Re

∫
A
ds|H⃗max,|||2 (2.26)

where λ0(ω) is the frequency dependent skin depth and µ is the magnetic permeability.
The participations arising from the interface between two metals (the seam) is similarly

pind,seam =
λ0tµ

4εmag
Re

∫
A
ds|H⃗max,⊥|2 (2.27)

for a seam of thickness t. Again, the sum over all elements can be condensed to a total
inductive quality factor

1

Qind
=
∑
l

plind
Ql

ind

(2.28)

Hence, the total qubit relaxation is a sum of these capacitive and inductive losses

1

Qtot,qb
=

1

Qcap
+

1

Qind
(2.29)
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2.2 Circuit Quantum Acoustodynamics

It has to be pointed out again that the first two terms can be extracted from classical
eigenmode simulations, making it possible to engineer the geometry of the superconduct-
ing circuits to minimize these types of losses.

2.2 Circuit Quantum Acoustodynamics

Analogous to the idea of circuit Quantum Electrodynamics (cQED), in which super-
conducting circuits are coupled to common electromagnetic modes, the emerging field of
circuit quantum acoustic dynamics (cQAD) investigates the interaction between acoustic
modes of mechanical resonators and superconducting circuits. This quantum information
platform offers many fascinating opportunities and advantages to investigate both fun-
damental physics and information processing applications. After introducing the basics
of waves in solids, the investigated mechanical resonators and different types of losses
therein will be described.

2.2.1 Elastic waves

In continuum mechanics, materials can be classified as elastic or inelastic. The for-
mer are described by a one-to-one correspondence between stress and strain in the non-
piezoelectric solids, whereas for inelastic materials it can be multiple-valued. In its most
general form, the elastic relation can be written as the Taylor expansion

Tij = Tij(0) +

(
∂Tij
∂Skl

)
Skl=0

Skl +
1

2

(
∂2Tij

∂Skl∂Smn

)
Skl=Smn=0

SklSmn + ... (2.30)

Keeping only the linear term and using the fact that Tij(0) = 0 results in

Tij = αijklSkl (2.31)

where Tij and Skl denote the elements of the second-rank stress and strain tensors,
respectively. Because T and S are symmetric, one can rewrite the relationship using the
six-vector Voigt notation

τi = cijϵj (2.32)

where cij denote the elements of the stiffness matrix, which can be found for example
in [27]. The dynamics of a solid can be derived from the mass conservation and Newton’s
second law [28]. The dynamical equation to start with is

ρ
∂2ui
∂t2

=
∂Tij
∂xj

+ fj (2.33)

where ρ denotes the density of the solid, ui a component of the displacement field
and fj the body forces. Neglecting the body forces f and inserting the ansatz of a
monochromatic plane wave with polarization unit vector e⃗ expressed as

9
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u⃗(r⃗) = u0e
i(q⃗·r⃗−ωt)e⃗ (2.34)

into the dynamical equation leads to the relation

ρω2ei = αijlmqjqmel (2.35)

One can then define the Christoffel tensor as

Dij =
1

ρ
αijlmqjqm (2.36)

which depends on the normalized wavevector components qj , qm. With this, the dy-
namical equation can be written as an eigenvalue problem

(Dil − v2δil)el = 0 (2.37)

While the eigenvalues of this equation correspond to the phase velocity, the eigenvec-
tors represent the polarizations of each of the three plane wave solutions. The largest
eigenvalue defines the quasi-longitudinal wave, the other two waves are called quasi-
transverse. Since the Christoffel tensor depends on the wavevector, the phase velocity
and the wavevector are not necessarily parallel. Furthermore, computing the velocities
of a given type of wave for every direction results in a surface called velocity surface. Its
inverse, the slowness surface, is a surface of constant frequency ω(q⃗). Because the group
velocity of the wave is the gradient of the frequency as a function of wavevector, it is
normal to the slowness surface. Also, the Poynting vector, defined as

P = −⟨vϕ · T ⟩t (2.38)

becomes

P =
1

2
(ρω2u20cg)ωu

2
0 ∝ vg (2.39)

for the plane wave ansatz used. Since it is proportional to the group velocity, the
energy also flows normal to the slowness surface. For non-isotropic materials, this leads
to interesting effects such as phonon focusing due to their non-convex slowness surfaces.
For a visual representation of the surfaces, see Figure 2.2.

2.2.2 High overtone bulk acoustic wave resonators (HBAR)

Acoustic waves can be trapped in mechanical resonators analogous to the optical case,
resulting in standing waves. For phononic quantum information applications, the coher-
ent control of individual mechanical excitations, phonons, is required, which demands
high acoustic quality factor resonators. A figure of merit of practical importance needs
to include the resonator frequency, such that often the product f · Q is cited, because
it is proportional to the number of coherent oscillations done for a resonator that is

10
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Figure 2.2: Slowness surface cuts for each of the three types of wave in a sapphire crystal.
Waves with the smallest wave vectors are denominated quasi-longitudinal, the
remaining two quasi-transverse.

coupled to a thermal environment. Although phononic crystal defects with lattice pa-
rameters in the micron range and surface acoustic wave resonators (SAW) can achieve
high quality factors and are used in quantum information applications, bulk acoustic
wave resonators (BAW) have shown to reach record f ·Q values of 1.6 · 1018 at cryogenic
temperatures [17]. Another advantage is the size of these BAW resonators, which can
be made chip-scale because acoustic wavelengths at GHz frequencies are in the order of
1 µm, and therefore suitable for cQAD experiments. In this thesis, high overtone bulk
acoustic wave resonators (HBAR) are investigated, which, as the name implies, support
large longitudinal mode numbers. Their properties are analogous to the ones of optical
Fabry-Pérot cavities, which are defined by the resonator length and the curvatures of the
boundaries forming the mirrors. A central characteristic of such resonators is the free
spectral range, i.e. the frequency difference between two longitudinal modes, which is
defined as

νFSR =
vl
2L

(2.40)

where vl =
√
c11/ρ and L denote the longitudinal acoustic velocity and the length of

the resonator, respectively. While this is exact for a cavity with two planar surfaces, it is
not anymore for curved surfaces and one has to draw on approximations or simulations.

Stability criterion

Modes in HBARs with planar surfaces are unconfined, which can be problematic because
it leads to loss due to diffraction. In order to confine the modes, the resonator surfaces
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have to be curved and fulfill the stability criterion

0 ≤
(
1− L

χR1

)
︸ ︷︷ ︸

g1

(
1− L

χR2

)
︸ ︷︷ ︸

g2

≤ 1 (2.41)

with R1, R2 being the radii of curvature of the cavity surfaces on either side and the
anisotropy parameter being [17]

χ =
v2l (v

2
l − v2t )

v2l v
2
t − v4t + γ4

(2.42)

Here, vt is the transverse velocity and γ =
√

(c12 + c44)/ρ. In the following, only
confined modes will be investigated. Except otherwise indicated, the HBARs will be
plano-convex, where the convex surface will be called a dome.

Confined modes

In the paraxial approximation, the solutions of the wave equation in a HBAR with infinite
spherical surfaces are Laguerre-Gaussian (LG) or Hermite-Gaussian (HG) modes profiles
transverse to the paraxial axis and Gaussian along the axis. The LG and HG mode
families are the natural solutions in cylindrical and cartesian coordinates respectively
and are in fact equivalent, as every LG mode can be written as a sum of HG modes
and vice versa [29]. The analytical expression for a Laguerre-Gaussian mode, which
appears more often in COMSOL simulations, with azimuthal index l and radial index p
in cylindrical coordinates r, ϕ, z is

u(r, ϕ, z) = A0
w0

w(z)

(
r
√
2

w(z)

)|l|

exp

(
− r2

w2(z)

)
L|l|
p

(
2r2

w2(z)

)
× (2.43)

exp

(
−ik r2

2R(z)

)
exp(−ilϕ) exp(iψ(z)) (2.44)

with the following quantities:

• w0 the beam waist at z = 0

• w(z) = w0

√
1 + ( z

zR
)2 with the Rayleigh length zR

• R(z) = 1
χ(z +

z
z2R

)

• ψ(z) = arctan
(

z
zR

)
Since the divergence of the acoustic Gaussian beam is given by the Rayleigh length

12



2.2 Circuit Quantum Acoustodynamics

Figure 2.3: Illustration of phase fronts matching the resonator boundaries to meet con-
finement in a high overtone bulk acoustic resonator (HBAR).

z2R =
g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2
(2.45)

which for typical samples with resonator lengths l ≈ 420 µm and dome heights of 1 µm
is much longer than the length of the resonator, the paraxial approximation is valid. This
can also be observed well in COMSOL simulations done in this parameter regime.

In addition to the free spectral range (FSR), one can look at the spacing between
different transverse modes. From the condition that the round-trip phase must be integer
multiple of 2π, it follows that this transversal mode spacing is

∆f =
1

2π
arctan

(
L

zR

)
vl
L

(2.46)

Confinement can also be understood by looking at the phase fronts of the mechanical
modes, which for confinement need to match the reflecting surfaces, see Figure 2.3.

Quantisation

The acoustic modes living in resonators can be quantized following the same procedure
as is done with electromagnetic fields. Starting with the normalized mode displacement

u⃗(r⃗, t) = u0e
−iωth⃗(r⃗) + c.c (2.47)

where the polarization and mode shape are defined by h⃗(r⃗), one can derive that the
Hamiltonian of the system composed of the kinetic and potential energy will be

H = T + V (2.48)

=
1

2

∫
dV

∂ui
∂t

∂u∗i
∂t

+
1

2

∫
dV cijlm

∂ui
∂xj

∂ul
∂xm

(2.49)

= 2ρω2|u0(t)|2 (2.50)

Defining the conjugate variables q = u0(t) + c.c. and p = −iωρ(u0(t) + c.c)

13
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the Hamiltonian can be written in the form of a harmonic oscillator

H =
p2

2ρ
+

1

2
ρω2q2 (2.51)

to which the canonical quantization can be applied by elevating the conjugate variables
to the operators

p̂ = −i
√
ρℏω
2

(a− a†) (2.52)

q̂ =

√
ℏ

2ρω
(a+ a†) (2.53)

so that the quantized displacement is

u⃗(r⃗, t) =

√
ℏ

2ρω
f⃗(r⃗) ˆa(t) +H.c. (2.54)

2.2.3 Losses in a HBAR

Losses in BAW resonators can either arise from intrinsic properties of the material crystal
and its surfaces, or from the resonator geometry. In the following, both will be discussed
in more detail.

Intrinsic losses

This type of loss can be ascribed to at least five mechanisms [30].

• Phonons trapped in the resonator can interact and therefore scatter off from each
other. The associated quality factor scales with temperature as Qph−ph ∝ T−6.5.

• At low temperatures, phonons can also interact with impurity ions in a similar way
as qubits with two-level systems (TLS). In this case, theoretically the quality factor
depends on the temperature as QTLS ∝ T−1/3.

• The third intrinsic loss is attributed to the scattering at the surfaces of the res-
onator. Since the surfaces can not be made perfect in fabrication, some sur-
face roughness remains. A surface of variance σ2 has the reflection coefficient
R = e−2k2σ2 for a given wavevector k and it can be shown that the randomized
wavevectors result for the n-th overtone in the associated Q-factor

Qscatt =
t2

2nσ2
(2.55)

For example, in the case of of HBARs with dome thickness t ≈ 420 µm at overtone
n ≈ 100 and with a surface roughness σ ≈ 0.2 nm, one has Qscatt ≈ 8.8 · 1010.
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2.2 Circuit Quantum Acoustodynamics

• A last mechanism describes loss due to thermal conduction, which results in an
effective attenuation of the acoustic wave.

The losses in a HBAR can be added and therefore the total intrinsic loss is lower-
bounded by

1

Qi
=

1

Qph−ph
+

1

QTLS
+

1

Qscatt
+

1

Qtherm
(2.56)

Geometrical loss: clamping

Another type of loss arises from the finite extent of the confining resonator surfaces. It
can be estimated for a specific eigenmode of the finite resonator by looking at the ratio
of its acoustic energy lying outside of the region which is encompassed by the HBAR
dome to the total mode energy [17]

R =
Eout

Etot
=

∫
out |u|

2dr∫
tot |u|2dr

(2.57)

From this, one can compute a lower bound of the phonon lifetime for a resonator of
thickness t assuming that all the energy lying outside of the encompassed region is lost.

τ = −2t

vl

1

ln(1−R)
(2.58)

This lifetime is associated with the quality factor

Qcl = −2πfτ = −4πtf

vl

1

ln(1−R)
(2.59)

In the case of a paraxial Gaussian beam, the fundamental mode is of the form

u(x, y, z) = u0 exp

(
−x

2 + y2

w2
0

)
cos
(mπx

t

)
(2.60)

where w2
0 is the beam waist. Then, the ratio R for a resonator with a dome of lateral

extent d becomes

R = exp

(
− d2

2w2
0

)
(2.61)

Therefore, for the Gaussian beam one has the quality factor

Qcl = −
4πtf

vl

1

ln
(
1− exp

(
− d2

2w2
0

)) (2.62)

An alternative method that is proposed to estimate the diffraction loss is by integrating
the outward pointing mechanical power flux Im, which gives the associated quality factor
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a)
b)

c)

d) d)

Figure 2.4: Main loss mechanisms in a HBAR: a) Phonon-phonon interaction, b) Impu-
rity ions scattering, c) Surface scattering, d) Diffraction loss, which can be
estimated by looking a the mode energy in the region under the dome versus
the energy outside.

Q =
Etot∫

A dI⃗m · n⃗r
(2.63)

It is expected that diffraction loss increases with increasing radial mode index of
Laguerre-Gaussian modes, as the energy of the modes becomes more spread out.

To summarize, a schematic of all described loss mechanisms is shown in Figure 2.4.

2.2.4 Electromechanical loss: Radiation

A particular loss present in cQAD systems stems from the interaction of the electric field
of a qubit with phonons in some substrate by means of piezoelectricity. Just as atoms
can emit photons when decaying because of coupling to the environment in spontaneous
emission, the field of the qubit may decay into phonon modes. Quantitatively, this loss
can be derived in the Weisskopf-Wigner theory for a Hamiltonian H0 with a spectrum
that has both discrete eigenstates

H0|ai⟩ = ai|ai⟩ (2.64)

and a continuum

H0|ϵ⟩ = ϵ|ϵ⟩ (2.65)

as is done in [31, 32]. Adding a perturbation or interaction term Hint may cause the
discrete eigenstates to transition into the continuum, and the total Hamiltonian becomes

H = H0 +Hint (2.66)

The eigenstates of the total Hamiltonian are no longer |ai⟩ and |ϵ⟩. However, one can
write the time evolution as their superposition
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|ψ(t)⟩ =
∑
i

γi(t)e
−iωit|ai⟩+

∫
C
dϵD(ϵ)e−iωϵtγϵ(t)|ϵ⟩ (2.67)

where ωi and ωϵ denote the frequency of the eigenenergies, the integral is over the
continuum C and the density of states at energy ϵ is denoted by D(ϵ). In the special
case where there is only a single discrete state, this simplifies to

|ψ(t)⟩ = γa(t)e
−iωat|a⟩+

∫
C
dϵD(ϵ)e−iωϵtγϵ(t)|ϵ⟩ (2.68)

This time evolution can be inserted into the time-dependent Schrödinger equation

H|ψ⟩ = iℏ
∂

∂t
|ψ⟩ (2.69)

Multiplying from left with ⟨ai| and ⟨ϵ| yields the two equations

iℏγ̇a(t) =
∫
C
dϵei∆ωtD(ϵ)γϵ⟨a|Hint|ϵ⟩ (2.70)

iℏγ̇ϵ(t) = e−i∆ωtγa⟨ϵ|Hint|a⟩ (2.71)

Equation 2.71 can be integrated formally and inserted into equation 2.70 to give

γ̇a(t) =

∫
C
dϵei∆ωtD(ϵ)⟨a|Hint|ϵ⟩

∫ t

0
dt′e−i∆ωt′γa(t

′)⟨ϵ|Hint|a⟩ (2.72)

It can be seen that γ̇a depends on the integral of γa(t′) for all times up to t. An
approximation to this is to set γa(t′) = γa(t), i.e. to make the markovian assumption,
such that γa(t′) is independent of values at previous times. After performing the second
integral in equation 2.72 and letting t→∞, one finds

γ̇a(t) = −
2π

ℏ
D(ϵ)|⟨a|Hint|ϵ⟩|2γa(t) (2.73)

whose solution gives the decay rate

Γa =
2π

ℏ
D(ϵ)|⟨a|Hint|ϵ⟩|2 (2.74)

We see that the decay is proportional to the density of states and the transition matrix
element, which describes the coupling. However, one small comment has to be made
about a particular assumption: in equation 2.68, the spectrum was assumed to have a
single bound or discrete mode. As there might be coupling terms between discrete states,
and we typically have several bound modes, this is has to be kept in mind.

This decay calculation can be applied to the case of a planar qubit separated by a
piezoelectric layer to an infinite slab of substrate. As shown in Figure 2.5, the electric
field of the qubit may couple to acoustic plane waves radiating away from the substrate.
This situation is approximately the experimentally relevant case of a substrate slab of
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Ypiezo

Ysub

Figure 2.5: Representation of radiation loss of a qubit antenna (grey), whose electric field
couples to phonons via the piezoelectric layer with Young’s modulus Ypiezo,
into a substrate slab with Ysub.

finite thickness but with a large surface roughness on the face opposite to the piezo layer.
For plane waves with longitudinal polarization k̂ = k⃗/∥k∥ in a substrate with Young’s
modulus Ysub

s⃗
k⃗
(x⃗) =

√
ℏω

YsubV
k̂e−ik⃗x⃗ (2.75)

where the prefactor is to normalize the states according to∫
1

2
Ysub

∣∣s⃗
k⃗

∣∣2dV =
ℏω
2

(2.76)

the coupling between the electric field and the acoustic plane waves can be computed
as the overlap integral between induced strain σ⃗ = YpiezodE⃗ from the qubit field, d being
the piezoelectric tensor, and the strain plane wave, which becomes a function of the three
dimensional Fourier transform of A⃗(x) = dE⃗ · k̂

g
k⃗
=

1

ℏ

∫
dV σ⃗ · s⃗ (2.77)

=
Ypiezo
ℏ

√
ℏω

YsubV
F(A)(k⃗) (2.78)

It has to be pointed out that the electric field of the qubit can be extracted from finite
element method simulations. The coupling in k-space can then be used to estimate a
decay to the continuum of phonon modes with the Weisskopf-Wigner theory. Assuming
a density of states for countable energy levels, that is,

D(ϵ) =
∑
k⃗

δ(ϵ
k⃗
− ϵ) = 1

ℏ
∑
k⃗

δ(ω
k⃗
− ω) (2.79)

equation 2.74 becomes
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Γ = 2π
∑
k⃗

∣∣g
k⃗

∣∣2δ(ω
k⃗
− ω) (2.80)

=
2π

ℏ
Y 2
piezoω

Ysub

1

V

∑
k⃗

F2(A)(k⃗)δ(ω
k⃗
− ω) (2.81)

=
2π

ℏ
Y 2
piezoω

Ysub

∫
dk3F2(A)(k⃗)δ(ω

k⃗
− ω) (2.82)

(2.83)

In the second step, the usual transformation of densities of states from a sum to an
integral is used. The interpretation of the delta distribution ensuring energy conservation
could read as follows: since the slowness surface of the substrate material in which the
the plane waves radiate, is the surface of constant frequency, only wavevectors lying on
this surface contribute to the decay at a given frequency.

A second concrete example is a substrate slab that has negligible surface roughness on
the face opposite to the piezoelectric layer but is still infinite in the other two dimensions
(choosing arbitrarily the vertical direction as z), such that only acoustic modes satisfying
the discrete dispersion relation for the wavevector k2perp = k2x + k2y

ω(k⊥) =

√
v2l

(nπ
t

)2
+ v2t k

2
⊥, n ∈ N (2.84)

can exist. The confinement expresses itself as the discretization of the wavevector
in z-direction. The dispersion relation implicitly defines the density of states which is
to be used in 2.84. In the approximation that the electric field of the qubit is mainly
perpendicular to the piezo surface, which we define as the z-direction, such that we have
dE⃗ ≈ d33Ez, the coupling will have the form

gk = s0c33
d33
ℏk0

Êz(k) (2.85)

that leads to the decay rate

Γ = 2π

∫
dk⊥|gk|2D(ωq) (2.86)

This means that under the assumptions taken, the Fourier transform of the electric
field of the qubit can be shaped to minimize the coupling to the continuum of phonons
and thereby also the decay rate. Finally, from the decay rate due to the coupling, one
can extract the associated quality factor

Q =
ω

Γ
(2.87)

which can be compared to the other partial quality factors of the system.
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2.3 Acoustic Schrödinger Equation

2.3.1 Motivation

In order to estimate the qubit decay rate due to phonon radiation, the density of phonon
states in the HBAR and substrate are needed. The approach taken here is to use an
acoustic analogy to the case of electromagnetic radiation propagation in the presence
of a massive particle subject to the Schrödinger equation (SE) [33] called the "Optical
Schrödinger Equation". One can use the solutions of such a Schrödinger equation to
calculate the phononic density of states. In essence, for an optical cavity, the spatial
variation of the refractive index can be translated to an effective potential in a modified
SE. As a result, solutions of this equation describe the allowed bound and unbound states
in the system.

In the optical case, a comparison is drawn to the electromagnetic wave equation in the
monochromatic and paraxial approximation, which by a redefinition of the independent
propagation variable takes the form of a non-relativistic SE of a massive particle in a 2D
potential

iℏ
∂

∂τ
ψ(x, y; τ) = − ℏ2

2mopt
∇2

⊥ψ(x, y; τ) + Vopt(x, y; τ)ψ(x, y; τ) (2.88)

where the optical mass is mopt = (ℏk0n0)2 and the optical potential can be expressed
as a function of the spatial refractive index n(r⃗) and the vacuum refractive index n0

Vopt = −
1

2

[
n2(r⃗)− n20

n20

]
(2.89)

2.3.2 Derivation for acoustic waves

In the acoustic case, we start by looking at a non-isotropic solid with transverse velocities
vx = vy = vt and a longitudinal velocity which depends on the refractive index n as

vl(x, y) =
v0

n(x, y)
(2.90)

The wave equation for the displacement u⃗ can be written as

v2t (x, y)∇2
⊥u⃗+ v2l (x, y)

∂2u⃗

∂z2
− ∂2u⃗

∂t2
= 0 (2.91)

where ∇⊥ = (∂/∂x, ∂/∂y). We are interested in the case where the wave mainly
propagates along the direction perpendicular to the cavity surfaces, which we take to
be the z-direction. Hence, the ansatz of a monochromatic plane wave of frequency ω
and wavevector k with slowly varying envelope u0(r⃗, t) which is polarized in longitudinal
direction

uz(r⃗, t) = u0(r⃗, t)e
i(kz−ωt) (2.92)
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in used. Inserting it into the wave equation leads to

v2t∇2
⊥u0(r⃗, t) + v2l

∂2u0(r⃗, t)

∂z2
+ 2ikv2l

∂u0(r⃗, t)

∂z
− k2v2l u0(r⃗, t) + ω2u0(r⃗, t) = 0 (2.93)

Since u0(r⃗, t) is varying slowly, the wave propagates mainly in the z direction. There-
fore, one can make the paraxial approximation∣∣∣∣∂2u∂z2

∣∣∣∣≪ ∣∣∣∣k∂u∂z
∣∣∣∣ (2.94)

where the angle between the wavevector and the propagation axis z is small. This
justifies dropping the second term in Eq. 2.93 and dividing by 2k2 yields

i

k

∂u0
∂z

= − 1

2k2
v2t
v2l
∇2

⊥u0 +
1

2
(1− n2(x, y))u0 (2.95)

Now, a change of variables to τ = kz is performed, which leads to

i
∂

∂τ
u0(x, y, τ) = −

1

2k2
v2t
v2l
∇2

⊥u0(x, y, τ) +
1

2
(1− n2)u0(x, y, τ) (2.96)

Crucially, this now has the form of a time-dependent SE with m = k2, ℏ = 1 and
a potential V = 1

2(1 − n2(x, y)). We can see that in the paraxial approximation, we
can associate a spatially dependent refractive index to a potential term. To find an
expression for this effective refractive index, one can use its relationship to the phase.
For a resonator, the phase that is picked up in a round-trip is

ϕ(x, y) = k(z0 +m2(x, y)−m1(x, y)) = kn(x, y)z0 (2.97)

where m1,m2 denote the spatial profiles of the bounding surfaces of the resonator, as
shown in Figure 2.6. Therefore, shaping the surfaces within the limits of the approxi-
mations used, one can engineer a desired spectrum, as will be described in more detail
below.

Potential induced by a spherical dome

Taking the example of a finite spherical plano-convex cavity defined by its curvature R,
height h and thickness z0. Defining the radius of the dome raised above the substrate as
r0 =

√
2Rh, one has

m1(x, y) = 0 (2.98)

m2(x, y) =

{
0 x2 + y2 > r20
h(1− x2+y2

r20
) x2 + y2 ≤ r20

(2.99)
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m2(x,y)m1(x,y)

Figure 2.6: The difference in shape of the reflection boundaries m1,m2 of an acous-
tic resonator modulates the effective spatial refractive index in the acoustic
Schrödinger equation, giving rise to a potential-like term.

This corresponds by equation 2.97 to the effective refractive index

n(x, y) =

{
1 x2 + y2 > r20
1 + h

z0
(1− x2+y2

r20
) x2 + y2 ≤ r20

(2.100)

Taking the square leaves

n2(x, y) =

{
1 x2 + y2 > r20
1 + 2h

z0
(1− x2+y2

r20
) + h2

z20
(1− x2+y2

r20
)2 x2 + y2 ≤ r20

(2.101)

The last term in the second case above can be dropped when h≪ z0, which is the case
for commonly fabricated domes with h ≈ 1µm on substrates with z0 ≈ 400µm. Hence,
the final potential in the SE takes the form

V (x, y) =

{
0 x2 + y2 > r20
h
z0
(x

2+y2

r20
− 1) x2 + y2 ≤ r20

(2.102)

Now that the time-dependent equation is fully determined, the plane wave ansatz

u0(x, y, τ) = e−iητuη(x, y) (2.103)

is inserted, such that the time-independent equation reads(
− 1

2k2
V 2
t

V 2
l

∇2
⊥ + V (x, y)

)
uη(x, y) = ηu(x, y) (2.104)
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To get constructive interference and hence a stable mode, we require that the accumu-
lated phase acquired in a round-trip is

2k(1− η)z0 = 2πm, m ∈ N (2.105)

We can now compare the acoustic equation to two-dimensional Schrödinger equation
with a harmonic potential of stiffness κ = ω̃2µ for a mass µ, which in Cartesian coordi-
nates reads (

− 1

2µ
∇2

⊥ +
1

2
κ(x2 + y2)

)
Ψ = EΨ (2.106)

and can be solved for x and y independently, leading to the well-known eigenenergies

Exy = Ex + Ey = ℏω̃(nx + ny + 1) (2.107)

with nx, ny ∈ N and degeneracy D = nx + ny + 1. The associated wavefunctions are
products of the one dimensional harmonic oscillator solutions

ψn(x, y) = ψnx(x)ψny(y) (2.108)

The analogy to the acoustic Schrödinger equation can be completed by comparing
Eqs. 2.104 and 2.106, such that one finds the equivalent to the effective mass µ and the
spring constant κ of the harmonic oscillator to be

µ←→
(
kvl
vt

)2

, κ←→ 2h

z0r20
(2.109)

in the case of the non-truncated acoustic potential. This allows one to estimate different
quantities of interest for spherical domes, in particular for low energy states, as they are
only weakly perturbed by the truncation. For example, the spacing between subsequent
values of η is, according to Eq. 2.109,

∆η =

√
2hv2t

z0r20k
2v2l
←→ ω̃ =

√
κ

µ
(2.110)

from which the "real" spacing in frequency can be computed by ∆ω = ω∆η. The
potential depth is hω

z0
and the number of states with energies below zero (the bound

states) is the potential depth divided by the frequency spacing

N =

⌊
h/z0
∆η

⌋
(2.111)

Another interesting quantity is the ratio of the depth of the potential to the longitudinal
FSR, which is given by β = mh

z0

FSR = ∆ν =
c

2L
(2.112)
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2.3.3 Application: shaping the spectrum

As mentioned above, the spectrum of the device as calculated with the acoustic Schrödinger
equation leads to the interpretation that the surface shapes of the acoustic cavity them-
selves can be used to engineer the spectrum in a desirable way. For example, it was
shown that spherical potentials lead to a harmonic potential approximately, and there-
fore to an even mode spacing throughout the bound part of the spectrum. This is in
agreement with the even transverse mode spacing (TMS) of the Laguerre-Gaussian or
Hermite-Gaussian mode family in plano-convex HBARs.

For quantum information protocols, this is not optimal, because the qubit may be
required to not couple to any acoustic mode at certain times. Therefore, a frequency
range within the FSR without a smaller density of modes is desirable and could be
achieved with domes that deviate from the harmonic distribution. Small deviations could
already make a difference, and because two examples that practically can be fabricated
are Gaussian and cosine domes, these can be compared to spherical domes, which can be
done by equating the Taylor expansions of the shapes parametrized by r up to second
order. For the spherical dome of curvature R and height hs,0 we have

hs(r) = hs,0 −R+
√
R2 − r2 = h0 −

r2

2R
+O(r4) (2.113)

This can be compared to a cosine dome, whose height profile can be written as

hc(r) =
hc,0
2

[
1 + cos

(
2π

P
r

)]
= hc,0

(
1− π2r2

P 2

)
+O(r4) (2.114)

where the periodicity P can be used to match the spherical dome up to second order.
This is achieved by setting

P = π
√
2R (2.115)

Similarly, the Gaussian dome surface can be expanded as follows:

hg(r) = hg,0e
−r2/2σ2

= hg,0

(
1− r2

2σ

)
+O(r4) (2.116)

Hence, if the heights are taken to be equal, we find the relation

σ2 = R (2.117)

These relations are used to compute the deviations from the harmonic spectrum in
chapter 3. The resulting anharmonicity is quantified as

αi =
(f1 − f0)− (fi − fi−1)

f1 − f0
(2.118)
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Figure 2.7: Computed anharmonicities from the ASE for the spherical baseline dome
shape and equivalent cosine and Gaussian domes.

which can be easily computed from the solutions of the acoustic Schrödinger equation,
the result being shown in Figure 2.7 for the three types of domes equivalent up to second
order. This matches qualitatively the anharmonicities that are computed using a paraxial
acoustic beam propagation method.
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Chapter 3

Simulation Methods

In this chapter, the simulation methods that we used are described. For holistic model-
ing of the entire device consisting of a microwave cavity, a superconducting circuit and
mechanical resonators, finite element method (FEM) simulations such as Ansys HFSS
or COMSOL Multiphyics can be used to find classical field distributions, from which the
quantum Hamiltonian and losses can be extracted according to the methods described
in section 2.1. Typically, these simulations are conducted either in two or three dimen-
sions. Although these methods promise the most accurate representation because they
can include couplings of different physics present in real devices and have converging
results for increasingly fine discretizations, the disadvantage of these methods lies in
their high complexity, making it difficult to model the device and leading to long com-
putation times compared to other methods. Moreover, the solutions suffer more from
numerical errors, such that results are hard to interpret and may contain large amounts
of artifacts. On the other hand, simpler methods for investigating the mode structure
of HBARs are being developed, including Fourier propagation and a method based on
the acoustic Schrödinger equation theory. Though these methods are less general, their
results tend to be simpler to interpret.

3.1 COMSOL Multiphysics

COMSOL Multiphysics is a powerful FEM simulation environment that allows for the
numerical simulation of many physical systems by solving the corresponding partial dif-
ferential equations on desired geometries. Studies that can be conducted include time
domain, frequency domain as well as eigenmode simulations, and in this work we focus on
the latter two. Compared to other FEM methods, such as Ansys, COMSOL provides the
flexibility to include arbitrary coupling terms between different types of physics, which
is needed for a whole-device simulation of the ℏBAR including both the electromagnetic
fields in the microwave cavity and the acoustic waves in the substrate (in particular, in
the HBAR). Although such simulations have been set up in [34], their complexity is such
that many questions are still under investigation, and in this thesis, the methods used
have been verified and extended.

3.1.1 General setup

COMSOL simulations are built according to a streamlined flow, requiring the user to
define the information of the model in consecutive steps: variable definitions, geometry,
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3 Simulation Methods

materials, physics interfaces and finally the mesh. Once the model is built, the different
simulation studies can be run.

Physics interfaces

In Physics interfaces the partial differential equations of the system to be solved, as well
as constraints such as boundary conditions and loads, are defined. In our simulation
studies, we use the physics interfaces Solid Mechanics (sm) and Electromagnetic Waves,
Frequency Domain (emw) from the Radio Frequency (RF) module. The solid mechanics
interface is part of the Structural Mechanics module of COMSOL. It solves the acoustic
equations of motion together with a constitutive model of the solid material. As a result,
displacements, stress and strains are computed. Here, a linear elastic material is used,
which is described by the equations of motion presented in section 2.2.1. Because of the
large amount of degrees of freedom that are needed to model the solid mechanics physics
in substrates of sizes comparable to experimental devices, which become computationally
infeasible even with the aid of high performance computing as provided by the ETH Euler
cluster, only small regions of interest can solved with this interface. In particular, for
the ℏBAR device described in section 3.1.2, only in the region enclosed by the dome and
the planar mirror surface solid mechanics are solved, whereas the substrate on which
the qubit is placed is not simulated in solid mechanics. To emulate large substrates,
low-reflecting boundaries are used, under the assumption that waves propagating away
from the HBAR will be lost. The emw interface on the other hand solves Maxwell’s
equations in differential form together with the constitutive relations. Since these types
of simulations have less degrees of freedom and the simulated geometry size is on the
order of a wavelength, they can be solved throughout the entire microwave cavity.

To simulate superconducting objects, as for example the cavity and the qubit, a per-
fect electric conductor (PEC) boundary condition is set on the corresponding surfaces,
whereas a perfect magnetic conductor (PMC) is used at the cross-section of the cavity
to establish the symmetry such that only half of the cavity has to be simulated.

Materials

COMSOL provides a materials library which includes the needed material constants for
every interface. This is convenient, since the cavity interior is modelled as vacuum, the
substrates are Al2O3, and the piezoelectric dome consists of AlN, but the materials can
be easily replaced.

Geometry

In the three dimensional case, all simulations where performed for a microwave cavity
containing the ℏBAR, cut in half to make use of the symmetry and hence reduce the
number of degrees of freedom. The ℏBAR is placed in the center of the cavity, and on
its lower substrate, the qubit is drawn in two dimensions, neglecting its height. Since
it has a disk attached to it via a transmission line, it is called Antennamon. Above the

28



3.1 COMSOL Multiphysics

Figure 3.1: Example of degenerate mesh elements at the interface of the gap between the
substrates (vacuum, white) and the dome edge (pink) attached to the top
substrate (green), causing the meshing process to fail.

antenna, the HBAR consisting of the piezo-electric dome and the substrate is placed. A
more detailed description will follow in section 3.1.3. On overview over the 3D model
geometry can be seen in Figure 3.3. In the two dimensional case, only the HBAR was
analyzed, defined by the revolution of a cross section of the HBAR.

Meshing

Meshing denotes the essential process in FEM by which the model geometry is dis-
cretized. The challenge in modeling cQAD devices such as the ℏBAR comes from the
large difference between electromagnetic and acoustic wavelengths under investigation.
In general, it is recommended to set at least five mesh points per wavelength of the
simulated physics, which leads to large size differences between the mesh elements in the
vacuum of the cavity, where the microwave wavelength sets this limit, and the elements
in the HBAR, where the wavelength of the acoustic waves are in the order of 1 µm.
At some point, the element growth between these to regimes becomes bigger than the
growth rate that COMSOL can handle, and the meshing process ends with an error. The
large difference in element sizes leads to difficult transitions in the gap at the edges of
the AlN dome, as shown in Figure 3.1.

Apart from these problems, the accuracy of the studies strongly depends on the actual
form of the mesh elements. One important example is the radius of the cylinder inside
the HBAR needed to mesh in a radially symmetric way. Although the frequency and
mode waist of the simulated fundamental mode does not change with that radius, the
resulting quality factors vary over a one order of magnitude, indicating that the quality
factors computed by COMSOL are not yet fully physical. The results will be shown in
chapter 4.
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3 Simulation Methods

a Domain with high vertical mesh density in the region encompassed by
the dome

b Lateral virtual domain needed to adapt the high mesh density in the
HBAR to the surrounding substrate.

c Virtual domain used to transition to the relatively low mesh density in
the vacuum of the cavity.

Figure 3.2: Cross sections of the HBAR model and its surroundings, depicting the mesh
used in the baseline model. White elements correspond to the air domain,
turquoise elements to sapphire substrates and the dark blue color highlights
a specific domain.
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3.1 COMSOL Multiphysics

a) b)

c)

Figure 3.3: Geometry of the baseline model in COMSOL. a) The microwave cavity half
simulated b) The ℏBAR Substrate chip c) Antennamon qubit

Study types

In COMSOL, stationary, time dependent, eigenfrequency or frequency domain studies
can be conducted. Here, only eigenfrequency and frequency domain are investigated.
Furthermore, the studies can be uncoupled or coupled. In the first case, the device is
simulated using solid mechanics and the emw physics interfaces separately. This func-
tionality is provided by COMSOL "out of the box" but neglects the interaction between
the electromagnetic field of the qubit and piezo materials, as mainly needed in the domes.
On the other hand, this coupling can be manually implemented by making use of exter-
nal sources for each of the two interfaces. In the case of the solid mechanics interface,
the linear elastic material modelling the substrate is extended by an external stress by
multiplying the electric field with the piezo-electric coupling tensor e in Voigt notation

S⃗ext = −eT E⃗ (3.1)

For the emw interface, the inverse piezo-electric effect is implemented by adding the
external current density J⃗ext as a function of the strain T

J⃗ext = iωeT (3.2)

as a source term in the Helmholtz equation, which in the three dimensional case reads

∇× (µ−1
r ∇× E⃗)− w2ϵcE⃗ = 0 (3.3)

where µr and ϵc are the relative permeabilities and permittivities, respectively. Both
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3 Simulation Methods

frequency domain and eigenmode simulation studies can also be done in two dimen-
sions. Since the HBAR is symmetric around a central axis, one can use axisymmetric
simulations, which reduce the equation above to(

∇− im
r
ϕ
)
×
(
µ−1
r (∇− im

r
ϕẼ)

)
− k20ϵrcẼ = 0 (3.4)

where the independent variables are the radius r and azimuth angle ϕ, and the az-
imuthal mode number is m.

The computation time of a model depends strongly on the simulation type. It is
stressed that frequency domain studies are computationally more expensive than eigen-
frequency simulations. Also, simulating solid mechanics is more costly than the emw
interface. Representative values of solution times can be seen in Table 3.1.

Study Computation time
Eigenmode, SM only, 1 mode 3min
Eigenmode, SM only, 100 modes 30min
Eigenmode, EM only, 2 mode 3min
Eigenmode, Coupled, 10 modes 10min
Eigenmode, Coupled, 110 modes 9hrs
Frequency study, SM only, 1 FSR 18hrs
Frequency study, Coupled not feasible

Table 3.1: Time needed to compute the COMSOL studies.

3.1.2 Devices to model

As already stated, COMSOL excels at modeling complex objects in which different
physics are relevant. Therefore, it is used to investigate the hybrid quantum system
used in this group consisting of a superconducting microwave cavity in which a transmon
qubit with an antenna coupled to an HBAR, the ℏBAR, is placed. The qubit and the
HBAR are fabricated on separate sapphire substrate chips, which are bonded such that
the centers of the antenna and HBAR match. The actual device is shown in Figure 3.4.

3.1.3 Baseline model

The model used as a baseline has a geometry similar to the experimental devices. The
geometric parameters are shown in Table 3.2. The two main differences are the reduced
thickness of the substrate (40 µm instead of 420 µm) to make the computations tractable
and the dome shape, which has to include a small cylindrical layer at the interface to
the substrate for meshing reasons. The material used for the substrate is Al2O3

i, while
for the dome AlN was used. The qubit geometry is of an antennamon, a 3D transmon
qubit with a disk (the antenna) attached to it. The dome shape is spherical. Because of

iAl2O3 is the main constituent of sapphire.
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3.1 COMSOL Multiphysics

Figure 3.4: The ℏBAR device modelled in COMSOL. a) The two bonded sapphire chips
with the visible qubit pads and the dome (framed) of the HBAR b) Schematic
of the coupling between the qubit and the HBAR (from [35])

inconsistencies, this model’s accuracy was investigated thoroughly before proceeding to
optimization.

Simulation domains

Ideally, both the differential equations of solid mechanics and electromagnetic waves
would be simulated throughout the entire cavity. Although for the latter this is feasible
and is in fact done in the baseline model, it is not possible to solve the solid mechanics
physics in reasonable time on the entire top substrate (to which the dome is attached;
the bottom substrate is not of interest because its mechanical modes are not coupled
to the qubit), the reason for this is that the amount of degrees of freedom needed (see
Table 3.3 for comparison) to resolve acoustic wavelengths in the micrometer range in a
substrate of hundreds of micrometers is intractable. Therefore, solid mechanics is solved
only in a small cylindrical region above the dome, because the eigenmodes of interest will
be mainly paraxial and hence concentrated around the symmetry axis of the HBAR. A
schematic depicting the region of the model around the HBAR is shown in Figure 3.5.

Meshing domains

To address the meshing challenges described above, the strategy used in the baseline
model was to use a specific order in which different domains are meshed; first the HBAR
and its surroundings, then the Josephson junction and finally the remaining domains
are meshed. The order in which COMSOL meshes has an impact because generally the
meshing process is constructive, that is, a subsequent mesh step does not modify the
mesh from previous steps, although there are exceptional cases in which this does not
hold. As explained, the solid mechanics domain consisting of the dome as well as a
cylindrical cut above it, with the cylinder radius set to the transverse radius of the dome,
is highly meshed. A Swept Mesh with a density of 8.825 · 106 m−1 along the z-direction
is used. This type of meshing technique takes the mesh of a source face of the model
and copies it at regular distances to a destination face. Between the copies, prismatic
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Al302

AlN
Vacuum

Al302

Al302

3μm

0.15μm

200μm

40μmAl302

8.5μm

Figure 3.5: Materials and geometry of the HBAR of the baseline model, not to scale.
Solid mechanics are only simulated in the turquoise region, electromagnetics
in every domain. The radius of curvature of the dome is 7.14 mm.

or hexahedral mesh elements are created. The mentioned density used achieves the five
elements per mechanical wavelength. Because of restrictions in COMSOL on how a mesh
can be constructed, the dome has to be artificially offset from the substrate. This presents
stringent constraints on how dense the mesh in the gap between the two substrates has
to be. In particular, at the borders of the dome, where the mesh transitions from highly
regular (swept) to tetrahedral elements, it becomes degenerate. This can be seen in
Figure 3.1, showing how the angle between some mesh edges becomes small compared
to the rest. To control the transition around the HBAR, virtual domains are used with
an intermediate mesh density. Practical knobs include the amount of stretching of the
mesh, as well as minimum and maximum element size and growth rate. The resulting
mesh of the different meshing domains around the HBAR can be seen in Figure 3.2.

Parameter Value
Cavity height 17.78 mm
Cavity width 5.08 mm
Cavity length 30.48 mm
Substrate height 40 µm
Radius r of HBAR 0.1 mm
Curvature R of HBAR 7.14 mm
Distance between antenna and pads 440 µm
Antenna radius 20 µm

Table 3.2: Main geometrical parameters of the microwave cavity, the HBAR and the
qubit geometry, used in the baseline model.
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3.1 COMSOL Multiphysics

a) b)

c)

d)

Figure 3.6: Finite element methods require a discretization of the simulation domain
space, a procedure that is called meshing. The specific mesh strategy of the
baseline model is shown for the a) microwave cavity, b) the substrate, c) the
qubit (red) and d) dome.

Study Degrees of freedom
SM only, 3D 778617 (+227304)
SM only 2D 45801
EM only 3D 1202538
EM only 2D 78013
Coupled 1981155 (+227304)

Table 3.3: Degrees of freedom for different types of studies for the baseline model. The
numbers in brackets indicate additional internal degrees of freedom needed for
solid mechanics.

3.1.4 Simulations in three dimensions

Uncoupled eigenmode simulations

In uncoupled eigenmode simulations, the electromagnetic waves and the solid mechanics
interfaces are solved separately. In the former case, one finds the hybridized qubit-cavity
eigenmodes, which are shown in Figure 3.7. Since higher order modes are at much higher
frequency, they are not of interest in the following. In the latter case of uncoupled
solid mechanics simulations, the eigenmodes of the HBAR displacement field and are
expected to be Laguerre-Gaussian or Hermite-Gaussian modes. Indeed, for the spherical
dome of the baseline model, the Hermite-Gaussian mode family is found, as can be seen
in Figure 3.8.

A major challenge concerning COMSOL simulations of the HBAR is the interpretation
of the resulting modes. A large fraction of the them have the following characteristics:
they have displacement fields which appear noisy or random, have high spatial frequency
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a)

b)

Figure 3.7: Logarithm of the electric field amplitudes of the uncoupled eigenmodes of the
electric field in the microwave cavity. a) Qubit-like mode at 6.422GHz and
b) Cavity-like mode at 9.1391GHz

components, and are large only at single points or at the cylindrical border region of
the simulated solid mechanics. Therefore, the question arises whether these "spurious"
modes represent physical solutions or not, and how to distinguish them. This is not
trivial, as the analytical solutions for arbitrary geometries of the dome do not exist and
the spurious modes can have a similar appearance as "real" ones. The distinction is
important, as they may impact computations in further processing, for example in the
EPR method. Problematic is also that the amount of solutions that look plausible is
typically less than ten percent, creating a large computational overhead. Examples of
spurious modes are shown in Figure 3.9.

Another interesting quantity to be extracted from uncoupled solid mechanics simula-
tions is the diffraction loss of the HBAR modes, which will be shown in section 4.

Combining the electric fields and the mechanical modes from the uncoupled equations
allows the computation of the approximate coupling rates of the system between the
electromagnetic mode n and the mechanical mode m as [34]

gnm
2π

=

√
ωn

ωmρϵ0

∫
Vp
E⃗∗

n(x⃗)e
T εm(x⃗)dV

4π
√∫

V E⃗
∗
n(x⃗)ϵrE⃗n(x⃗)dV

√∫
V u⃗

∗
m(x⃗)u⃗m(x⃗)dV

(3.5)

Frequency domain simulations

In addition to eigenmode methods, we also implemented frequency domain studies in
COMSOL. On one hand, this was done to verify the results of a simulation method
previously used, and on the other, to assess whether it could be used for more complex
resonator geometries. Compared to eigenmode simulations, one can also extract the

36



3.1 COMSOL Multiphysics
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LG(3,0)

Figure 3.8: Lowest eigenmodes of a uncoupled solid mechanics simulation of the baseline
model showing Laguerre-Gaussian LG(l,p) profiles.

linewidths of the resonances from the resulting spectra, providing a better understanding
of the modes.

In order to implement a frequency domain simulation in COMSOL, boundary loads,
which are time dependent boundary conditions, are added to the solid mechanics inter-
face. The load direction and magnitude can be parametrized. For testing purposes, the
driving function used is a Gaussian with amplitude A

f⃗drive(x, y) = Ae
−(x−x0)

2−(y−y0)2

2σ2 e−iωte⃗z (3.6)

where x0, y0 denote the coordinates of the center of the HBAR and ez is the unit vector
in z-direction. Other types of forcing functions can be used as well. The load is applied
as Force per unit area on the top (i.e. the flat) surface of the HBAR. After the driving
function is defined, the frequency domain study node can be added and configured. Most
importantly, the frequency range over which the study should be conducted has to be
defined. For the HBAR which we investigated, which has only one-tenth of the thickness
of the experimentally used substrate such that the FSR is in the order of 130 MHz, this
sets a lower bound on the frequency span that should be simulated. A priori, it was not
known whether the computations were feasible, so numerical experiments were conducted
in two dimensions first, showing that for the given device geometry a frequency step size
of 50 kHz resolved the resonances accurately in a reasonable computation time. The
results of three types of domes are shown in Figure 3.10, where the spectra show the
longitudinal displacements on the flat surface of the HBAR as a function of frequency.

We find a correspondence between the modes of the uncoupled eigenmode simulation
and the centro-symmetric Laguerre-Gaussian modes on resonance in frequency domain
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a) b)

c) d)

Figure 3.9: Examples of displacement fields, z component, of spurious modes in the re-
sults of uncoupled eigenmode solid mechanics simulations of the HBAR show-
ing a) high spatial frequencies, b) large magnitudes, c) displacements con-
centrated on the border of the HBAR simulation domain d) displacements
concentrated in the center region, meshed differently according to Figure 3.6.

simulation. We do not find other modes with higher radial index because the coupling
between the centered Gaussian and those modes is zero due to symmetry.

It has to be noticed that these type of simulations are computationally very expensive,
taking almost a day to solve a single FSR. Furthermore, the solution files require large
amounts of memory, ranging to 40 Gb per FSR.

3.1.5 Simulations in two dimensions

As noted, 3D simulations are computationally costly. Therefore, to investigate the
HBAR, 2D axisymmetric simulations were set up. As the name suggests, axisymmetric
simulations can be used when the geometry of the object to model does not vary around
a symmetry axis. Since this is the case for most domes, these simulations are appropriate
for investigating mechanical modes in the HBAR. The only additional parameter to be
set is the azimuthal mode number. The results of the two dimensional eigenmode simu-
lations can be seen in Figure 3.11. In Figure 3.12 cross sections of the first three modes
are shown. One can see that higher order modes couple significantly less to the Gaussian
drive.
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a Spectrum of the HBAR with spherical dome used in the baseline model.
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b Spectrum using a Gaussian dome.
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c Spectrum of a cosine dome.

Figure 3.10: Spectra over an FSR of the baseline model and two equivalent dome shapes.
The fundamental modes are at 6.44 GHz and 6.57 GHz. Only small differ-
ences can be seen, but the spectrum of the cosine dome shows less modes at
the end of the FSR and could be promising for applications needing mode-
free frequency space.
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LG(0,1)LG(0,0) LG(0,2) LG(0,3) LG(0,4)

Figure 3.11: First five Laguerre-Gaussian modes LG(l,p) with azimuthal index l and ra-
dial index p for an HBAR with geometry as in the baseline model resulting
from a 2D axisymmetric simulation.

LG(0,0) LG(0,1) LG(0,2)

Figure 3.12: Cross cuts of the displacement field amplitudes in z direction from 2D eigen-
mode simulations of the HBAR corresponding to the revolution views shown
in Figure 3.11. The bounding rectangles represent the simulation domain
edges.
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3.2 Fourier-propagation: BeamProp

3.2 Fourier-propagation: BeamProp

Similar to optical Fourier methods in the paraxial limit, acoustic waves can be propagated
in Fourier-space by simple multiplication of a phase. A description of the theoretical
framework can be found in [36]. BeamProp is a python-based simulation library that
implements the paraxial acoustic wave propagation in a HBAR resonator. It is used to
compute the spectrum and corresponding eigenmodes resulting from a harmonic driving
force. The implemented algorithm starts by preparing the surface profiles of both sides
of the resonator (discretized on a two-dimensional grid), interpolates the slowness surface
of the used material to get effective transverse and longitudinal velocities as described in
section 2.2.1 and sets a driving force function g(x, y), typically a centered Gaussian. This
latter is used as an initial displacement field u0. Also, for a given frequency, kz(kx, ky)
is computed.

The paraxial propagation is repeated for many round-trips. For every round-trip,
the displacement field at z = 0 is multiplied by the driving function g(x, y), fourier-
transformed and propagated along the positive z-axis as

ui,0(x, y) = F−1(e−ikzzF(gui−1)) (3.7)

Then, to account for the shape of the dome, the phase δϕ1 that is picked up by the wave
during propagation in the dome is computed according to an effective dome height. A
reflection profile R1(x, y) accounts for internal losses and a damping at the boundaries
of the simulation domain. Therefore, after reflection, the field at z = L is

ui,1(x, y) = R1(x, y)e
−iδϕ1ui,0(x, y) (3.8)

The field is transformed to Fourier space and propagated back to z = 0

ui,2(x, y) = F−1(e−ikzzF(ui,1)) (3.9)

After adding the phase shift due to the second surface and the losses

ui,3(x, y) = R2(x, y)e
−iδϕ2ui,2(x, y) (3.10)

a single round-trip is concluded and the propagated field is added to the total field,

ui = ui−1 + ui,2 (3.11)

which is then used as the initial field in the next round, leading to destructive inter-
ference for modes not supported by the resonator. The process is repeated for a range
of frequencies, and the result is a spectrum of the displacement field amplitudes. In a
second step, the mode profiles corresponding to the resonances in this spectrum can be
extracted and refined by using computing more round-trips at these specific frequencies.
This can provide an insight into the mode structure of the resonator, and also allow the
computation of coupling rates. Furthermore, since this type of simulation has been used
before, its results were compared to the newly implemented COMSOL frequency domain
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studies. The results are presented in chapter 4.

3.3 Acoustic Schrödinger Equation

3.3.1 Computational considerations

There are several ways to solve the ASE from section 2.3 numerically, namely as an eigen-
value problem, by means of numerical integration or using a finite element method. In
the first case, the differential operator in equation 2.104 has to be discretized and written
in matrix form. For two dimensional problems, this matrix grows quickly, making the
computations expensive. In the second case, the differential equation can be integrated
for the one dimensional case with standard tools, but numerical stability plays a key role.
Furthermore, extending this method to two dimensions is not trivial. In the last case,
the wavefunction is written as a linear combination of some basis functions defined on a
regular mesh. In the following, we focus on the first two methods.
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Figure 3.13: Five-point stencil typically used to discretized a 2D Laplacian operator as
present in the Schrödinger equation. The corresponding matrix is therefore
tri-diagonal.

Solution using eigendecomposition

To solve equation 2.106 by finding numerically its eigenvalues and functions, the equation
has to be formulated in matrix form. For this, the operators have to be discretized. In
the two-dimensional case the eigenvalue problem results in a sparse, tri-diagonal problem

− 1

2k2
v2t
v2l


a11 a12 0 · · · 0
a21 a22 a23 · · · 0
0 a32 a33 · · · 0
...

...
...
. . .

...
0 0 0 · · · amn



ux0,y0

ux0,y1
...

uxn,ym

+

V11 0 0 · · · 0
0 V22 0 · · · 0
0 0 V33 · · · 0
...

...
...
. . .

...
0 0 0 · · · amn



ux0,y0

ux0,y1
...

uxn,ym



= η


ux0,y0

ux0,y1
...

uxn,ym


with size nm × nm, where n are the number of mesh points in x, m the number of
mesh points in y and the Laplace operator is discretized using a 5-point stencil finite
difference method. To get an intuition for the discretization, away from the boundaries,
the operator takes the form

∆f(x, y) ≈ ui−1,j , ui+1,j + ui,j−1 + ui,j+1 − 4ui,j
∆x∆y

(3.12)

the coefficients of which are visualized as in Figure 3.13. However, a more careful
analysis is based on the discrete Taylor expansion of the function, which in the 1D case
reads

fk+j =
∞∑
α=0

1

α!
(j∆x)αfαk (3.13)
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with ∆x being the distance between two adjacent sampling points. The n-th derivative
can then be written as a linear combination of function values around point xk(

dnf

dxn

)
k

≈
∑
j∈A

cjfk+j (3.14)

Here, A denotes the set of indices in the neighborhood of mesh point k,

A = −p,−p+ 1, ...k − 1, k, k + 1, ..., q − 1, q (3.15)

For example, in the case of p = 1, q = 1, the five-point stencil from equation 3.12 is
recovered.

The algorithm is implemented in the Python package FinDiff [37], allowing the user to
choose the accuracy in terms of number of points in A. At the boundaries of the domain,
this also introduces modifications from equation 3.12, such that the Hamiltonian becomes
non-hermitian in the approximation treated here and is therefore not exactly physical.
Furthermore, standard algorithms for hermitian matrices can’t be applied, increasing the
computation time.

In general, the complexity of computing the eigenvalues of a matrix of size k scales as
O(k3), making it expensive to compute the solutions of the ASE on large two-dimensional
configuration spaces compared to the one dimensional case. The reason for this is that
the differential (Laplace) operator dimension scales with the product N = mn. To make
an estimation of the time needed to solve, the equation was solved for different sizes of the
Hamiltonian. This agrees with the aforementioned scaling. Furthermore, the accuracy
of the eigenvalues for a given dome potential was investigated as a function of mesh
points. The results of these investigations is shown in Figure 3.14. They indicate that
the eigenfrequencies converge and that using more than 1.25 points per micrometer of
substrate on a dome inducing a potential depth of about 25 MHz should be enough to
resolve the energies accurately. However, these mesh densities lead to computation times
in the order of few hours for two dimensional problems. Some tricks can be played on the
solver configuration and the mesh (i.e., the use of non-uniform meshes, which are dense
in regions where the potential in the Hamiltonian has a large curvature, and sparse in
the regions where the potential is constant), but essentially the scaling of O(k3) remains.

It should be noted further that for the relevant case of a harmonic potential, the eigen-
frequencies of the two dimensional problem are degenerate and correspond exactly to the
one dimensional solutions. Hence, for a truncated potential, one can approximately solve
the one dimensional problem and predict the solutions in two. That this is reasonable
in the parameter regime of fabricated domes, is shown in Figure 3.15. Further simula-
tions were conducted, as for example the evaluation of the width of the substrate to be
used, to see how big the impact on the eigenfrequencies might be. The results shown
in Figure 3.16 show that the for a reasonable width between 400 µm and 1800 µm, the
eigenfrequencies are almost unchanged. Furthermore, one can nicely observe the kink
induced by the change of the potential width at the interface between the piezo and the
sapphire dome, since the simulation was based on the Hero sample as used in [35]. The
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Figure 3.14: a) Computation time needed to solve the ASE on a Intel i7-10700K processor
at 3.80 GHz as a function of the corresponding Hamiltonian of size N ×N
scaling as O(N3) b) Eigenfrequencies for different number of mesh points
on a 800 µm substrate. Convergence happens after roughly 1000 points.

same simulation was done in the two-dimensional case, as shown in Figure 3.17. Here,
the differences in the eigenfrequencies between different substrate sizes become more
pronounced, in particular close to the edge of the potential well, there is an increasing
frequency shift for those higher levels. One has therefore to be more careful with the
results from 2D simulations.

Solution by numerical integration

An alternative approach for solving the acoustic Schrödinger equation in the 1D case con-
sists of standard numerical integration. In this case, starting from an initial wavefunction
and a trial energy, equation 2.106 is integrated. This is done for different energies until
the wavefunction does not diverge anymore, which happens at the eigenenergy of the
equation. More systematically, if an energy interval is given in which the eigenenergy is
certainly found, a root-finding algorithm such as Brent’s method can be used to find a
wavefunction fulfilling

limr→0Ψ(r) = 0 (3.16)

However, this method showed to have many disadvantages: first, an initial good guess
for the energy range in which the eigenenergy should be found is not always given.
Second, the integration method itself can diverge under certain circumstances. Third,
the accuracy of the wavefunction solutions was not shown to be higher compared to the
previous method.
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Figure 3.15: Comparison of the energy eigenstates in the Hero sample as in [35] for sim-
ulations in one and two dimensions. As expected, they agree well but not
perfectly since for a harmonic oscillator the spectrum is the same in both
cases except for degeneracy, but here the potential is capped. Only the low-
est energy levels of the 2D simulation where computed, as they already take
several hours of computation, and their degeneracies is not shown.
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Figure 3.16: Numerical experiment with different sizes of substrate shows the emergence
of a continuum of unbound states for widths increasing from 400 µm to
1800 µm for a dome with dimensions as in [35].
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Figure 3.17: Impact of the simulated width of the substrate around the dome on the
eigenenergies in the two dimensional case.
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3 Simulation Methods

Radial Schrödinger equation

As explained above, solving the ASE on a two dimensional domain using the eigendecom-
position method is computationally expensive. One interesting solution to this problem
that was investigated is to solve the problem by making use of the radial symmetry of the
dome shapes and hence potentials, in the approximation that the substrates dimensions
are much bigger than the . Therefore, it seems more appropriate so solve the problem
in a polar coordinate system. As a proof of principle that this method could be of use,
it was investigated in atomic units (e = m = ℏ = 1). Therewith, the polar Schrödinger
equation for azimuthal angle ϕ and radial coordinate ρ is [38]

−1

2

(
1

ρ

∂

∂ρ
(ρ
∂

∂ρ
+

1

ρ2
∂2

∂ϕ2
)

)
ψ = (E − V (ρ))ψ (3.17)

As usual, a separation ansatz can be used

ψ(ρ, ϕ) = R(ρ)Φ(ϕ) (3.18)

which results in an equation for Φ(ϕ) and R(ρ) each. The first equation reads

∂2Φ(ϕ)

∂ϕ2
= −m2,m ∈ N (3.19)

with the simple solution
Φ(ϕ) = eimϕ (3.20)

The radial equation, on the other hand, is given by

ρ2
(
∂2R

∂ρ2

)
+ ρ

(
∂R

∂ρ

)
+ (ρ2k2 −m2)R = 0 (3.21)

with k2 = 2(E − V (ρ)), which can be rewritten to[(
∂2

∂ρ2

)
+

1

ρ

(
∂

∂ρ

)
− m2

ρ2
− 2V (ρ)

]
R(ρ) = 2ER(ρ) (3.22)

The equation has the form of the known Bessel’s equation, and for an infinite potential
at ρ = R0, that is

V (ρ, ϕ) =

{
0 ρ < R0

∞ ρ >= R0
(3.23)

the solutions are indeed Bessel functions Jm(kρ), where the boundary conditionR(R0)) =
0 forces the wavevector to be quantized as

kml = qml/R0 (3.24)

Here, qml is the l-th root of Jm(x) such that the wavefunction is zero at the infinite
potential wall.
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3.3 Acoustic Schrödinger Equation

Hence, the two dimensional problem is reduced to one dimension for axisymmetric
potentials, making the solution much faster. In the case of the ASE, the goal is to solve
Bessel’s equation with the radial potential induced by the shape of the resonator surfaces,
with the boundary condition of the wavefunction going to zero for a large value of r. To
solve the radial equation, we have again the possibility of using the eigendecomposition of
the differential operator on the left, or by integration. For the former, the only difference
to Cartesian coordinates is the appearance of the inverse of the independent variable ρ
in the equation itself. This can be discretized into the diagonal matrix

1/ρ0 0 0 · · · 0
0 1/ρ1 0 · · · 0
0 0 1/ρ2 · · · 0
...

...
...
. . .

...
0 0 0 · · · 1/ρN

 (3.25)

where N denotes the number of discretization points in radial direction. Because the
problem is reduced to finding the eigendecomposition of a matrix of size N × N , the
computation time of the problem is drastically reduced.

In the case of numerical integration of the radial equation, another concern comes into
play: the direction of integration has typically to be chosen as starting from infinity
(practically, this is implemented as starting at a large distance from the center ρ = ρmax

and flipping the integration axis), instead of integrating from the origin, as otherwise the
problem is not stable. Furthermore, the discretization is chosen to be logarithmically,
instead of linear, because this improves stability for radial problems.

The method was tested with a harmonic potential and atomic units. The four lowest
energy wavefunctions with m = 0 are plotted in Figure 3.18.
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3 Simulation Methods

Figure 3.18: Wavefunction solutions of the two dimensional harmonic potential for the
azimuthal order m = 0 using the radial Schrödinger equation in atomic
units.
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Chapter 4

Results

4.1 COMSOL simulations evaluation and consistency

One main result of this thesis is the evaluation and improvement of the accuracy of the
existing COMSOL simulations of the hybrid quantum system ℏBAR, as well as their
extension to the frequency domain. In the following, the sensitivity of the results to
the mesh (the discretization of the model in space) is presented, which is one important
computational modeling freedom in any finite element method simulation tool such as
COMSOL.

4.1.1 Longitudinal HBAR mesh

To investigate the accuracy of the solid mechanics simulations inside the HBAR, a study
was conducted by varying the amount of mesh points along the z-direction in the domain
in which solid mechanics are solved. The results of this study are shown in Figure 4.1.
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Figure 4.1: Mesh density study varying the number of mesh points in z-direction inside
the HBAR showing a convergence of the fundamental mode eigenfrequency
in an eigenmode simulation (with substrate length 40 µm).
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4 Results

They clearly indicate a convergence of the simulation results, and that for predictions
of eigenfrequencies in the order of one megahertz in a device with a FSR in the order
of 130 MHz, using a mesh density of more than 5× 106 m−1 (which corresponds to 200
mesh points) is required. The reason for the decrease in eigenfrequency when increasing
the number of mesh points can be explained by the computational stiffness stemming
from the mesh, which increases with decreasing mesh density. This observation agrees
with the fact that the FSR converges similarly to the eigenfrequencies.

4.1.2 Transverse HBAR mesh

The transverse mesh, defined on the top plane of the HBAR, has a large impact on the
eigenmode solutions. As explained above, it consists of a center region of quadrilaterals,
and an outer region, where the mesh is created by radially outgoing planes intersected
by concentric cylinders. Experiments with the radius of the inner region show that
the eigenmode displacement fields are consistent for radii between 0.1 µm and 0.4 µm.
Larger radii can not be compared directly because the mesh that is generated becomes
asymmetric. Once this happens, much more artifacts in the eigenmodes appear, which
can corrupt the physical eigenmodes and even make them not appear in the results. Also,
it should be noted that the quality factors computed by COMSOL, which are defined in
the reference manual for an eigenvalue λ as

QCOMSOL =
ω

2|Re{λ}|
(4.1)

vary strongly with the radius of this mesh domain, and are possibly maximized when a
mesh edge is at the beam waist of the mode, which indicates that the quality factor that
COMSOL computes is mesh-dependent. On the other hand, the eigenfrequency of the
modes are robust to the changes of the transverse mesh, which implies that the variation
in the quality factors must be due to the computed eigenvalues. Because this value
may be used in further calculations, this needs to be further investigated, for example
by drastically increasing the transverse mesh density in the outer region of the solid
mechanics domain. It can be concluded that it is not recommended to use the quality
factor computed by COMSOL for the HBAR before this further sensitivity analysis has
been done.

4.1.3 Qubit mesh

The mesh around the Josephson junction was varied to quantify how sensitive the results
of the eigenmode simulations are regarding small model features, because the modelled
junction has an area of 0.1 × 10−12 m2 compared to the cavity dimensions of several
centimeters. This was done by applying maximum mesh element size constraints in the
junction. The results of electromagnetic eigenmode simulations of the baseline model
with these variations are shown in Table 4.1, which demonstrates that eigenfrequencies
are accurate to the level of tens of MHz for the baseline model. It is also interesting to
look at the sensitivity of a measure of directionality of the electric field at the antenna
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Figure 4.2: a) Displacement field on the top surface of the simulated solid mechanics
domain. The fundamental eigenmodes are shown with increasing radii of the
center mesh domain. The extracted beam waist of the mode profile at the
flat surface of the HBAR is 1.24 × 10−5 m. b) Quality factors computed
by COMSOL of one fundamental eigenmode of the HBAR at a frequency of
6.4412 GHz showing the impact of the transverse meshing using a longitudinal
mesh density of 8.825× 106 m−1.

surface

D =

∫
EzdA∫
∥E∥dV

(4.2)

which decreases by 4% when using a maximum element size of 0.1 µm compared to
a size of 0.5 µm. This is important, as the coupling to the mechanical modes in the
baseline model predominantly stems from the z-component of the electric field.

Maximum element size [m] Eigenfrequency 1 [GHz] Eigenfrequency 2 [GHz]

1.00E-07 6.4244 9.1391
2.00E-07 6.4377 9.1392
3.00E-07 6.4265 9.1391
4.00E-07 6.4435 9.1395
5.00E-07 6.4222 9.1391

Table 4.1: Frequency dependence of the electromagnetic solutions while varying the mesh
density around the Josephson junction.
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4 Results

4.2 Comparison of simulation methods

4.2.1 Comparison between 2D and 3D simulations

COMSOL studies in three dimensions are computationally expensive. Therefore, simula-
tions were also conducted in two dimensions to compare the accuracy and computation
time. For this, axisymmetric simulations of the HBAR from the baseline model were set
up. The results of the frequency domain studies conducted on the baseline model are
shown in Figure 4.3. The computed frequency range is of 150 MHz (where the FSR is
about 130 MHz) with a resolution of 50 kHz, and the applied load is Gaussian. Solid
mechanics physics are solved without coupling, because the frequency domain studies
are not yet feasible with coupled physics and the influence of the coupling is expected to
be small. The resulting absolute frequencies of the fundamental modes and the FSR of
both 2D and 3D simulations match very well. However, in the three-dimensional case,
more modes are present and the spectrum seems more noisy. Reasons could be on one
hand that the mesh needed for the additional dimension introduces artifacts in because
it introduces new degrees of freedom, which has shown to impact the number of artifacts
substantially, and on the other that in the 2D case we restrict the simulation to a fixed
azimuthal mode number and are therefore only seeing a subset of eigenmodes.
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Figure 4.3: Solid mechanics spectra of the baseline model, simulated in both 2D and 3D.
Perfect agreement is found for the FSR (from 6.44 GHz to 6.57 GHz) as well
as for the transverse mode spacing of the first three modes. We observe less
agreement for higher order modes and many more resonance frequencies in
the 3D case.
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4.3 Diffraction loss

4.2.2 Comparison between COMSOL and BeamProp

The results of COMSOL frequency domain simulations and the solutions of paraxial
simulations with BeamProp are compared to each other in this section. The baseline
model geometry is simulated in solid mechanics only, with a centered Gaussian driving
load in two dimensions. The same geometry parameters (resonator length and dome
shape) are used in the BeamProp simulations. The results are shown in Figure 4.4. The
modes profiles that result from both simulations are of the family LG(0, n), n ∈ N. The
FSR from COMSOL is 138 MHz, while BeamProp simulations with 2000 round-trips
result in a spectrum with an FSR of 137 MHz. In both methods, the transverse mode
spacing between the fundamental and next higher mode is close to 5 MHz. Several things
have to be noted:

• Only the first four modes agree well in frequency. The reason is the difference in
TMS that adds up with increasing higher frequencies.

• The amplitudes of the modes in the spectrum computed in COMSOL are not mono-
tonically decreasing, although there is a trend, whereas the ones from BeamProp
are. This is more expected for the centered Gaussian drive applied, because higher
order eigenmodes of the HBAR with spherical dome have a smaller mode overlap
with it.

• Some peaks in the COMSOL spectrum appear as double peaks, as for example the
fundamental mode at 5.9 GHz. There is no immediate explanation for this at the
moment except for numerical errors.

• The spectra are are shifted with respect to each other in absolute frequency by
9.5 MHz for visual comparison.

• A last observation is that the transverse spacing is varying, and in particular,
increases for the modes between 5.85 GHz and 5.875 GHz. Again, the transverse
mesh density could be not high enough to resolve the modes correctly.

4.3 Diffraction loss

Loss estimation using boundary variation

To analyze the consistency of diffraction loss results that are computed by integrating
the mechanical power flux that leaves the HBAR, solid mechanics simulations of the
baseline model HBAR were conducted in two dimensions. The diffraction loss was then
extracted for 200 eigenmodes found in a frequency range of 501 MHz, which covers three
full FSRs. According to section 2.2.3, the quality factor associated with diffraction loss
can be computed from the radially emitted power flux. Here, we varied the distance
of the boundary at which the flux is evaluated from the symmetry axis of the HBAR
between 60 µm and 90 µm, corresponding to 60% and 90% of the simulated HBAR radius
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Figure 4.4: Comparison of the acoustic spectra computed in a COMSOL 2D frequency
domain and the BeamProp method for the HBAR used in the baseline model.
The BeamProp spectrum is shifted by +9.5 MHz to visually match both
FSRs.

respectively. The results are shown in Figure 4.5. The quality factor of the fundamental
mode at 6.573 GHz is consistently large, as is expected because fundamental modes
are the most confined modes. However, other fundamental modes such as the one at
6.4412 GHz do not show this characteristic, i.e. their quality factor is small. It has
to be concluded that with the transverse mesh density of the baseline model, further
investigations are needed to increase the accuracy of diffraction studies. A possible
explanation for the inconsistency could be that small numerical errors dominate at the
boundaries because the mesh density in direction of the power flow is small at those
boundaries.

4.4 Electromechanical coupling rates

4.4.1 Different dome shapes

The coupling rates were calculated for the lowest eigenmodes in the solid mechanics
simulations for spherical, Gaussian and cosine dome types. The couplings are plotted as
a function of eigenfrequencies of the modes in Figure 4.6. As expected, the differences are
only minimal, since up to second order the surface profiles are matching. However, one
observes a small shift in frequency of the Gaussian and cosine domes with respect to the
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Figure 4.5: Analysis of the influence of the position of the boundary over which diffraction
loss computation is evaluated over four FSRs in the baseline model HBAR.
The fundamental mode at 6.573 GHz shows consistently a high quality fac-
tor. a) Diffraction quality factors. b) Logarithm of of the diffraction quality
factors.

spherical. Furthermore, the results show that the coupling rate is potentially another
characteristic that allows one to separate spurious from real modes, as a threshold at
couplings of around 600 kHz would result in a good method for extracting the first four
real eigenmodes. It is to be noted however, that for higher order modes, the couplings of
real modes become comparable to spurious ones. An explanation of why spurious modes
have smaller couplings could be that because of their random mode profiles, the overlap
integral with the more slowly varying electric field profile becomes small.

4.4.2 Coupling to a ring antenna

Experiments were also conducted to investigate the antenna shape. For example, the
baseline model was modified to have a ring-shaped antenna instead of a disk. The outer
ring diameter was set to 20 µm. The result of this analysis is shown in Figure 4.7. The
coupling rates are comparably higher than in samples in Ref. [35], which are in the order
of 250 kHz, but a direct comparison can’t be made because the baseline model has a gap
of 3 µm and a substrate thickness of 40 µm, compared to 2 µm and 420 µm, respectively,
of the sample.

4.5 Classification of spurious modes

Different methods for distinguishing computational artifacts from real modes in the re-
sults of eigenmode simulations were investigated. Examples include integrating the dis-
placement fields of the eigenmodes in specific regions or surfaces, analysis of the Fourier
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Figure 4.6: Couplings of the first few eigenmodes of the HBAR from the baseline model
as well as of an equivalent Gaussian and cosine dome, as a function of their
eigenfrequency. The dotted line is a guide to the eye separating LG(0,n)
modes of the device (upper part) from computational artifacts (lower part).

transforms (to detect high frequency components) as well as image processing methods
such as blob detection and convolutional neural networks. A simple measure based on
the variance of the displacement field on the flat surface of the HBAR however performed
very good, making it easy to classify the modes with a threshold. The result for the first
100 modes from an eigenmode simulation are shown in Figure 4.8. The reason for this
is again the fact that the artifacts often have single points of large displacement, but
otherwise are largely zero.

4.6 Radiation loss

Finally, a loss due to electromechanical coupling of the electric field of a qubit to phonons
was investigated. Experimentally, the qubit T1 coherence times in our group are typically
tens of microseconds when measured without an HBAR bonded to it. This could be due
to impurities introduce during fabrication, participation of additional surface in the field
and radiation loss. A hint for this is that if the acoustic resonator is added, the coherence
times or decay rates will depend on where the qubit frequency is placed with regard to the
resonator spectrum. For a qubit decay measurement, the qubit frequency is Stark-shifted
across the phonon modes of the attached HBAR. The result of a previous measurement
and the fitted decay rates for each frequency are shown in Figure 4.9. One can observe
an FSR of about 13.2 MHz and a transverse mode spacing of 1.2 MHz. Two main regions
in the spectrum can be distinguished:

58



4.6 Radiation loss

4 6 8 10 12 14 16 18
Inner ring radius ( m)

650

700

750

800

850

900
Co

up
lin

g 
(k

Hz
)

Figure 4.7: Coupling rates for a model with geometrical parameters as the baseline, but
with an antenna with ring shape. The inner ring radius was varied, the outer
ring radius was set to 20 µm. A full disk of 20 µm for the same model has a
coupling rate of 927 kHz.

• The qubit frequency is on resonance with the fundamental phonon mode, or a next
higher one. In this case, energy is coherently swapped between the qubit and the
phonon mode, leading to (damped) Rabi oscillations.

• The second case is when the qubit frequency is off-resonance, typically at the end
of the FSR. There, a qubit is not coupling to a specific phonon mode. However,
the decay of the qubit in this frequency range is larger than the bare (unbonded)
qubit decay.

Here, we present a model to estimate the qubit decay due to electromechanical loss, as
described in Chapter 2.2.4. The spectrum and the density of phonon states of the HBAR
were extracted from simulations of the acoustic Schrödinger equation. The spectrum is
the direct result of the eigendecomposition. To get the density of states, the eigenfunc-
tions are Fourier-transformed. In the one dimensional case, one can directly construct a
density of states by assigning the transformed eigenstates to their eigenfrequency. The
density of states in this case is shown in Figure 4.10. The range of the vertical axis is
given by the depth of the potential well according to the acoustic Schrödinger equation
and hence given in negative frequencies. Similarly to the density of states of a substrate
with finite thickness but infinite extension in the other two dimensions, the energy as a
function of wavevector shows a parabolic trend. In the two dimensional case, the density
of states can be computed similarly from the eigenfunctions. For a density of states as
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Figure 4.8: A simple measure to distinguish computational artifacts from physically plau-
sible modes in COMSOL eigenmode simulations, based on the variance of the
displacement fields. All modes above the threshold marked by the red line
show low noise and Laguerre-Gaussian mode traits, while modes below are
artifacts.

a function of the magnitude of the wavevector perpendicular to the flat surface of the
HBAR, on can use the following computation method:

• Solve the Acoustic Schrödinger equation for the lowest n eigenfunctions

• Discretize the perpendicular wavevector k2⊥ = k2x + k2y in bins k⊥,i, which can be
saved in an array for each eigenfrequency

• For every eigenfrequency, Fourier-transform the degenerate eigenfunctions (modes),
and for each, integrate their amplitude over the rings with center radius k⊥,i and
thickness t = k⊥,i − k⊥,i−1. Add the result to bin i of the array corresponding to
this eigenfrequency

• The density of states is then given by assigning these arrays to the closest frequency

In both the one dimensional and two dimensional case, the spectra are broadened with a
heuristic lineshape, corresponding to a finite lifetime of the eigenstates in the resonator, a
parameter that can be used to fit the model to experimental data. The second ingredient
needed for the loss rate are the electric fields in the piezo-electric domes used to compute
the coupling in k-space. They can be extracted from COMSOL eigenmode simulations,
and this was done for different antenna radii ranging from 20 to 44 microns.
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Figure 4.9: Measurement of the qubit decay and fitted decay rates. a) Chevron pattern
produced by sweeping the qubit frequency across the phonon spectrum is
shown. One sees four FSRs, with pronounced Rabi oscillations for the funda-
mental mode. b) For every frequency, an exponential decay is fitted for the
wait time.

Under the assumptions mentioned in 2.2.4, we can compute the loss rates, which are
proportional to the density of states multiplied by the Fourier transform squared of the
electric field. This can be done by simple matrix multiplication (the overlap), the result
of which, for an antenna of radius 20 µm and 44 µm can be seen in Figure 4.11. One
can see that the size of the antenna may have a big influence on the qubit radiation loss,
indicating that big antennas could reduce off-resonance decay rates. The peaks that can
be seen result from the density of states at small values of k, since the Fourier transform
of the electric field of a disk-shaped antenna results in a sinc-shaped coupling in k-space,
which has a large magnitude at small values of k. A second interesting feature is the
influence of the second and wider dome of the Hero sample. According to Figure 4.11, it
contributes additionally to the decay for frequencies above -10 MHz. More importantly,
one can see that the off-resonance region, the qubit decay baseline is smaller for larger
antenna sizes because its Fourier transform is concentrated to smaller k values, and hence
the overlap with the density of states contains less components from high k. This is the
region thought to contribute to the off-resonance background.

In conclusion, this model provides us with a powerful tool which may allow us to
minimize the loss rate depending on the geometry of the HBAR used, as well as to
optimize the shape of the antenna which defines the electric field in the piezo-electric
dome.
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Figure 4.10: Density of states computed using the acoustic Schrödinger equation, used
to compute the qubit loss rate. Horizontal lines correspond to the eigen-
frequencies of the dome according to the analogy to a potential well, the
lowest of which is the fundamental mode. The kink is introduced because
the dome is composed of two sub-domes.
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Figure 4.11: The qubit radiation loss was evaluated for different qubit antenna sizes. Two
examples of loss patterns for an antenna with radius a) 20 µm and b) 44 µm
are shown. The decay rate of the qubit is proportional to the overlap of
the coupling and density of states. The main feature to observe is that the
baseline (the decay rate around -15 MHz) is decreased for larger antennas.
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Chapter 5

Outlook

5.1 COMSOL

Although the COMSOL simulations were improved to reduce the sensitivity to the mesh
by an order of magnitude, the results of the COMSOL simulations also show that further
efforts are needed. First, the diffraction loss accuracy could be improved by increasing
the radial mesh density by an order of magnitude, but at the moment of writing such
simulations are not feasible in three dimensions. Also, an open question remains whether
the cylindrical offset of 0.15 µm separating the piezo-electric dome from the substrate can
be avoided, since this prevents the implementation of arbitrary (realistic) dome shapes,
albeit many alternative have already been explored. A last improvement to be done
concerns the gap between the substrates. As the mesh density in z-direction of the
HBAR in the baseline model required to resolve the eigenfrequencies accurately was only
possible for a gap of at least 3 µm, some alternative mesh approaches have to be tried
out to model smaller gaps.

5.2 Validation of loss model

There are a few next steps regarding the qubit decay rate model. First of all, the model
requires more verification. This includes a closer analysis of the assumptions taken both
in the derivation and on the computational side. Also, some consistency checks could be
done, such as more variations of the dome shape and the antenna. Second, the model
could be compared and fitted to measurements taken. Finally, there is a trade-off between
the coupling rate and the qubit loss rate. As the electric field is increased for increasing
coupling, the qubit decay rate will also increase. Instead of only optimizing the loss rate,
one could try to minimize the product g · Γ, to find the optimal balance for the specific
hybrid quantum system ℏBAR.

5.3 Phononic crystals

A very different and yet interesting approach for inhibiting qubit decay through phonon
radiation may consist of creating a phononic crystal around the HBAR such that the
relevant phonon frequencies fall into the bandgap of the crystal. This type of insulation
has proven very effective in the context of optomechanical crystals. Furthermore, it may
be possible to simulate such a device with similar geometry to the COMSOL models
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5 Outlook

of the HBAR, as the number of degrees of freedom are not expected to grow too much
because simulating a single layer of unit cells around the HBAR with appropriate pe-
riodic boundary conditions may be enough, allowing to predict the effectiveness before
fabrication.

5.4 Mode selectivity engineering

For quantum information processing applications, it may be interesting to couple the
qubit to the fundamental Laguerre-Gaussian mode only. As a result of the acoustic
Schrödinger equation analogy (within its limitations), the spectrum of the HBAR only
depends on the difference of the spatial profiles of the resonator surfaces. Therefore,
one can in principle "cut out" pieces of the height profile of one surface and add it to
the other without changing it. This could potentially allow the use of a mode matching
surface (to the fundamental mode, which is Gaussian) on one side and a surface creating
the resonator cavity on the other.
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Chapter 6

Conclusion

In conclusion, methods for simulating a hybrid quantum system were evaluated, improved
and extended, including classical multiphysics simulations which allow to reconstruct the
quantum Hamiltonian with a previously developed hybrid quantization based on the
eigenmode of the coupled system, as well as simulation methods for bulk acoustic wave
resonator based on paraxial beam propagation. The key findings include the following:

• The accuracy of COMSOL Multiphyiscs simulations of the hybrid quantum system
ℏBAR was evaluated. This included a thorough analysis of the meshing process
of the device, both in models in two and three dimensions. It was found that the
previous mesh was highly sensitive to small changes of the mesh, and in particular
the domain where solid mechanics was simulated required improvement. After their
improvement, the results are more accurate by one order of magnitude.

• Frequency domain studies for different models of HBARs were implemented in
COMSOL. This allows to extract the same spectra as can be done with an estab-
lished Python library , which is based on the Fourier propagation of the paraxial
limit. Good agreement both of the FSR and the TMS is found.

• Simulations of a novel type of ring-like antenna for the qubit in the ℏBAR were
used to estimate the reduction of the coupling rates to the HBAR showing a de-
crease of around 10% if the antenna ring has a inner diameter that is half of the
outer diameter compared to a full disk. This is of importance because in future
experiments for coherent transduction, optical fields may have to pass through such
a ring-shaped antenna while mantaining large coupling rates.

• A method to estimate the qubit loss due to radiation decay was investigated. To
this end, the density of phonon states in the acoustic resonator was extracted from
the solutions of a Schrödinger equation describing the HBAR, and together with
electric fields from COMSOL eigenmode simulations, the qubit decay rate was
shown to decrease for increasing radius of the antenna.
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